[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Functioneel programmeren 2012-2013
134. Finger Trees

Atze Dijkstra and Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

December 18, 2012

Finger trees

> A general purpose data structure, reminiscent of a Swiss
army knife.
It can be used as:
» a sequence (split and concatenate, access to both ends in
constant time)
> a priority queue (find the minimum)
» a search tree (find an element)
>

» Specialized data structures are often slightly more efficient,
but finger trees are competitive.

» Available in Data.Sequence.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
0-2 NS

e-like structures

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Simple Haskell trees are not always balanced:

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

anced trees

ldea

Let us use Haskell's type system to enforce that trees are
balanced.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

mple: a balanced complete tree

A

e iew

VARN VARN VARN VARN
HE B E B E B B B

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]
=] (= = E E DA

mple: a balanced complete tree

A

e

/N VARN SN/
i B BE B BE B R H

What are the leaves?

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]
=] (= = E E DA

ample: a balanced complete tree

s Ciew
OOOOEO®E®®

What are the leaves?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ample: a balanced complete tree

What are the leaves?

Can we define trees that have other trees as leaves?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(=] (= = =

DEE

Example: a balanced complete tree

Node
Node Node
4 Y K Y
Node Node Node Node
/N /N /N /N
1 2 3 4 5 6 7 8

What are the leaves?

Can we define trees that have other trees as leaves? Yes, of
course — the type of leaves is just a parameter.

Eﬁ“@ L) [Facul.ty of S'cience
%‘l $ Universiteit Utrecht Information and Computing Sciences]
TN

\

0-5

Example: a balanced complete tree

Node
<3
Node Node
SN RN
Node Node Node Node
/N /N /N /N
1 2 3 4 5 6 7 8

What are the leaves?

Can we define trees that have other trees as leaves? Yes, of
course — the type of leaves is just a parameter.

Eﬁ“@ L) [Facul.ty of S'cience
%‘l $ Universiteit Utrecht Information and Computing Sciences]
TN

\

0-5

ees of a fixed depth

type Treeg a = a

type Tree; a = Node a = Treep (Node a)
type Trees a = Node (Node a) = Tree; (Node a)
type Trees a = Node (Node (Node a)) = Treey (Node a)

data Node a = Nodeaa -- a node is a pair!

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

sted datatypes

Complete trees of a certain depth:

type Treey a=a
type Treei1n a = Tree, (Node a)

data Node a = Nodeaa -- a node is a pair!

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Nested datatypes

Complete trees of a certain depth:

type Treey a=a
type Tree; 1, a = Tree, (Node a)

data Node a = Nodeaa -- a node is a pair!

Combined into a single datatype:

data Tree a = Zero a
| Succ (Tree (Node a))

Trees of this datatype are always complete! What's strange
about this type?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

0-7

Nested datatypes

Complete trees of a certain depth:

type Treey a=a
type Tree; 1, a = Tree, (Node a)

data Node a = Node aa -- a node is a pair!

Combined into a single datatype:

data Tree a = Zero a
| Succ (Tree (Node a))

Trees of this datatype are always complete! What's strange
about this type?

Datatypes with non-regular recursion such as Tree are also

.. called nested datatypes.

_i\\“% [Faculty of Science

% U§ Universiteit Utrecht Information and Computing Sciences]
N

A
07 K/

ample

t:: Tree Int
t = Succ (Succ (Succ (Zero (Node (Node (Node 1
2)
(Node 3
4))
(Node (Node 5
6)
(Node 7
8))))

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

mple

t:: Tree Int
t = Succ (Succ (Succ (Zero (Node (Node (Node 1
2)
(Node 3
4))
(Node (Node 5
6)
(Node 7
8))))

The constructors Succ and Zero encode the number of levels in
the tree.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

Towards 2-3-trees

» Complete binary trees are too limited.

» The number of elements in a complete binary tree is
always a power of two.

