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Finger trees

> A general purpose data structure, reminiscent of a Swiss
army knife.
It can be used as:
» a sequence (split and concatenate, access to both ends in
constant time)
> a priority queue (find the minimum)
» a search tree (find an element)
>

» Specialized data structures are often slightly more efficient,
but finger trees are competitive.

» Available in Data.Sequence.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
0-2 NS



e-like structures

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Simple Haskell trees are not always balanced:
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anced trees
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Let us use Haskell's type system to enforce that trees are
balanced.
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mple: a balanced complete tree
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mple: a balanced complete tree

A
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What are the leaves?

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences ]
=] (= = E E DA



ample: a balanced complete tree
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What are the leaves?
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ample: a balanced complete tree

What are the leaves?

Can we define trees that have other trees as leaves?
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Example: a balanced complete tree

Node
Node Node
4 Y K Y
Node Node Node Node
/N /N /N /N
1 2 3 4 5 6 7 8

What are the leaves?

Can we define trees that have other trees as leaves? Yes, of
course — the type of leaves is just a parameter.
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Example: a balanced complete tree

Node
<3
Node Node
SN RN
Node Node Node Node
/N /N /N /N
1 2 3 4 5 6 7 8

What are the leaves?

Can we define trees that have other trees as leaves? Yes, of
course — the type of leaves is just a parameter.
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ees of a fixed depth

type Treeg a = a

type Tree; a = Node a = Treep (Node a)
type Trees a = Node (Node a) = Tree; (Node a)
type Trees a = Node (Node (Node a)) = Treey (Node a)

data Node a = Nodeaa -- a node is a pair!
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sted datatypes

Complete trees of a certain depth:

type Treey a=a
type Treei1n a = Tree, (Node a)

data Node a = Nodeaa -- a node is a pair!
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Nested datatypes

Complete trees of a certain depth:

type Treey a=a
type Tree; 1, a = Tree, (Node a)

data Node a = Nodeaa -- a node is a pair!

Combined into a single datatype:

data Tree a = Zero a
| Succ (Tree (Node a))

Trees of this datatype are always complete! What's strange
about this type?
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Nested datatypes

Complete trees of a certain depth:

type Treey a=a
type Tree; 1, a = Tree, (Node a)

data Node a = Node aa -- a node is a pair!

Combined into a single datatype:

data Tree a = Zero a
| Succ (Tree (Node a))

Trees of this datatype are always complete! What's strange
about this type?

Datatypes with non-regular recursion such as Tree are also

.. called nested datatypes.
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ample

t:: Tree Int
t = Succ (Succ (Succ (Zero (Node (Node (Node 1
2)
(Node 3
4))
(Node (Node 5
6)
(Node 7
8))))
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mple

t:: Tree Int
t = Succ (Succ (Succ (Zero (Node (Node (Node 1
2)
(Node 3
4))
(Node (Node 5
6)
(Node 7
8))))

The constructors Succ and Zero encode the number of levels in
the tree.
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Towards 2-3-trees

» Complete binary trees are too limited.

» The number of elements in a complete binary tree is
always a power of two.

» It is therefore difficult to implement basic functions such as
insertion of a single element — we need more flexibility.
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Towards 2-3-trees

» Complete binary trees are too limited.

» The number of elements in a complete binary tree is
always a power of two.

» It is therefore difficult to implement basic functions such as
insertion of a single element — we need more flexibility.
2-3-trees

Complete trees with values at the leaves where every node has
either two or three children.
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data Treea = Zero a

| Succ (Tree (Node a)) -- as before
data Node a = Nodey a a

| Nodes a aa - pair or triple
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ber of elements in a 2-3 tree

depth (n) min elements (2") max elements (3")

0 1 1
1 2 3
2 4 9
3 8 27
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ber of elements in a 2-3 tree

depth (n) min elements (2") max elements (3")

0 1 1
1 2 3
2 4 9
3 8 27

Every number of elements can be represented.
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» 2-3-Trees already give us logarithmic access to all elements.

» For sequence operations, we want access to both ends in
constant time.

> Finger trees are a reorganisation of 2-3-Trees.
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oducing a “finger” — pointer reversal
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oducing a “finger” — pointer reversal
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oducing a “finger” — pointer reversal
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oducing a “finger” — pointer reversal
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oducing a “finger” — pointer reversal
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data FingerTree a =
Empty
| Single a
| Deep (Digit a) (FingerTree (Node a)) (Digit a)

type Digit a = [a] -- one up to four elements Facuty of 86
aculty of cience
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Adding a single element

infixr 5 <

(<) ::a — FingerTree a — FingerTree a

a < Empty = Single a

a<Single b = Deep [a] Empty [b]

a < Deep [b,c,d,e] m sf = Deep [a,b] (Nodez cd e am) sf
a < Deep pr m sf = Deep ([a] # pr) m sf

» We define our own operator.
> We also define its precendence and associativity.

