
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2012-2013, periode 2

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Jan 8, 2012

[Faculty of Science
Information and Computing Sciences]

14-1

14. Data structures

[Faculty of Science
Information and Computing Sciences]

14-2

Question

What is the most frequently used data structure in Haskell?

Lists, clearly . . .

[Faculty of Science
Information and Computing Sciences]

14-2

Question

What is the most frequently used data structure in Haskell?

Lists, clearly . . .

[Faculty of Science
Information and Computing Sciences]

14-3

14.1 Lists everywhere

[Faculty of Science
Information and Computing Sciences]

14-4

What are lists good for?

head :: [a]→ a

tail :: [a]→ [a]

(:) :: a→ [a]→ [a]

I These are efficient operations on lists.

I These are the stack operations.

I Haskell lists are persistent stacks.

[Faculty of Science
Information and Computing Sciences]

14-4

What are lists good for?

head :: [a]→ a

tail :: [a]→ [a]

(:) :: a→ [a]→ [a]

I These are efficient operations on lists.

I These are the stack operations.

I Haskell lists are persistent stacks.

[Faculty of Science
Information and Computing Sciences]

14-4

What are lists good for?

head :: [a]→ a -- O(1)

tail :: [a]→ [a] -- O(1)

(:) :: a→ [a]→ [a] -- O(1)

I These are efficient operations on lists.

I These are the stack operations.

I Haskell lists are persistent stacks.

[Faculty of Science
Information and Computing Sciences]

14-4

What are lists good for?

top :: [a]→ a -- O(1)

pop :: [a]→ [a] -- O(1)

push :: a→ [a]→ [a] -- O(1)

I These are efficient operations on lists.

I These are the stack operations.

I Haskell lists are persistent stacks.

[Faculty of Science
Information and Computing Sciences]

14-4

What are lists good for?

top :: [a]→ a -- O(1)

pop :: [a]→ [a] -- O(1)

push :: a→ [a]→ [a] -- O(1)

I These are efficient operations on lists.

I These are the stack operations.

I Haskell lists are persistent stacks.

[Faculty of Science
Information and Computing Sciences]

14-5

Persistence

I A data structure is called persistent if after an operation
both the original and the resutling version of the data
structure are available.

I If not persistent, a data structure is called ephemeral.

I Functional data structures are naturally persistent.

I Imperative data structures are usually ephemeral.

I Persistence can have an effect on the efficiency of data
structures.

[Faculty of Science
Information and Computing Sciences]

14-5

Persistence

I A data structure is called persistent if after an operation
both the original and the resutling version of the data
structure are available.

I If not persistent, a data structure is called ephemeral.

I Functional data structures are naturally persistent.

I Imperative data structures are usually ephemeral.

I Persistence can have an effect on the efficiency of data
structures.

[Faculty of Science
Information and Computing Sciences]

14-6

Other operations on lists

snoc :: [a]→ a→ [a] -- O(n)
snoc = λxs x→ xs ++ [x]

(!!) :: [a]→ Int→ a -- O(n)

(++) :: [a]→ [a]→ [a] -- O(n)

reverse :: [a]→ [a] -- O(n), naively: O(n2)

union :: Eq a⇒ [a]→ [a]→ [a] -- O(mn)

elem :: Eq a⇒ a→ [a]→ Bool -- O(n)

Often, Haskell lists are used inefficiently as

I arrays

I queues, double-ended queues, catenable queues

I sets, lookup tables, association lists, finite maps

I . . .

[Faculty of Science
Information and Computing Sciences]

14-6

Other operations on lists

snoc :: [a]→ a→ [a] -- O(n)
snoc = λxs x→ xs ++ [x]

(!!) :: [a]→ Int→ a -- O(n)

(++) :: [a]→ [a]→ [a] -- O(n)

reverse :: [a]→ [a] -- O(n), naively: O(n2)

union :: Eq a⇒ [a]→ [a]→ [a] -- O(mn)

elem :: Eq a⇒ a→ [a]→ Bool -- O(n)

Often, Haskell lists are used inefficiently as

I arrays

I queues, double-ended queues, catenable queues

I sets, lookup tables, association lists, finite maps

I . . .

