[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Advanced Functional Programming
2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Jan 8, 2012

14. Data structures

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

What is the most frequently used data structure in Haskell?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

What is the most frequently used data structure in Haskell?

Lists, clearly ...

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

14.1 Lists everywhere

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at are lists good for?

head :: [a] — a
tail ::[a] — [a]
(:) :ma—[a] —]a]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at are lists good for?

head :: [a] — a
tail ::[a] — [a]
(:) :ma—[a] —]a]

» These are efficient operations on lists.

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at are lists good for?

head :: [a] — a - 0(1)
tail ::[a] — [a] - 0(1)
(:) ma—[a] —]a] - 0(1)

» These are efficient operations on lists.

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at are lists good for?

top :[a] —a - 0(1)
pop ::[a] —[a] - 0(1)
push ::a — [a] — [a] - 0(1)

» These are efficient operations on lists.

» These are the stack operations.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at are lists good for?

top :[a] —a - 0(1)
pop ::[a] — [a] - 0(1)
push ::a — [a] — [a] - 0(1)

» These are efficient operations on lists.
» These are the stack operations.

> Haskell lists are persistent stacks.

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

> A data structure is called persistent if after an operation
both the original and the resutling version of the data
structure are available.

> If not persistent, a data structure is called ephemeral.

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Persistence

v

A data structure is called persistent if after an operation
both the original and the resutling version of the data
structure are available.

> If not persistent, a data structure is called ephemeral.
» Functional data structures are naturally persistent.
» Imperative data structures are usually ephemeral.

» Persistence can have an effect on the efficiency of data

structures.
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
14-5 K7

her operations on lists

snoc :: [a] » a— [a] - O(n)
Snoc = Axs X — xs H [x]
(" i [a] = Int — a - O(n)
(+) = [a] = [a] = [a] - O(n)
reverse :: [a] — [a] - O(n), naively: O(n?)
union :: Eqa=[a] — [a] = [a] - O(mn)
elem :: Eqa=a— [a] » Bool --O(n)
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Other operations on lists

snoc :: [a] — a — [a] - O(n)

snoc = Axs X — xs H- [X]

(M [a] = Int — a - O(n)

(#) [a] = [a] = [a] ~ O(n)

reverse :: [a] — [a] — O(n), naively: O(n?)
union :: Eqa=[a] — [a] = [a] - O(mn)

elem : Eqa=a— [a] > Bool --0O(n)

Often, Haskell lists are used inefficiently as

> arrays
» queues, double-ended queues, catenable queues

> sets, lookup tables, association lists, finite maps

‘S\ ﬁ/) .) : . [Facul_ty of S'ciem:e

E &) § Universiteit Utrecht Information and Computing Sciences]

TN
14-6

Why?

» Special language support for lists:
» There is a convenient built-in notation for lists.
> List comprehensions.
» Pattern matching.
> Libraries:
» Lots of library functions on lists.
> In the past, there were few standard libraries for data
structures.
» Lack of knowledge:
> Lists are easy to learn, but where are the other data
structures?
» Just switching from lists to arrays can make matters worse.

5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
14-7 NS

Why?

» Special language support for lists:
» There is a convenient built-in notation for lists.
> List comprehensions.
» Pattern matching.
» Libraries:
» Lots of library functions on lists.
> In the past, there were few standard libraries for data
structures.
» Lack of knowledge:

> Lists are easy to learn, but where are the other data
structures?
» Just switching from lists to arrays can make matters worse.

Language support is best for lists, but other data structures are
reasonably easy to use as well.

§ & [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
14-7 N

14.2 Arrays

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

perative vs. functional arrays
Imperative (mutable) arrays

» constant-time lookup
> constant-time update

» are ephemeral

Update is usually at least as important as lookup.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

mperative vs. functional arrays
Imperative (mutable) arrays

» constant-time lookup
> constant-time update

» are ephemeral
Update is usually at least as important as lookup.

- 9% Functional (immutable) arrays
S ==

_ > available in Data.Array
% > lookup in O(1); yay!

» update in O(n)!

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Imperative vs. functional arrays

14-9

Imperative (mutable) arrays

» constant-time lookup
> constant-time update

» are ephemeral
Update is usually at least as important as lookup.

Functional (immutable) arrays

> available in Data.Array
> lookup in O(1); yay!
» update in O(n)!
ww. » Why? Persistence!
A

Faculty of Science
—3 [y .

