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Finger trees

I A general purpose data structure, reminiscent of a Swiss
army knife.
It can be used as:

I a sequence (split and concatenate, access to both ends in
constant time)

I a priority queue (find the minimum)
I a search tree (find an element)
I . . .

I Specialized data structures are often slightly more efficient,
but finger trees are competitive.

I Available in Data.Sequence.
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Tree-like structures

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Simple Haskell trees are not always balanced:
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Balanced trees

Idea

Let us use Haskell’s type system to enforce that trees are
balanced.
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Example: a balanced complete tree
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What are the leaves?

Can we define trees that have other trees as leaves?

Yes, of
course – the type of leaves is just a parameter.
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Trees of a fixed depth

type Tree0 a = a
type Tree1 a = Node a = Tree0 (Node a)
type Tree2 a = Node (Node a) = Tree1 (Node a)
type Tree3 a = Node (Node (Node a)) = Tree2 (Node a)
. . .

data Node a = Node a a -- a node is a pair!
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Nested datatypes

Complete trees of a certain depth:

type Tree0 a = a
type Tree1+n a = Treen (Node a)

data Node a = Node a a -- a node is a pair!

Combined into a single datatype:

data Tree a = Zero a
| Succ (Tree (Node a))

Trees of this datatype are always complete! What’s strange
about this type?

Datatypes with non-regular recursion such as Tree are also
called nested datatypes.
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Example

t :: Tree Int
t = Succ (Succ (Succ (Zero (Node (Node (Node 1

2)
(Node 3

4))
(Node (Node 5

6)
(Node 7

8))))))

The constructors Succ and Zero encode the number of levels in
the tree.
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Towards 2-3-trees

I Complete binary trees are too limited.

I The number of elements in a complete binary tree is
always a power of two.

I It is therefore difficult to implement basic functions such as
insertion of a single element – we need more flexibility.

2-3-trees

Complete trees with values at the leaves where every node has
either two or three children.
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A 2-3-tree
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data Tree a = Zero a
| Succ (Tree (Node a)) -- as before

data Node a = Node2 a a
| Node3 a a a -- pair or triple
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Number of elements in a 2-3 tree

depth (n) min elements (2n) max elements (3n)

0 1 1

1 2 3

2 4 9

3 8 27

...

Every number of elements can be represented.
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Finger trees

I 2-3-Trees already give us logarithmic access to all elements.

I For sequence operations, we want access to both ends in
constant time.

I Finger trees are a reorganisation of 2-3-Trees.
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Introducing a “finger” – pointer reversal
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A finger tree
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data FingerTree a =
Empty
| Single a
| Deep (Digit a) (FingerTree (Node a)) (Digit a)

type Digit a = [a] -- one up to four elements
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Adding a single element

infixr 5 /

(/) :: a→ FingerTree a→ FingerTree a
a / Empty = Single a
a / Single b = Deep [a] Empty [b]
a / Deep [b, c, d, e] m sf = Deep [a, b] (Node3 c d e / m) sf
a / Deep pr m sf = Deep ([a] ++ pr) m sf

I We define our own operator.

I We also define its precendence and associativity.

I Note that (/) makes use of polymorphic recursion – what
is the type of the recursive call?

I Type inference is not supported for polymorphically
recursive functions.



[Faculty of Science
Information and Computing Sciences]

0-15

Adding a single element

infixr 5 /

(/) :: a→ FingerTree a→ FingerTree a
a / Empty = Single a
a / Single b = Deep [a] Empty [b]
a / Deep [b, c, d, e] m sf = Deep [a, b] (Node3 c d e / m) sf
a / Deep pr m sf = Deep ([a] ++ pr) m sf

I We define our own operator.

I We also define its precendence and associativity.

I Note that (/) makes use of polymorphic recursion – what
is the type of the recursive call?

I Type inference is not supported for polymorphically
recursive functions.



[Faculty of Science
Information and Computing Sciences]

0-16

Example: inserting an element

What happens when we insert 0 into the following tree?
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Splitting off the first element

data ViewL s a = NilL | ConsL a (s a)

viewL :: FingerTree a→ ViewL FingerTree a

Using these definitions, it is easy to deconstruct a finger tree:

isEmpty :: FingerTree a→ Bool
isEmpty x = case viewL x of NilL → True

ConsL → False

headL :: FingerTree a→ a
headL x = case viewL x of ConsL a → a

tailL :: FingerTree a→ FingerTree a
tailL x = case viewL x of ConsL y→ y

All these operations (and also (/)) take O (1) time.
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Animation of insertion into Finger Trees

:
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Animation of insertion into Finger Trees
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Animation of insertion into Finger Trees
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Amortized complexity analysis

I These complexity bounds are amortized bounds:

I A single operation may take longer than expected, but on
average these operations take a constant amount of time.

I Think of credit that may be distributed among operations.
I If the timeout of an operation is T, and an operation

actually finishes at time t before T, then it collects T− t
units of credit.

I If a later operation takes longer than T, it may use the
credit accumulated thus far to pay for the extra time.

I In a lazy setting with persistent data structures, we have to
refine this analysis.
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Complexity of adding an element

I Let us call a digit safe if it has two or three elements.

I Let us call it dangerous otherwise.

I The operation (/) only propagates to the next level on a
dangerous digit, but makes it safe at the time.

a / Empty = Single a
a / Single b = Deep [a] Empty [b]
a / Deep [b, c, d, e] m sf = Deep [a, b] (Node3 c d e / m) sf
a / Deep pr m sf = Deep ([a] ++ pr) m sf

I At most every second operation propagates to next level.

I Gives us a (ephemeral) amortized bound of 2 steps per call.
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Complexity of adding an element

I To make the analysis work in a persistent setting, we need
laziness.

I Laziness ensures that expensive operations are delayed, and
can only be forced by performing a sufficient number of
further operations to pay for the cost.
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Many more operations on finger trees

Data.Sequence extend finger trees further and define many
more operations – an excerpt:

data Seq a -- abstract, essentially FingerTree a

(./) :: Seq a→ Seq a→ Seq a -- O (log (min (m, n)))
length :: Seq a→ Int -- O (1)
index :: Seq a→ Int→ a -- O (log n)
update :: Int→ a→ Seq a→ Seq a -- O (log n)
splitAt :: Int→ Seq a→ (Seq a,Seq a) -- O (log n)
reverse :: Seq a→ Seq a -- O (n)

Data.FingerTree (and corresponding paper by Hinze &
Paterson) also describe how to implement other data structures
using finger trees.