[Faculty of Science
Information and Computing Sciences]

14-7

Why?

I Special language support for lists:
I There is a convenient built-in notation for lists.
I List comprehensions.
I Pattern matching.

I Libraries:
I Lots of library functions on lists.
I In the past, there were few standard libraries for data

structures.

I Lack of knowledge:
I Lists are easy to learn, but where are the other data

structures?
I Just switching from lists to arrays can make matters worse.

Language support is best for lists, but other data structures are
reasonably easy to use as well.

[Faculty of Science
Information and Computing Sciences]

14-7

Why?

I Special language support for lists:
I There is a convenient built-in notation for lists.
I List comprehensions.
I Pattern matching.

I Libraries:
I Lots of library functions on lists.
I In the past, there were few standard libraries for data

structures.

I Lack of knowledge:
I Lists are easy to learn, but where are the other data

structures?
I Just switching from lists to arrays can make matters worse.

Language support is best for lists, but other data structures are
reasonably easy to use as well.

[Faculty of Science
Information and Computing Sciences]

14-8

14.2 Arrays

[Faculty of Science
Information and Computing Sciences]

14-9

Imperative vs. functional arrays

Imperative (mutable) arrays

I constant-time lookup

I constant-time update

I are ephemeral

Update is usually at least as important as lookup.

Functional (immutable) arrays

I available in Data.Array

I lookup in O(1); yay!

I update in O(n)!

I Why? Persistence!

[Faculty of Science
Information and Computing Sciences]

14-9

Imperative vs. functional arrays

Imperative (mutable) arrays

I constant-time lookup

I constant-time update

I are ephemeral

Update is usually at least as important as lookup.

Functional (immutable) arrays

I available in Data.Array

I lookup in O(1); yay!

I update in O(n)!

I Why? Persistence!

[Faculty of Science
Information and Computing Sciences]

14-9

Imperative vs. functional arrays

Imperative (mutable) arrays

I constant-time lookup

I constant-time update

I are ephemeral

Update is usually at least as important as lookup.

Functional (immutable) arrays

I available in Data.Array

I lookup in O(1); yay!

I update in O(n)!

I Why? Persistence!

[Faculty of Science
Information and Computing Sciences]

14-10

Array update vs. list update

Array update is even worse than list update.

I To update the nth element of a list, n− 1 elements are
copied.

I To update any element of an array, the whole array is
copied.

I Update of functional arrays is slow.

I If functional arrays are updated frequently and used
persistently, space leaks will occur!

[Faculty of Science
Information and Computing Sciences]

14-11

Mutable arrays

I Are like imperative arrays.

I Defined in Data.Array.IO (or Data.Array.ST).

I All operations in IO (or ST).

I Often awkward to use in a functional setting.

I Can be useful if you do not need persistence, but require
frequent updates.

[Faculty of Science
Information and Computing Sciences]

14-12

Interface of immutable arrays

Data.Array

data Array i e -- abstract

-- creation
array :: (Ix i)⇒ (i, i)→ [(i, e)]→ Array i e
listArray :: (Ix i)⇒ (i, i)→ [e]→ Array i e

-- lookup
(!) :: (Ix i)⇒ Array i e→ i→ e
bounds :: (Ix i)⇒ Array i e→ (i, i)

-- update
(//) :: (Ix i)⇒ Array i e→ [(i, e)]→ Array i e

-- destruction
elems :: (Ix i)⇒ Array i e→ [e]
assocs :: (Ix i)⇒ Array i e→ [(i, e)]

[Faculty of Science
Information and Computing Sciences]

14-13

Interface of mutable arrays

Data.Array.IO

data IOArray i e -- abstract

-- creation
newArray :: (Ix i)⇒ (i, i)→ e→ IO (IOArray i e)
newListArray :: (Ix i)⇒ (i, i)→ [e]→ IO (IOArray i e)

-- lookup
readArray :: (Ix i)⇒ IOArray i e→ i→ IO e
getBounds :: (Ix i)⇒ IOArray i e→ IO (i, i)