= : Universiteit Utrecht Information and Computing Sciences]
N

Array update vs. list update

Array update is even worse than list update.

» To update the nth element of a list, n — 1 elements are
copied.

» To update any element of an array, the whole array is
copied.
» Update of functional arrays is slow.

» If functional arrays are updated frequently and used
persistently, space leaks will occur!

£§\ ﬁ)ﬁ . L . [Facul.ty of S'C|em:e
U§ Universiteit Utrecht Information and Computing Sciences]

VRTI

Mutable arrays

v

Are like imperative arrays.
Defined in Data.Array.lO (or Data.Array.ST).
All operations in [0 (or ST).

Often awkward to use in a functional setting.

v

v

v

v

Can be useful if you do not need persistence, but require
frequent updates.

:~§\ ﬁ)ﬁ L) [Facul.ty of S'C|em:e
U§ Universiteit Utrecht Information and Computing Sciences]

VRTRE

Interface of immutable arrays

Data.Array

data Array i e -- abstract

-- creation

array :(Ixi) = (i,i) = [(i,e)] = Array ie
listArray :: (Ix i) = (i,i) — [e] = Arrayie

-- lookup

) 2 (Ixi) = Arrayie —»i—e

bounds :: (Ixi) = Arrayie — (i,i)

-- update

(//)) 2 (Ixi) = Arrayie — [(i,e)] — Array i e

-- destruction
elems :: (Ixi) = Arrayie — [e]
assocs :: (Ixi) = Arrayie — [(i,e)]

&) [Faculty of Science
N § Universiteit Utrecht Information and Computing Sciences]

Interface of mutable arrays

Data.Array.10

data IOArray i e -- abstract

-- creation

newArray : (Ixi) = (i,i) = e — 10 (IOArray i e)
newListArray :: (Ix i) = (i,i) — [e] — 10 (IOArray i e)
-- lookup

readArray :: (Ixi) = I0Arrayie - i—10e

getBounds :: (Ix i) = IOArray i e — 10 (i, i)
-- update
writeArray :: (Ixi) = IOArrayie - i—e— 10 ()

-- destruction
getElems :: (Ixi) = Array ie — 10 [e]
getAssocs :: (Ixi) = Arrayie — 10 [(i,e)]

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]

version

freeze :: (Ix i) = IOArray i e — 10 (Array i e)
thaw :: (Ixi) = Array i e — 10 (IOArray i e)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

arrays

Data.Array.Diff

» Same interface as immutable arrays, i.e., not tied to
monadic code.

> Implemented using destructive updates, i.e, update is O(1).

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

boxed arrays

Data.Array.Unboxed

» Only available for specific types:
Bool, Char, Int, Float, Double, and a few others.

> Internally uses unboxed values.

» Allows efficient storage, no laziness.

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

14.3 Unboxed types

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Unboxed types

Prelude) :i Char
data Char = GHC.Base.C# GHC.Prim.Char#

| 4
| 4

>

14-18 %{4&“\

Char# is the type of unboxed characters.

Unboxed types are a GHC extension.

Use the MagicHash language pragma.

Import GHC.Exts.

Unboxed types are not stored on the heap.

No indirection, thus more efficient in space and time.
Thus no laziness.

Also no polymorphism.

No polymorphism means no use of general data structures!

[Faculty of Science

2
i Universiteit Utrecht Information and Computing Sciences]

Fixed-size types

» The size of Int is not exactly specified in the Report
(there's a minimum range it has to cover).

» Numbers of type Integer are unbounded.

» Haskell also provides datatypes for numbers (and
characters) of exact size.

» Module Data.Int defines Int8, Intl6, Int32 and Int64 for
signed integers.

» Module Data.Word defines Word8, Word16, Word32 and
Word64 for unsigned integers.

» These types are particularly useful when interfacing to
other languages.

> These type are boxed by default, but have unboxed

variants in GHC.
@Wf/} [Faculty of Science

%ﬂxé Universiteit Utrecht Information and Computing Sciences]

14-19

14.4 ByteStrings

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

type String = [Char]

» Recall how Haskell lists and characters are represented.

» Strings are convenient to use (lists, again), but quite
space-inefficient.

» Could an array representation help?

