Typed Transformations of Typed Abstract Syntax

Arthur Baars Doaitse Swierstra Marcos Viera

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain
Dept. of Information and Computing Sciences, Utrecht University, the Netherlands
Instituto de Computación, Universidad de la República, Uruguay Lecture14, AFP, Jan 17, 2011

1. Why we need typed abstract syntax?

What is typed abstract syntax?

- values have types
- values can be composed
- types prevent invalid compositions of values

What is typed abstract syntax?

- descriptions of values have types
- descriptions of values can be composed
- types prevent invalid compositions of descriptions of values

$$
\begin{aligned}
\text { data } & \text { Expr } \\
& a \text { where } \\
& \text { Val } \quad:: a \rightarrow \operatorname{Expr} a \\
& \text { Apply }:: \operatorname{Expr}(b \rightarrow a) \rightarrow(\text { Expr } b) \rightarrow \text { Expr } a
\end{aligned}
$$

Where does Typed Astract Syntax arise?

- we want to implement Embedded Domain Specific Languages

Our ultimate goal is to "compile" embedded languages just as we compile normal languages.

Where does Typed Astract Syntax arise?

- we want to implement Embedded Domain Specific Languages
- which inherit their type system from the host language

Our ultimate goal is to "compile" embedded languages just as we compile normal languages.

Where does Typed Astract Syntax arise?

- we want to implement Embedded Domain Specific Languages
- which inherit their type system from the host language
- instead of directly building the semantics we:

Our ultimate goal is to "compile" embedded languages just as we compile normal languages.

Where does Typed Astract Syntax arise?

- we want to implement Embedded Domain Specific Languages
- which inherit their type system from the host language
- instead of directly building the semantics we:
- build the typed abstract syntax tree

Our ultimate goal is to "compile" embedded languages just as we compile normal languages.

Where does Typed Astract Syntax arise?

- we want to implement Embedded Domain Specific Languages
- which inherit their type system from the host language
- instead of directly building the semantics we:
- build the typed abstract syntax tree
- which we analyse, transform and from which we finally construct the semantics

Our ultimate goal is to "compile" embedded languages just as we compile normal languages.

GADTs

Generalised Algebraic Data Types enable us to encode the typing of the EDSL in the typing of the host language:

$$
\begin{aligned}
& \text { data Exp a where } \\
& \text { IntVal :: Int } \rightarrow \text { Exp Int } \\
& \text { BoolVal :: Bool } \rightarrow \text { Exp Bool } \\
& \text { Add } \quad:: \text { Exp Int } \rightarrow \text { Exp Int } \rightarrow \text { Exp Int } \\
& \text { Cons1 } \quad:: \operatorname{Exp} a \quad \rightarrow \operatorname{Exp}[a] \rightarrow \operatorname{Exp}[a] \\
& \text { Nil1 :: Exp }[a] \\
& \text { LessThan :: Exp Int } \rightarrow \text { Exp Int } \rightarrow \text { Exp Bool } \\
& \text { If } \quad:: \text { Exp Bool } \rightarrow \text { Exp a } \\
& \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a
\end{aligned}
$$

GADTs

Generalised Algebraic Data Types enable us to encode the typing of the EDSL in the typing of the host language:

$$
\begin{aligned}
& \text { data Exp a where } \\
& \begin{array}{lll}
\text { IntVal }:: \text { Int } & & \rightarrow \text { Exp Int } \\
\text { BoolVal } & :: \text { Bool } & \rightarrow \text { Exp Bool }
\end{array} \\
& \text { Add } \quad:: \text { Exp Int } \rightarrow \text { Exp Int } \rightarrow \text { Exp Int } \\
& \text { Cons1 } \quad:: \operatorname{Exp} a \quad \rightarrow \operatorname{Exp}[a] \rightarrow \operatorname{Exp}[a] \\
& \text { Nil1 :: Exp }[a] \\
& \text { LessThan :: Exp Int } \rightarrow \text { Exp Int } \rightarrow \text { Exp Bool } \\
& \text { If } \quad:: \text { Exp Bool } \rightarrow \text { Exp a } \\
& \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a
\end{aligned}
$$

The price we pay is that we have to maintain well-typedness during program transformations.