-- update
writeArray :: (Ix i)⇒ IOArray i e→ i→ e→ IO ()

-- destruction
getElems :: (Ix i)⇒ Array i e→ IO [e]
getAssocs :: (Ix i)⇒ Array i e→ IO [(i, e)]

[Faculty of Science
Information and Computing Sciences]

14-14

Conversion

freeze :: (Ix i)⇒ IOArray i e→ IO (Array i e)
thaw :: (Ix i)⇒ Array i e→ IO (IOArray i e)

[Faculty of Science
Information and Computing Sciences]

14-15

Diff arrays

Data.Array.Diff

I Same interface as immutable arrays, i.e., not tied to
monadic code.

I Implemented using destructive updates, i.e, update is O(1).

[Faculty of Science
Information and Computing Sciences]

14-16

Unboxed arrays

Data.Array.Unboxed

I Only available for specific types:
Bool, Char, Int, Float, Double, and a few others.

I Internally uses unboxed values.

I Allows efficient storage, no laziness.

[Faculty of Science
Information and Computing Sciences]

14-17

14.3 Unboxed types

[Faculty of Science
Information and Computing Sciences]

14-18

Unboxed types

Prelude〉 : i Char
data Char = GHC.Base.C# GHC.Prim.Char#

I Char# is the type of unboxed characters.

I Unboxed types are a GHC extension.

I Use the MagicHash language pragma.

I Import GHC.Exts.

I Unboxed types are not stored on the heap.

I No indirection, thus more efficient in space and time.

I Thus no laziness.

I Also no polymorphism.

I No polymorphism means no use of general data structures!

[Faculty of Science
Information and Computing Sciences]

14-19

Fixed-size types

I The size of Int is not exactly specified in the Report
(there’s a minimum range it has to cover).

I Numbers of type Integer are unbounded.

I Haskell also provides datatypes for numbers (and
characters) of exact size.

I Module Data.Int defines Int8, Int16, Int32 and Int64 for
signed integers.

I Module Data.Word defines Word8, Word16, Word32 and
Word64 for unsigned integers.

I These types are particularly useful when interfacing to
other languages.

I These type are boxed by default, but have unboxed
variants in GHC.

[Faculty of Science
Information and Computing Sciences]

14-20

14.4 ByteStrings

[Faculty of Science
Information and Computing Sciences]

14-21

Haskell strings

type String = [Char]

I Recall how Haskell lists and characters are represented.

I Strings are convenient to use (lists, again), but quite
space-inefficient.

I Could an array representation help?

[Faculty of Science
Information and Computing Sciences]

14-22

An example

A function to compute a hash of all alphabetic characters in a
file f:

return ◦ foldl′ hash 5381 ◦map toLower ◦
filter isAlpha =<< readFile f

where hash h c = h ∗ 33 + ord c

(=<<) :: (a→ IO b)→ IO a→ IO b
(>>=) :: IO a→ (a→ IO b)→ IO b

I Often, strings are used as streams – the string is traversed,
modified, and written – possibly several times.

I How many times does this code traverse the string?

I How many copies of the string are made?

I Optimization is highly desirable.

[Faculty of Science
Information and Computing Sciences]

14-22

An example

A function to compute a hash of all alphabetic characters in a
file f:

return ◦ foldl′ hash 5381 ◦map toLower ◦
filter isAlpha =<< readFile f

where hash h c = h ∗ 33 + ord c

(=<<) :: (a→ IO b)→ IO a→ IO b
(>>=) :: IO a→ (a→ IO b)→ IO b

I Often, strings are used as streams – the string is traversed,
modified, and written – possibly several times.

I How many times does this code traverse the string?

I How many copies of the string are made?

I Optimization is highly desirable.

[Faculty of Science
Information and Computing Sciences]

14-23

ByteString

Data.ByteString

I Reimplements most list functions.

I Uses a compact representation as an array of (unboxed)
characters.

I Makes use of array fusion to
I decrease the number of traversals,
I decrease the number of copies of the data structure.