» Note that (<) makes use of polymorphic recursion — what
is the type of the recursive call?
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Adding a

single element

infixr 5 <
(<) ::a — FingerTree a — FingerTree a
a < Empty = Single a
a<Single b = Deep [a] Empty [b]
a < Deep [b,c,d,e] m sf = Deep [a,b] (Nodez cd e am) sf
a < Deep pr m sf = Deep ([a] # pr) m sf
» We define our own operator.
> We also define its precendence and associativity.
» Note that (<) makes use of polymorphic recursion — what
is the type of the recursive call?
» Type inference is not supported for polymorphically
recursive functions.
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mple: inserting an element

What happens when we insert 0 into the following tree?
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mple: inserting an element

What happens when we insert 0 into the following tree?

-
Nodes

[\
89
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mple: inserting an element

What happens when we insert 0 into the following tree?

-
Nodes

[\
89
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Splitting off the first element

0-17

data View s a = Nil_ | Cons_ a (s a)
view :: FingerTree a — View| FingerTree a

Using these definitions, it is easy to deconstruct a finger tree:

isEmpty :: FingerTree a — Bool
isEmpty x = case view x of Nil_ — True
Cons| _ _ — False

head, :: FingerTree a — a
head; x = case view| x of Cons a _ — a

tail, :: FingerTree a — FingerTree a

tail. x = case view| x of Cons; _y — vy

All these operations (and also (<)) take O (1) time.
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE



mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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mation of insertion into Finger Trees
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ortized complexity analysis

> These complexity bounds are amortized bounds:
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ortized complexity analysis

> These complexity bounds are amortized bounds:

> A single operation may take longer than expected, but on
average these operations take a constant amount of time.
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Amortized complexity analysis

» These complexity bounds are amortized bounds:

> A single operation may take longer than expected, but on
average these operations take a constant amount of time.

» Think of credit that may be distributed among operations.

» If the timeout of an operation is T, and an operation
actually finishes at time t before T, then it collects T —t
units of credit.

» If a later operation takes longer than T, it may use the
credit accumulated thus far to pay for the extra time.
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Amortized complexity analysis

» These complexity bounds are amortized bounds:

> A single operation may take longer than expected, but on
average these operations take a constant amount of time.

» Think of credit that may be distributed among operations.

» If the timeout of an operation is T, and an operation
actually finishes at time t before T, then it collects T —t
units of credit.

» If a later operation takes longer than T, it may use the
credit accumulated thus far to pay for the extra time.

> In a lazy setting with persistent data structures, we have to
refine this analysis.
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Complexity of adding an element

0-20

> Let us call a digit safe if it has two or three elements.
» Let us call it dangerous otherwise.

» The operation (<) only propagates to the next level on a
dangerous digit, but makes it safe at the time.

a < Empty = Single a

a<Single b = Deep [a] Empty [b]

a<Deep [b,c,d,e] msf = Deep [a,b] (Nodes c d e xm) sf
a < Deep pr m sf = Deep ([a] H pr) m sf
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Complexity of adding an element

> Let us call a digit safe if it has two or three elements.
» Let us call it dangerous otherwise.

» The operation (<) only propagates to the next level on a
dangerous digit, but makes it safe at the time.

a < Empty = Single a

a<Single b = Deep [a] Empty [b]

a<Deep [b,c,d,e] msf = Deep [a,b] (Nodes c d e xm) sf
a < Deep pr m sf = Deep ([a] H pr) m sf

» At most every second operation propagates to next level.

> Gives us a (ephemeral) amortized bound of 2 steps per call.
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Complexity of adding an element

» To make the analysis work in a persistent setting, we need
laziness.

» Laziness ensures that expensive operations are delayed, and
can only be forced by performing a sufficient number of
further operations to pay for the cost.
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Many more operations on finger trees

Data.Sequence extend finger trees further and define many
more operations — an excerpt:

data Seq a -- abstract, essentially FingerTree a

(1)  ::Seqa— Seqa — Seq a -- O (log (min (m,n)))
length ::Seq a — Int -0 (1)

index ::Seqa — Int— a - O (log n)
update :: Int — a — Seq a — Seq a -- O (log n)

splitAt :: Int — Seq a — (Seq a,Seqa) -~ O (logn)

reverse :: Seq a — Seq a -0 (n)

Data.FingerTree (and corresponding paper by Hinze &
Paterson) also describe how to implement other data structures
using finger trees.
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