EDSL's may contain references

We extend Expr with an argument describing the environment in which referred values are located:

```
data Expr a env where
    Var :: Ref a env }->\mathrm{ Expr a env
    IntVal :: Int }->\mathrm{ Expr Int env
    BoolVal :: Bool }->\mathrm{ Expr Bool env
```


EDSL's may contain references

We extend Expr with an argument describing the environment in which referred values are located:

```
data Expr a env where
    Var :: Ref a env }->\mathrm{ Expr a env
    IntVal :: Int }->\mathrm{ Expr Int env
    BoolVal :: Bool }->\mathrm{ Expr Bool env
```

$$
\begin{aligned}
& \text { lookup :: Ref a env } \rightarrow \text { env } \rightarrow a \\
& \text { eval }:: \text { Expr a env } \rightarrow \text { env } \rightarrow a \\
& \text { eval (Var r) } \quad \text { e }=\text { lookup } e \\
& \text { eval (IntVal } i) \quad-\quad=i \\
& \text { eval (BoolVal b) }-=b \\
& \text { eval }(\text { Add } x y) \quad e=\text { eval } x \text { e eval y e }
\end{aligned}
$$

Sidestepping: Type equality

Using a GADT we can provide the witness of the proof that two types are equal:
data Equal $:: * \rightarrow * \rightarrow$ where
Eq :: Equal a a

Sidestepping: Type equality

Using a GADT we can provide the witness of the proof that two types are equal:

$$
\begin{aligned}
& \text { data Equal }:: * \rightarrow * \rightarrow * \text { where } \\
& \text { Eq }:: \text { Equal } a \operatorname{a}
\end{aligned}
$$

If a non- \perp value $E q a b$ takes part in a successful pattern match, the type checker may conclude that the types a and b are the same; otherwise the $E q$ could not have been produced.

Typed References

Ref-erences are labelled with the type a of the value they point to in an environment env:

```
data Ref a env where
    Zero :: Ref a (env',a)
    Suc :: Ref a env' }->\mathrm{ Ref a (env', b)
```


Typed References Environments are nested products

Ref-erences are labelled with the type of the value they point to in an environment env:

```
data Ref a env where
    Zero :: Ref a (env',a)
    Suc :: Ref a env' }->\mathrm{ Ref a (env',b)
```


Typed References

Ref-erences are labelled with the type a of the value they point to in an environment env:

data Ref a env where

$$
\begin{array}{ll}
\text { Zero }:: \quad \text { Ref } a\left(e n v^{\prime}, a\right) \\
\text { Suc }:: \text { Ref } a e n v^{\prime} \rightarrow & \text { Ref } a\left(e n v^{\prime}, b\right)
\end{array}
$$

References can be compared; if they are equal they return the proof that the values they refer to have the same type:

```
match :: Ref a env }->\mathrm{ Ref b env }->\mathrm{ Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x) (Suc y) = match x y
match _ _ = Nothing
```


Typed References

Ref-erences are labelled with the type a of the value they point to in an environment env:
data Ref a env where

$$
\begin{array}{ll}
\text { Zero }:: \quad \text { Ref } a\left(e n v^{\prime}, a\right) \\
\text { Suc }:: \text { Ref } a e n v^{\prime} \rightarrow & \text { Ref } a\left(e n v^{\prime}, b\right)
\end{array}
$$

References can be compared; if they are equal they return the proof that the values they refer to have the same type:

```
match :: Ref a env }->\mathrm{ Ref b env }->\mathrm{ Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x) (Suc y) = match x
match _ _ = Nothing

\section*{Mutally Recursive Declarative Structures}

We want to represent:
\[
\text { let } \begin{aligned}
x & =1: y \\
y & =2: x
\end{aligned}
\]

A first attempt:
\[
\begin{array}{r}
\text { type TwoLists }=(((), \text { Expr }[\text { Int }] \text { TwoLists }) \\
, \\
, \text { Expr }[\text { Int }] \text { TwoLists })
\end{array}
\]

\section*{Mutally Recursive Declarative Structures}

We want to represent:
\[
\text { let } \begin{aligned}
x & =1: y \\
y & =2: x
\end{aligned}
\]

A first attempt:
\[
\begin{array}{r}
\text { type TwoLists }=(((), \text { Expr }[\text { Int }] \text { TwoLists }) \\
,
\end{array} \begin{array}{r}
\text { Expr }[\text { Int }] \text { TwoLists })
\end{array}
\]

Unfortunately this is not correct Haskell: the type is recursive

\section*{Mutally Recursive Declarative Structures}

We want to represent:
\[
\text { let } \begin{aligned}
x & =1: y \\
y & =2: x
\end{aligned}
\]

We split the environment in two type parameters: the used environment and the defined environment:
\[
\begin{aligned}
& \text { data Env :: } * \rightarrow * \rightarrow *) \rightarrow * \rightarrow * \rightarrow \\
& \text { where Empty :: Env term used () } \\
& \text { Ext } \quad:: \text { Env term used defined } \rightarrow \text { term a used } \\
& \rightarrow \text { Env term used (defined, a) }
\end{aligned}
\]

\section*{Mutally Recursive Declarative Structures}

We want to represent:
\[
\text { let } \begin{aligned}
x & =1: y \\
y & =2: x
\end{aligned}
\]

We split the environment in two type parameters: the used environment and the defined environment:
```

