Functioneel programmeren 2012-2013

134. Finger Trees

Atze Dijkstra and Doaitse Swierstra
Department of Information and Computing Sciences Utrecht University

December 18, 2012

Finger trees

- A general purpose data structure, reminiscent of a Swiss army knife. It can be used as:
- a sequence (split and concatenate, access to both ends in constant time)
- a priority queue (find the minimum)
- a search tree (find an element)
- Specialized data structures are often slightly more efficient, but finger trees are competitive.
- Available in Data.Sequence.

Tree-like structures

$$
\begin{aligned}
\text { data Tree } a & =\text { Leaf a } \\
& \mid \text { Node (Tree a) (Tree a) }
\end{aligned}
$$

Simple Haskell trees are not always balanced:

Balanced trees

Idea
Let us use Haskell's type system to enforce that trees are balanced.

Example: a balanced complete tree

Example: a balanced complete tree

What are the leaves?

Example: a balanced complete tree

What are the leaves?

Example: a balanced complete tree

What are the leaves?
Can we define trees that have other trees as leaves?

Example: a balanced complete tree

What are the leaves?
Can we define trees that have other trees as leaves? Yes, of course - the type of leaves is just a parameter.

Example: a balanced complete tree

What are the leaves?
Can we define trees that have other trees as leaves? Yes, of course - the type of leaves is just a parameter.

Trees of a fixed depth

```
type Tree
type Tree }\mp@subsup{1}{\textrm{a}}{\textrm{a}}=\mathrm{ Node a = Tree (Node a)
type Tree 2 a = Node (Node a) = Tree (Node a)
```



```
data Node a = Node a a -- a node is a pair!
```


Nested datatypes

Complete trees of a certain depth:

```
type Tree
type Tree 1+n a = Treen (Node a)
data Node a = Node a a -- a node is a pair!
```


Nested datatypes

Complete trees of a certain depth:
type $\operatorname{Tree}_{0} \quad a=a$
type Tree $_{1+n} \mathrm{a}=$ Tree $_{\mathrm{n}}$ (Node a)
data Node a = Node a a -- a node is a pair!
Combined into a single datatype:
data Tree $\mathrm{a}=$ Zero a
| Succ (Tree (Node a))
Trees of this datatype are always complete! What's strange about this type?

Nested datatypes

Complete trees of a certain depth:
type $\operatorname{Tree}_{0} \quad a=a$
type Tree $_{1+n} \mathrm{a}=$ Tree $_{\mathrm{n}}$ (Node a)
data Node a = Node a a -- a node is a pair!
Combined into a single datatype:
data Tree $\mathrm{a}=$ Zero a
| Succ (Tree (Node a))
Trees of this datatype are always complete! What's strange about this type?

Datatypes with non-regular recursion such as Tree are also called nested datatypes.

Example

$$
\begin{aligned}
& \mathrm{t}:: \text { Tree Int } \\
& \mathrm{t}=\text { Succ (Succ (Succ (Zero (Node (Node (Node } 1
\end{aligned}
$$

(Node 3 4))
(Node (Node 5
6)
(Node 7
8) $)$)))

Example

```
t :: Tree Int
t = Succ (Succ (Succ (Zero (Node (Node (Node 1
```

(Node 3 4))
(Node (Node 5
6)
(Node 7
8) $)$)))

The constructors Succ and Zero encode the number of levels in the tree.

Towards 2-3-trees

- Complete binary trees are too limited.
- The number of elements in a complete binary tree is always a power of two.
- It is therefore difficult to implement basic functions such as insertion of a single element - we need more flexibility.

Towards 2-3-trees

- Complete binary trees are too limited.
- The number of elements in a complete binary tree is always a power of two.
- It is therefore difficult to implement basic functions such as insertion of a single element - we need more flexibility.

2-3-trees

Complete trees with values at the leaves where every node has either two or three children.