» It is therefore difficult to implement basic functions such as
insertion of a single element — we need more flexibility.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
0-9 NS

Towards 2-3-trees

» Complete binary trees are too limited.

» The number of elements in a complete binary tree is
always a power of two.

» It is therefore difficult to implement basic functions such as
insertion of a single element — we need more flexibility.
2-3-trees

Complete trees with values at the leaves where every node has
either two or three children.

5&\\“’%}) [Faculty of Science
% N % Universiteit Utrecht Information and Computing Sciences]
0-9 NS

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]

data Treea = Zero a

| Succ (Tree (Node a)) -- as before
data Node a = Nodey a a

| Nodes a aa - pair or triple

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

ber of elements in a 2-3 tree

depth (n) min elements (2") max elements (3")

0 1 1
1 2 3
2 4 9
3 8 27
[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ber of elements in a 2-3 tree

depth (n) min elements (2") max elements (3")

0 1 1
1 2 3
2 4 9
3 8 27

Every number of elements can be represented.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

» 2-3-Trees already give us logarithmic access to all elements.

» For sequence operations, we want access to both ends in
constant time.

> Finger trees are a reorganisation of 2-3-Trees.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

oducing a “finger” — pointer reversal

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
(] =l = =

DEE

oducing a “finger” — pointer reversal

~Enn

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
(] =l = =

DEE

oducing a “finger” — pointer reversal

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

oducing a “finger” — pointer reversal

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

oducing a “finger” — pointer reversal

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

[Faculty of S

Information and Computing Sciences

[m]

Universiteit Utrecht

inger tree

inger tree

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

inger tree

"4

|
R
B @

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]

o P = = £ 9DAE

iences]

[Faculty of S
d Computing Sc

Information an
(=

Universiteit Utrecht

inger tree

inger tree

H [\
II/-\- =--

data FingerTree a =
Empty
| Single a
| Deep (Digit a) (FingerTree (Node a)) (Digit a)

type Digit a = [a] -- one up to four elements Facuty of 86
aculty of cience

Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

Adding a single element

infixr 5 <

(<) ::a — FingerTree a — FingerTree a

a < Empty = Single a

a<Single b = Deep [a] Empty [b]

a < Deep [b,c,d,e] m sf = Deep [a,b] (Nodez cd e am) sf
a < Deep pr m sf = Deep ([a] # pr) m sf

» We define our own operator.
> We also define its precendence and associativity.

» Note that (<) makes use of polymorphic recursion — what
is the type of the recursive call?

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

0-15

Adding a

single element

infixr 5 <
(<) ::a — FingerTree a — FingerTree a
a < Empty = Single a
a<Single b = Deep [a] Empty [b]
a < Deep [b,c,d,e] m sf = Deep [a,b] (Nodez cd e am) sf
a < Deep pr m sf = Deep ([a] # pr) m sf
» We define our own operator.
> We also define its precendence and associativity.
» Note that (<) makes use of polymorphic recursion — what
is the type of the recursive call?
» Type inference is not supported for polymorphically
recursive functions.
N/ aculty of Science
§U% Universiteit Utrecht Information and CcErflputlitr):g ;csiences]
0-15 NS

mple: inserting an element

What happens when we insert 0 into the following tree?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

mple: inserting an element

What happens when we insert 0 into the following tree?

-
Nodes

[\
89

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

mple: inserting an element

What happens when we insert 0 into the following tree?

-
Nodes

[\
89

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

Splitting off the first element

0-17

data View s a = Nil_ | Cons_ a (s a)
view :: FingerTree a — View| FingerTree a

Using these definitions, it is easy to deconstruct a finger tree:

isEmpty :: FingerTree a — Bool
isEmpty x = case view x of Nil_ — True
Cons| _ _ — False

head, :: FingerTree a — a
head; x = case view| x of Cons a _ — a

tail, :: FingerTree a — FingerTree a

tail. x = case view| x of Cons; _y — vy

All these operations (and also (<)) take O (1) time.