data Env:: $(* \rightarrow * \rightarrow *) \rightarrow * \rightarrow *$
where Empty :: Env term used ()
Ext $\quad::$ Env term used defined \rightarrow term a used
\rightarrow Env term used (defined, a)

```

By choosing the two environment parameters to be the same we enforce that the environemnt is closed.

\section*{Example}

The expression:
\[
\text { let } \begin{aligned}
x & =1: y \\
y & =2: x
\end{aligned}
\]
is now encoded as:
\[
\begin{aligned}
& \text { type Final }=(((),[\text { Int }]),[\text { Int }]) \\
& x \quad=\text { Var }(\text { Suc Zero }):: \text { Expr }[\text { Int }] \text { Final } \\
& y \quad=\text { Var Zero :: Expr }[\text { Int }] \text { Final } \\
& y \quad \text { Eecls }:: \text { Env Expr Final Final } \\
& \text { decls }=\text { Empty 'Ext }{ }^{`} \text { Cons (IntVal 1) y } \\
& \text { 'Ext }{ }^{`} \text { Cons (Intval 2) } x
\end{aligned}
\]

\section*{Example}

The expression:

\section*{We have nicer syntax for this}
\[
\text { let } \begin{aligned}
x & =1: y \\
y & =2: x
\end{aligned}
\]
is now encoded as:
```

type Final/= (((),[Int]),[Int])
x = \forallar (Suc Zero) :: Expr [Int] Final
y = Var Zero :: Expr [Int] Final
decls :: Env Expr Final Final
decls = Empty 'Ext` Cons (IntVal 1) y
'Ext' Cons (Intval 2) x

```

\section*{The problem: Common Subexpression Elimination}

Suppose we want to transform the program:
\[
\begin{aligned}
& a=4 ; \\
& b=(a+4)+(a+4) ;
\end{aligned}
\]
into:
\[
\begin{aligned}
& a=4 \\
& x=a+a \\
& b=x+x
\end{aligned}
\]

\section*{The problem: Common Subexpression Elimination}

Suppose we want to transform the program:
\[
\begin{aligned}
& a=4 ; \\
& b=(a+4)+(a+4)
\end{aligned}
\]
into:
\[
\begin{aligned}
& a=4 \\
& x=a+a \\
& b=x+x
\end{aligned}
\]

In order to do so we have to build a new environment, containing the extra definition for \(x\), and the new right hand sides for \(a\) and \(b\). This new environment is built incrementally.

\section*{The Transformation Library}

Eventually all references have to point into the final environment. We thus introduce the following types:
\[
\begin{aligned}
& \text { type FinalEnv } t \text { usedef }=\text { Env } t \text { usedef usedef } \\
& \text { newtype } T \text { es }=T\{\text { un } T:: \forall x \text {. Ref } x e \rightarrow \operatorname{Ref} x s\}
\end{aligned}
\]

\section*{The Transformation Library}

Eventually all references have to point into the final environment. We thus introduce the following types:
```