A 2-3-tree

A 2-3-tree

data Node $\mathrm{a}=\mathrm{Node}_{2} \mathrm{a}$ a
| Node_{3} a a a -- pair or triple

Number of elements in a $2-3$ tree

depth (n)	min elements $\left(2^{n}\right)$	max elements $\left(3^{n}\right)$
0	1	1
1	2	3
2	4	9
3	8	27

Number of elements in a $2-3$ tree

depth (n)	min elements $\left(2^{n}\right)$	max elements $\left(3^{n}\right)$
0	1	1
1	2	3
2	4	9
3	8	27

Every number of elements can be represented.

Finger trees

- 2-3-Trees already give us logarithmic access to all elements.
- For sequence operations, we want access to both ends in constant time.
- Finger trees are a reorganisation of 2-3-Trees.

Introducing a "finger" - pointer reversal

A finger tree

A finger tree

A finger tree

A finger tree

A finger tree

data FingerTree $a=$

Empty

| Single a
| Deep (Digit a) (FingerTree (Node a)) (Digit a)
type Digit $a=[a]$-- one up to four elements

Adding a single element

```
infixr 5\triangleleft
(\triangleleft) :: a }->\mathrm{ FingerTree a }->\mathrm{ FingerTree a
a }\triangleleft\mathrm{ Empty }\quad=\mathrm{ Single a
a \triangleleftSingle b = Deep [a] Empty [b]
a \triangleleftDeep [b, c, d, e] m sf = Deep [a,b] (Node c c d e\triangleleftm) sf
a\triangleleftDeep pr m sf = Deep ([a] H pr) m sf
```

- We define our own operator.
- We also define its precendence and associativity.
- Note that (\triangleleft) makes use of polymorphic recursion - what is the type of the recursive call?

Adding a single element

```
infixr 5\triangleleft
(\triangleleft) :: a }->\mathrm{ FingerTree a }->\mathrm{ FingerTree a
a }\triangleleft\mathrm{ Empty }\quad=\mathrm{ Single a
a \triangleleftSingle b = Deep [a] Empty [b]
a \triangleleftDeep [b, c, d, e] m sf = Deep [a,b] (Node c c de\triangleleftm) sf
a\triangleleftDeep pr m sf = Deep ([a] H pr) m sf
```

- We define our own operator.
- We also define its precendence and associativity.
- Note that (\triangleleft) makes use of polymorphic recursion - what is the type of the recursive call?
- Type inference is not supported for polymorphically recursive functions.

Example: inserting an element

What happens when we insert 0 into the following tree?

Example: inserting an element

What happens when we insert 0 into the following tree?

Example: inserting an element

What happens when we insert 0 into the following tree?

Splitting off the first element

data View s a $=$ Nil $_{\mathrm{L}} \mid$ Cons $_{\mathrm{L}}$ a (s a) view $_{\mathrm{L}}::$ FingerTree $\mathrm{a} \rightarrow$ View $_{\mathrm{L}}$ FingerTree a

Using these definitions, it is easy to deconstruct a finger tree:

$$
\begin{aligned}
& \text { isEmpty }:: \text { FingerTree } a \rightarrow \text { Bool } \\
& \text { isEmpty } x=\text { case view } \mathrm{L}_{\mathrm{L}} \times \text { of } \text { Nil }_{\mathrm{L}} \rightarrow \text { True } \\
& \text { Cons }_{\mathrm{L}--} \rightarrow \text { False }
\end{aligned}
$$

head $_{L}::$ FingerTree $a \rightarrow a$
$\operatorname{head}_{L} \times=$ case view $L \times$ of Cons $L_{L} a_{-} \rightarrow a$
tail $:$: FingerTree a \rightarrow FingerTree a
tail $_{\mathrm{L}} \mathrm{x}=$ case $^{\text {view }} \mathrm{L} \times$ of Cons $_{\mathrm{L}}-\mathrm{y} \rightarrow \mathrm{y}$
All these operations (and also (\triangleleft)) take O (1) time.