[Faculty of Science
Information and Computing Sciences]

=] F = E E 9DQAC¢

Universiteit Utrecht

An example

A function to compute a hash of all alphabetic characters in a
file f:

return o foldl’ hash 5381 o map toLower o
filter isAlpha =< readFile f
where hash hc=h %33 4 ord c

(<):(a—10b)—10a—10b
(>=):10a—(a—10b) —»10b

» Often, strings are used as streams — the string is traversed,
modified, and written — possibly several times.

» How many times does this code traverse the string?

» How many copies of the string are made?

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

14-22 %{ﬂ»\

An example

A function to compute a hash of all alphabetic characters in a
file f:

return o foldl’ hash 5381 o map toLower o
filter isAlpha =< readFile f
where hash hc=h %33 4 ord c

(<):(a—10b)—10a—10b
(>=):10a—(a—10b) —»10b

» Often, strings are used as streams — the string is traversed,
modified, and written — possibly several times.
» How many times does this code traverse the string?
» How many copies of the string are made?
Sy » Optimization is highly desirable.

[Faculty of Science

<= Universiteit Utrecht
N

12 N

Information and Computing Sciences]

ByteString

Data.ByteString

v

Reimplements most list functions.

» Uses a compact representation as an array of (unboxed)
characters.

v

Makes use of array fusion to

» decrease the number of traversals,
» decrease the number of copies of the data structure.

» There is a lazy variant Data.ByteString.Lazy. (Why?)
‘S\ ﬁ,) [Faculty of Science
:; N) é Universiteit Utrecht Information and Computing Sciences]
w2 N

Fusion and Deforestation

> The ability to merge multiple traversals of a data structure
into a single traversal is called fusion.

» The elimination of intermediate data structures is often
called deforestation.
> Well-studied theory for the case of lists.

» The “Rewriting Haskell Strings” paper presents a new way
of array/stream fusion.

£§\ ﬁ)ﬁ . L . [Facul.ty of S'C|em:e
U§ Universiteit Utrecht Information and Computing Sciences]

14-24 K/

Deforestation

Basic idea: "If we have a function which returns a value of
some data type over which we subsequently fold, then we can
replace the constructors used in that function to build that
result by corresponding callsparameters of the fold.”

£§\ ﬁ)ﬁ . L . [Facul.ty of S'C|em:e
U§ Universiteit Utrecht Information and Computing Sciences]

s N

ursion: unfoldr

Note that these constructing sites are well visible in the
function unfold:

unfoldr :: (s — Maybe (a,s)) — s — [a]
unfoldr next s =
case next s of
Nothing — []
Just (x,r) — x: unfoldr next r

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Excursion: unfoldr

Note that these constructing sites are well visible in the
function unfold:

unfoldr :: (s — Maybe (a,s)) — s — [a]
unfoldr next s =
case next s of
Nothing — []
Just (x,r) — x: unfoldr next r

repeat = unfoldr (Ax — Just (x,x))

replicate n x = unfoldr (An — if n == 0 then Nothing
else Just (x,n — 1)) n

enumFromTo b e = unfoldr (Ab — if b > e then Nothing
else Just (b,b+1)) b

§\\\‘1W). [Faculty of Science

) o S q . .
8 = Universiteit Utrecht Information and Computing Sciences]

14-26 %ﬂ@

oldr vs. foldr

unfoldr :: (s — Maybe (a,s)) — s — [a]
foldr =(a—=r—r)—=r—[a] >r

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

oldr vs. foldr

unfoldr :: (s — Maybe (a,s)) — s — [a]
foldr =(a—=r—r)—=r—[a] >r

foldr:: (r,a—r—r)—[a] —r
foldr:: ((): 4+ :(a,r) = r) = [a] = r

3 [Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

vs. foldr

unfoldr :: (s — Maybe (a,s)) — s — [a]
foldr =(a—=r—r)—=r—[a] >r

foldr:: (r,a—r—r)—[a] —r
foldr:: ((): 4+ :(a,r) = r) = [a] = r

Maybe a =~ () :+:a
unfoldr :: (s — () : +: (a,s)) — s — [a]

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

presenting strings as streams

Goal

> Abstract from the concrete representation.

» Allow different access patterns.

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

presenting strings as streams

Goal

> Abstract from the concrete representation.
» Allow different access patterns.

> ldea: Use the unfoldr as representation.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

14-28

Representing strings as streams

Goal

> Abstract from the concrete representation.
» Allow different access patterns.