[Faculty of Science

RN) ty of 3
% é Universiteit Utrecht Information and Computing Sciences]

mation of insertion into Finger Trees

I%N-

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

mation of insertion into Finger Trees

l’l%‘l\\l\\f

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

-«%ﬁm
L

| |
ks 12

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

/NS

Universiteit Utrecht

[m]

|

[
i

[Faculty of Science
Information and Computing Sciences]

F = E E 9DQAC¢

mation of insertion into Finger Trees

%\-\-
Pmim m

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

I
m e m

[\ |
I/I- 12

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

l’l%l\-
C

[\ |
78 12
10

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

mation of insertion into Finger Trees

el

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

\
l%
-/-\\-
N |
X B

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

(=] F

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

DEE

mation of insertion into Finger Trees

ey *\-
&l lm/m/lﬁ-

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

/I

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

mation of insertion into Finger Trees

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o P = = £ 9DAE

ortized complexity analysis

> These complexity bounds are amortized bounds:

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ortized complexity analysis

> These complexity bounds are amortized bounds:

> A single operation may take longer than expected, but on
average these operations take a constant amount of time.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Amortized complexity analysis

» These complexity bounds are amortized bounds:

> A single operation may take longer than expected, but on
average these operations take a constant amount of time.

» Think of credit that may be distributed among operations.

» If the timeout of an operation is T, and an operation
actually finishes at time t before T, then it collects T —t
units of credit.

» If a later operation takes longer than T, it may use the
credit accumulated thus far to pay for the extra time.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
0-19 N

Amortized complexity analysis

» These complexity bounds are amortized bounds:

> A single operation may take longer than expected, but on
average these operations take a constant amount of time.

» Think of credit that may be distributed among operations.

» If the timeout of an operation is T, and an operation
actually finishes at time t before T, then it collects T —t
units of credit.

» If a later operation takes longer than T, it may use the
credit accumulated thus far to pay for the extra time.

> In a lazy setting with persistent data structures, we have to
refine this analysis.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
0-19 N

Complexity of adding an element

0-20

> Let us call a digit safe if it has two or three elements.
» Let us call it dangerous otherwise.

» The operation (<) only propagates to the next level on a
dangerous digit, but makes it safe at the time.

a < Empty = Single a

a<Single b = Deep [a] Empty [b]

a<Deep [b,c,d,e] msf = Deep [a,b] (Nodes c d e xm) sf
a < Deep pr m sf = Deep ([a] H pr) m sf

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]

Complexity of adding an element

> Let us call a digit safe if it has two or three elements.
» Let us call it dangerous otherwise.

» The operation (<) only propagates to the next level on a
dangerous digit, but makes it safe at the time.

a < Empty = Single a

a<Single b = Deep [a] Empty [b]

a<Deep [b,c,d,e] msf = Deep [a,b] (Nodes c d e xm) sf
a < Deep pr m sf = Deep ([a] H pr) m sf

» At most every second operation propagates to next level.

> Gives us a (ephemeral) amortized bound of 2 steps per call.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

0-20

Complexity of adding an element

» To make the analysis work in a persistent setting, we need
laziness.

» Laziness ensures that expensive operations are delayed, and
can only be forced by performing a sufficient number of
further operations to pay for the cost.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

0-21

Many more operations on finger trees

Data.Sequence extend finger trees further and define many
more operations — an excerpt:

data Seq a -- abstract, essentially FingerTree a

(1) ::Seqa— Seqa — Seq a -- O (log (min (m,n)))
length ::Seq a — Int -0 (1)

index ::Seqa — Int— a - O (log n)
update :: Int — a — Seq a — Seq a -- O (log n)

splitAt :: Int — Seq a — (Seq a,Seqa) -~ O (logn)

reverse :: Seq a — Seq a -0 (n)

Data.FingerTree (and corresponding paper by Hinze &
Paterson) also describe how to implement other data structures
using finger trees.

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

0-22