type FinalEnv t usedef = Env t usedef usedef
newtype T e s = T {unT ::\forallx. Ref x e->Ref x s}

```

Whenever we add a new element to the environment under construction we have to update the already existing references. Instead we make a function available which maps them directly into the final environment:


\[
\begin{array}{rc}
\text { type Trafo } t s= \\
\forall \text { env1 } \cdot \exists \text { env2 } . & T \text { env2 } s \rightarrow \text { Env } t \text { s env1 } \\
\rightarrow(T \text { env1 } s, \quad \text { Env } t \text { env2 })
\end{array}
\]

Env t s env1 the environment constructed thus far
\(T\) env2 s represents the number of future additions to the environment

Env \(t\) s env2 the updated environment, in which env2 is (an extension of) env1
\(T\) env1s the updated \(T\) env2 \(s\)

\section*{Extend with an arrow like interface}

We extend the type with an arrow-like interface:
\[
\begin{aligned}
\text { type Trafo } t \text { s a } b & = \\
\forall \text { env1 } \cdot \exists \text { env2 } \cdot & a \rightarrow T \text { env2 } s \rightarrow \text { Env } t \text { s env1 } \\
& \rightarrow(b, \quad T \text { env1 } s, \quad \text { Env } t \text { s env2 })
\end{aligned}
\]

In our example \(a\) will e.g. be the mapping which tells us where the old variables have ended up in the new environment.

\section*{Meta-information}

Since the elements in the constructed environment cannot be fully inspected (parts depend on the \(T\) which is still has to be constructed by future transformations), we maintain meta information \(m\) :
\[
\begin{aligned}
& \text { type Trafo m sab= } \\
& \forall e n v 1 \text {. m envy } \\
& \rightarrow \text { ヨenv2 . } \\
& \text { ( } m \text { envy } \\
& a \rightarrow T \text { envy } s \rightarrow \text { End } t s \text { envy } \\
& \rightarrow(b, \quad \text { T envy } s, \quad \text { End } t s \text { envy }) \\
& \text { ) }
\end{aligned}
\]

\section*{Haskelize}

Since Haskell only allows existenstial constructors in combination with a data constructor we have to write:
data Trafo m tsab=
Trafo ( \(\forall\) env1 . m env1 \(\rightarrow\) TrafoE \(m t s a b e n v 1\) )
data TrafoE \(m\) t s a \(b\) env1 \(=\)
\(\forall e n v 2\). TrafoE ( \(m\) env2)
\[
\begin{gathered}
a \rightarrow T \text { env2 } s \rightarrow \text { Env } t \text { s env1 } \\
\rightarrow(b, \quad T \text { env1 } s, \quad \text { Env } t \text { env2 })
\end{gathered}
\]

\section*{Creating a new Ref-erence}

The meta-data type has to be filled in depending on the situation:
\[
\begin{aligned}
& \text { newSRef }:: \text { Trafo Unit } t s(t \text { a } s)(\text { Ref } a s) \\
& \text { data Unit } s=\text { Unit }
\end{aligned}
\]

Here \(t a s\) is the term we add to the environemnt, and Ref as is the reference pointing to this element in the final environment!

\section*{Creating a new Ref-erence}
\[
\text { newSRef }=\text { Trafo }\left(\lambda_{-} \rightarrow \text { TrafoE Unit extEnv }\right)
\]

\[
\begin{aligned}
& \text { extEnv :: } \quad t \text { a } s \rightarrow T(e, a) s \rightarrow E n v t s e \\
& \rightarrow(\text { Ref } a s, T e \quad s, \quad E n v t s(e, a)) \\
& \text { extEnv } \\
& =\lambda t a(T t r) e n v \rightarrow(t r Z e r o, T(t r . S u c), \text { Ext env ta) }
\end{aligned}
\]

\section*{Creating a new Ref-erence}
\[
\text { newSRef }=\text { Trafo }\left(\lambda_{-} \rightarrow \text { TrafoE Unit extEnv }\right)
\]

\[
\begin{aligned}
\text { extEnv } & : t a s \rightarrow T(e, a) s \rightarrow \operatorname{Env} t s e \\
& \rightarrow(\text { Ref } a s, T e \quad s, \quad \operatorname{Env} t s(e, a))
\end{aligned}
\]
extEnv
\[
=\lambda t a(T \operatorname{tr}) \text { env } \rightarrow(\operatorname{tr} Z e r o, T(t r . S u c), \text { Ext env ta })
\]

Tell the predecessors that an element was added

\section*{Creating a new Ref-erence}
\[
\text { newSRef }=\text { Trafo }\left(\lambda_{-} \rightarrow \text { TrafoE Unit extEnv }\right)
\]

\[
\begin{aligned}
\text { extEnv } & : t a s \rightarrow T(e, a) s \rightarrow \operatorname{Env} t s e \\
& \rightarrow(\text { Ref } a s, T e \quad s, \quad \operatorname{Env} t s(e, a))
\end{aligned}
\]
extEnv
\[
=\lambda t a(T \operatorname{tr}) \text { env } \rightarrow(\operatorname{tr} Z e r o, T(t r . \text { Suc }), \text { Ext env ta })
\]

Map the newly added element into the final environment

\section*{Tell the predecessors that an element was added}

\section*{Creating a new Ref-erence}
\[
\text { newSRef }=\text { Trafo }\left(\lambda_{-} \rightarrow \text { TrafoE Unit extEnv }\right)
\]

\section*{Extend the environment with the new term ta}

extEnv:: \(\quad t\) a \(s \rightarrow T(e, a) s \rightarrow\) Env \(t s e\)
\[
\rightarrow(\operatorname{Ref} a s, T e \quad s, \quad \operatorname{Env} t s(e,))
\]
extEnv
\[
=\lambda t a(T \text { tr }) \text { env } \rightarrow(\text { tr Zero, } T(t r, \text { Suc }) \text {, ExAenv ta })
\]
Map the newly added element into the final environment

\section*{Tell the predecessors that an element was added}

\section*{Running the Trafos}

When we are done we require that the used and the built environment are equally labelled, hence we use FinalEnv:
```