> Idea: Use the unfoldr as representation.

unfoldr :: (s — Maybe (a,s)) — s — [a]
unfoldr next s =
case next s of
Nothing — []
Just (x,r) — x: unfoldr next r

data Stream s = Stream (s — Maybe (Word8,s)) s

ﬁ,) [Faculty of Science
N) é Universiteit Utrecht Information and Computing Sciences]

K
NS

Representing strings as streams (contd.)

| data Stream s = Stream (s — Maybe (Word8,s)) s

Problems

> We are not interested in the type s, we only care that we
can apply the function to the seed.

» For efficiency reasons, it is good to have the length of the
string.

» Also for efficiency reasons, it turns out to be good to have
a third option next to “end of stream” and “next
character”: an explicit delay.

£§\ ﬁ)ﬁ . L . [Facul.ty of S'C|em:e
U§ Universiteit Utrecht Information and Computing Sciences]

1z N

Representing strings as streams (contd.)

data Stream = Vs.Stream (s — Step s) s Int

data Step s = Done
| Yield Word8 s
| Skip's

» Stream is a so-called existential type.

» Some people think V should be 3, but both views are valid
(“forall s, there is a constructor such that ..." vs. “if you
destruct a stream, there exists an s such that ...").

» The type of the constructor is

| Stream :: Vs.(s — Step s) — s — Stream

The s does not occur in the result type.

N N The Step data type replaces Maybe. [Faculty of Science

% § Universiteit Utrecht Information and Computing Sciences]
14-30 AN

Building a stream

readUp :: ByteString — Stream
readUp s = Stream next O n

where
n = length s
nexti|i<n = Yield (s!i) (i+1)

| otherwise = Done

» We assume an array interface to ByteString internally.

» Other access patterns can easily be implemented.

ﬁ,) [Faculty of Science
N) é Universiteit Utrecht Information and Computing Sciences]

K
NS

14-31

Writing a stream

writeUp :: Stream — ByteString
writeUp (Stream next s n) = listArray (0,n — 1)
(unfoldStream next s)
where
unfoldStream next s =
case next s of

Done —]

Yield x r — x : unfoldStream next r

Skipr — unfoldStream next r

ﬁ,) [Faculty of Science
N) é Universiteit Utrecht Information and Computing Sciences]

K
NS

14-32

Modifying a stream

map :: (Word8 — Word8) — ByteString — ByteString
map f = writeUp o map$S f o readUp

map$S :: (Word8 — Word8) — Stream — Stream
mapS f (Stream next s n) = Stream next’ s n
where
next’ s = case next s of
Done
Yield x r — Yield (f x) r
Skipr — Skipr

Note that mapS is not recursive.

§\\\‘1W). [Faculty of Science

= o S q . .
= Universiteit Utrecht Information and Computing Sciences]

14-33 ?{%@

Stream fusion

mapfomapg

{ Definition of map, twice }
writeUp o mapS f o readUp o writeUp o mapS g o readUp
= { readUp/writeUp fusion via GHC rewrite rule }
writeUp o mapS f o mapS g o readUp

{ GHC unfolding of non-recursive functions }
writeUp o mapS (f o g) o readUp

:~§\ ﬁ)ﬁ L) [Facul.ty of S'C|em:e
U§ Universiteit Utrecht Information and Computing Sciences]

14-34 ‘{/AA

GHC rewrite rules

» GHC has a scriptable optimizer.

v

Rewrite rules such as
readUp o writeUp = id

can be passed to GHC in pragmas.

» GHC syntax:
{-# RULES
"readUp/writeUp"
forall x. (readUp (writeUp x)) = x
#-3
» The rules are type checked, but the user is responsible for

their correctness!

2. [Faculty of Science
N) é Universiteit Utrecht Information and Computing Sciences]

14-35 %{4&“\

Summary

» Lists are suitable only for a limited number of operations.

» Standard immutable arrays are only an option if updates
are rare.

» Imperative arrays or Diff arrays are good option if fast
access is desired and persistence is not required.

» ByteStrings are a fast and compact alternative for the
Haskell String type. Use them for processing large strings

(or files).
5&\\“% [Faculty of Science
%U § Universiteit Utrecht Information and Computing Sciences]
1436 AN

	Data structures
	Lists everywhere
	Arrays
	Unboxed types
	ByteStrings