Animation of insertion into Finger Trees

Amortized complexity analysis

- These complexity bounds are amortized bounds:

Amortized complexity analysis

- These complexity bounds are amortized bounds:
- A single operation may take longer than expected, but on average these operations take a constant amount of time.

Amortized complexity analysis

- These complexity bounds are amortized bounds:
- A single operation may take longer than expected, but on average these operations take a constant amount of time.
- Think of credit that may be distributed among operations.
- If the timeout of an operation is T, and an operation actually finishes at time t before T , then it collects $\mathrm{T}-\mathrm{t}$ units of credit.
- If a later operation takes longer than T, it may use the credit accumulated thus far to pay for the extra time.

Amortized complexity analysis

- These complexity bounds are amortized bounds:
- A single operation may take longer than expected, but on average these operations take a constant amount of time.
- Think of credit that may be distributed among operations.
- If the timeout of an operation is T, and an operation actually finishes at time t before T , then it collects $\mathrm{T}-\mathrm{t}$ units of credit.
- If a later operation takes longer than T, it may use the credit accumulated thus far to pay for the extra time.
- In a lazy setting with persistent data structures, we have to refine this analysis.

Complexity of adding an element

- Let us call a digit safe if it has two or three elements.
- Let us call it dangerous otherwise.
- The operation (\triangleleft) only propagates to the next level on a dangerous digit, but makes it safe at the time.

```
a \triangleleft Empty
= Single a
a \(\triangleleft\) Single \(b\)
\(=\) Deep [a] Empty [b]
\(a \triangleleft \operatorname{Deep}[b, c, d, e] m s f=\operatorname{Deep}[a, b]\left(\operatorname{Node}_{3} c d e \triangleleft m\right) s f\)
\(\mathrm{a} \triangleleft\) Deep pr m sf \(\quad=\operatorname{Deep}([\mathrm{a}]+\mathrm{pr}) \mathrm{m} \mathrm{sf}\)
```


Complexity of adding an element

- Let us call a digit safe if it has two or three elements.
- Let us call it dangerous otherwise.
- The operation (\triangleleft) only propagates to the next level on a dangerous digit, but makes it safe at the time.

```
a \triangleleft Empty
= Single a
a \(\triangleleft\) Single \(b\)
\(=\) Deep [a] Empty [b]
\(a \triangleleft \operatorname{Deep}[b, c, d, e] m s f=\operatorname{Deep}[a, b]\left(\right.\) Node \(\left._{3} c \mathrm{~d} \mathrm{e} \triangleleft \mathrm{m}\right) \mathrm{sf}\)
\(\mathrm{a} \triangleleft\) Deep pr m sf \(\quad=\operatorname{Deep}([a]+\mathrm{pr}) \mathrm{m} \mathrm{sf}\)
```

- At most every second operation propagates to next level.
- Gives us a (ephemeral) amortized bound of 2 steps per call.

Complexity of adding an element

- To make the analysis work in a persistent setting, we need laziness.
- Laziness ensures that expensive operations are delayed, and can only be forced by performing a sufficient number of further operations to pay for the cost.

Many more operations on finger trees

Data.Sequence extend finger trees further and define many more operations - an excerpt:

```
data Seq a -- abstract, essentially FingerTree a
(\bowtie) :: Seq a }->\mathrm{ Seq a }->\mathrm{ Seq a -- O (log (min (m, n)))
length :: Seq a }->\mathrm{ Int -- O (1)
index :: Seq a }->\mathrm{ Int }->\mathrm{ a -- O (log n)
update :: Int }->\textrm{a}->\mathrm{ Seq a }->\mathrm{ Seq a -- O (log n)
splitAt :: Int }->\mathrm{ Seq a }->\mathrm{ (Seq a, Seq a) -- O (log n)
reverse :: Seq a }->\mathrm{ Seq a -- O (n)
```

Data.FingerTree (and corresponding paper by Hinze \& Paterson) also describe how to implement other data structures using finger trees.