I There is a lazy variant Data.ByteString.Lazy. (Why?)

[Faculty of Science
Information and Computing Sciences]

14-24

Fusion and Deforestation

I The ability to merge multiple traversals of a data structure
into a single traversal is called fusion.

I The elimination of intermediate data structures is often
called deforestation.

I Well-studied theory for the case of lists.

I The “Rewriting Haskell Strings” paper presents a new way
of array/stream fusion.

[Faculty of Science
Information and Computing Sciences]

14-25

Deforestation

Basic idea: ”If we have a function which returns a value of
some data type over which we subsequently fold, then we can
replace the constructors used in that function to build that
result by corresponding callsparameters of the fold.”

[Faculty of Science
Information and Computing Sciences]

14-26

Excursion: unfoldr

Note that these constructing sites are well visible in the
function unfold:

unfoldr :: (s→ Maybe (a, s))→ s→ [a]
unfoldr next s =

case next s of
Nothing → []
Just (x, r)→ x : unfoldr next r

repeat = unfoldr (λx → Just (x, x))
replicate n x = unfoldr (λn→ if n = = 0 then Nothing

else Just (x, n− 1)) n
enumFromTo b e = unfoldr (λb→ if b> e then Nothing

else Just (b, b + 1)) b

[Faculty of Science
Information and Computing Sciences]

14-26

Excursion: unfoldr

Note that these constructing sites are well visible in the
function unfold:

unfoldr :: (s→ Maybe (a, s))→ s→ [a]
unfoldr next s =

case next s of
Nothing → []
Just (x, r)→ x : unfoldr next r

repeat = unfoldr (λx → Just (x, x))
replicate n x = unfoldr (λn→ if n = = 0 then Nothing

else Just (x, n− 1)) n
enumFromTo b e = unfoldr (λb→ if b> e then Nothing

else Just (b, b + 1)) b

[Faculty of Science
Information and Computing Sciences]

14-27

unfoldr vs. foldr

unfoldr :: (s→ Maybe (a, s))→ s→ [a]

foldr :: (a→ r→ r)→ r→ [a]→ r

foldr :: (r, a→ r→ r)→ [a]→ r
foldr :: (() : + : (a, r)→ r)→ [a]→ r

Maybe a ≈ () :+: a
unfoldr :: (s→ () :+: (a, s))→ s→ [a]

[Faculty of Science
Information and Computing Sciences]

14-27

unfoldr vs. foldr

unfoldr :: (s→ Maybe (a, s))→ s→ [a]

foldr :: (a→ r→ r)→ r→ [a]→ r

foldr :: (r, a→ r→ r)→ [a]→ r
foldr :: (() : + : (a, r)→ r)→ [a]→ r

Maybe a ≈ () :+: a
unfoldr :: (s→ () :+: (a, s))→ s→ [a]

[Faculty of Science
Information and Computing Sciences]

14-27

unfoldr vs. foldr

unfoldr :: (s→ Maybe (a, s))→ s→ [a]

foldr :: (a→ r→ r)→ r→ [a]→ r

foldr :: (r, a→ r→ r)→ [a]→ r
foldr :: (() : + : (a, r)→ r)→ [a]→ r

Maybe a ≈ () :+: a
unfoldr :: (s→ () :+: (a, s))→ s→ [a]

[Faculty of Science
Information and Computing Sciences]

14-28

Representing strings as streams

Goal

I Abstract from the concrete representation.

I Allow different access patterns.

I Idea: Use the unfoldr as representation.

unfoldr :: (s→ Maybe (a, s))→ s→ [a]
unfoldr next s =

case next s of
Nothing → []
Just (x, r)→ x : unfoldr next r

data Stream s = Stream (s→ Maybe (Word8, s)) s

[Faculty of Science
Information and Computing Sciences]

14-28

Representing strings as streams

Goal

I Abstract from the concrete representation.

I Allow different access patterns.

I Idea: Use the unfoldr as representation.

unfoldr :: (s→ Maybe (a, s))→ s→ [a]
unfoldr next s =

case next s of
Nothing → []
Just (x, r)→ x : unfoldr next r

data Stream s = Stream (s→ Maybe (Word8, s)) s

[Faculty of Science
Information and Computing Sciences]

14-28

Representing strings as streams

Goal

I Abstract from the concrete representation.

I Allow different access patterns.

I Idea: Use the unfoldr as representation.

unfoldr :: (s→ Maybe (a, s))→ s→ [a]
unfoldr next s =

case next s of
Nothing → []
Just (x, r)→ x : unfoldr next r

data Stream s = Stream (s→ Maybe (Word8, s)) s

[Faculty of Science
Information and Computing Sciences]

14-29

Representing strings as streams (contd.)

data Stream s = Stream (s→ Maybe (Word8, s)) s

Problems

I We are not interested in the type s, we only care that we
can apply the function to the seed.

I For efficiency reasons, it is good to have the length of the
string.

I Also for efficiency reasons, it turns out to be good to have
a third option next to “end of stream” and “next
character”: an explicit delay.

[Faculty of Science
Information and Computing Sciences]

14-30

Representing strings as streams (contd.)

data Stream = ∀s.Stream (s→ Step s) s Int

data Step s = Done
| Yield Word8 s
| Skip s

I Stream is a so-called existential type.

I Some people think ∀ should be ∃, but both views are valid
(“forall s, there is a constructor such that . . . ” vs. “if you
destruct a stream, there exists an s such that . . . ”).

I The type of the constructor is

Stream :: ∀s.(s→ Step s)→ s→ Stream

The s does not occur in the result type.

I The Step data type replaces Maybe.

[Faculty of Science
Information and Computing Sciences]

14-31

Building a stream

readUp :: ByteString→ Stream
readUp s = Stream next 0 n

where
n = length s
next i | i< n = Yield (s ! i) (i + 1)

| otherwise = Done

I We assume an array interface to ByteString internally.

I Other access patterns can easily be implemented.

[Faculty of Science
Information and Computing Sciences]

14-32

Writing a stream

writeUp :: Stream→ ByteString
writeUp (Stream next s n) = listArray (0, n− 1)

(unfoldStream next s)
where

unfoldStream next s =
case next s of

Done → []
Yield x r→ x : unfoldStream next r
Skip r → unfoldStream next r

[Faculty of Science
Information and Computing Sciences]

14-33

Modifying a stream

map :: (Word8→Word8)→ ByteString→ ByteString
map f = writeUp ◦mapS f ◦ readUp

mapS :: (Word8→Word8)→ Stream→ Stream
mapS f (Stream next s n) = Stream next′ s n

where
next′ s = case next s of

Done
Yield x r→ Yield (f x) r
Skip r → Skip r

Note that mapS is not recursive.

[Faculty of Science
Information and Computing Sciences]

14-34

Stream fusion

map f ◦map g
≡ { Definition of map, twice }

writeUp ◦mapS f ◦ readUp ◦ writeUp ◦mapS g ◦ readUp
≡ { readUp/writeUp fusion via GHC rewrite rule }

writeUp ◦mapS f ◦mapS g ◦ readUp
≡ { GHC unfolding of non-recursive functions }

writeUp ◦mapS (f ◦ g) ◦ readUp

[Faculty of Science
Information and Computing Sciences]

14-35

GHC rewrite rules

I GHC has a scriptable optimizer.

I Rewrite rules such as

readUp ◦ writeUp = id

can be passed to GHC in pragmas.

I GHC syntax:

{-# RULES

"readUp/writeUp"

forall x. (readUp (writeUp x)) = x

#-}

I The rules are type checked, but the user is responsible for
their correctness!

[Faculty of Science
Information and Computing Sciences]

14-36

Summary

I Lists are suitable only for a limited number of operations.

I Standard immutable arrays are only an option if updates
are rare.

I Imperative arrays or Diff arrays are good option if fast
access is desired and persistence is not required.

I ByteStrings are a fast and compact alternative for the
Haskell String type. Use them for processing large strings
(or files).

	Data structures
	Lists everywhere
	Arrays
	Unboxed types
	ByteStrings