data Result m t b

```
\[
\begin{array}{r}
=\text { シenv2 . Result ( } m \text { env2 ) (b env2) } \\
\text { (FinalEnv t env2) }
\end{array}
\]

\section*{Running the Trafos}

When we are done we require that the used and the built environment are equally labelled, hence we use FinalEnv:
data Result \(m t b\)
\(=\forall e n v 2 . R e s u l t ~(m\) env2 \()(b\) env2 \()\) (FinalEnv \(t\) env2)
\[
\begin{aligned}
& \text { runTrafo }:: \forall m t a b \cdot(\forall s . \text { Trafo } m t s a(b s)) \\
& \rightarrow m() \rightarrow a \rightarrow \text { Result } m t b \\
& \text { runTrafo trafo } m a= \\
& \text { let Trafo trf }= \text { trafo } \\
& \text { TrafoE m2 } f= \text { trf m } \\
& \text { in case } f a(\text { T id }) \text { Empty of } \\
& \quad\left(b,_{-}, \text {env }\right) \rightarrow \text { Result m2 } b \text { env }
\end{aligned}
\]

\section*{Running the Trafos}

When we are done we require that the used and the built environment are equally labelled, hence we use FinalEnv:
data Result \(m t b\)
\(=\forall e n v 2\). Result ( \(m\) env2) ( \(b\) env2) (FinalEnv \(t\) env2)
```

runTrafo :: \forallm t a b . (\foralls. Trafo m t s a (b s))
m()}->a->\mathrm{ Result mtb
runTrafo trafo m a =
let Trafo trf = trafo
TrafoE m2 f = trf m
in case fa(T id) Empty of
(b,_, env) -> Result m2 b env

```

\section*{Common Subexpression Elimination}

After CSE we have a larger, closed environment:
\[
\text { type Decls env }{ }^{\prime}=\text { Env Expr env }{ }^{\prime} \text { env }{ }^{\prime}
\]

\section*{Common Subexpression Elimination}

After CSE we have a larger, closed environment:
\[
\text { type Decls env }{ }^{\prime}=\text { Env Expr env }{ }^{\prime} e n v^{\prime}
\]

We also compute a ref-transformer which maps old references in \(e n v\) to new references in \(e n v^{\prime}\) :
\[
\begin{array}{r}
\text { data TDecls env }=\forall e n v^{\prime} . \text { TDecls }(\text { Decls env' }) \\
(T \text { envenv })
\end{array}
\]

\section*{Common Subexpression Elimination}

After CSE we have a larger, closed environment:
\[
\text { type Decls env }{ }^{\prime}=\text { Env Expr env }{ }^{\prime} e n v^{\prime}
\]

We also compute a ref-transformer which maps old references in \(e n v\) to new references in \(e n v^{\prime}\) :
\[
\begin{array}{r}
\text { data TDecls env }=\forall e n v^{\prime} . \text { TDecls }(\text { Decls env' }) \\
(T \text { env env })
\end{array}
\]

The type of cse now becomes:
\[
\text { cse }:: \text { Decls env } \rightarrow \text { TDecls env }
\]

\section*{Maintain a Memo table}

In the meta-information we maintain a memo table, which we use to remember which expressions labelled with env have already been incorporated in the new environment:
```

newtype Memo env env'
= Memo
(\forallx . Expr x env
->Maybe (Ref x env')
)
emptyMemo :: Memo env ()
emptyMemo = Memo (const Nothing)

```

\section*{Maintain a Memo table}

In the meta-information we maintain a memo table, which we use to remember which expressions labelled with env have already been incorporated in the new environment:

And we construct the type of our transformations:
```

type TrafoCSE env = Trafo (Memo env) Expr
extMemo :: Expr a env \rightarrow Memo env env ${ }^{\prime}$
\rightarrow Memo env $\left(e n v^{\prime}, a\right)$
extMemo e (Memo m)
$=$ Memo $(\lambda s \rightarrow$ case equals es of
Just Eq \rightarrow Just Zero
Nothing \rightarrow fmap Suc (ms)

```
    )

\section*{Dealing with a single expression}
\[
\begin{aligned}
& \hline \text { app_cse }:: \text { Expr a env } \\
& \rightarrow \text { TrafoCSE env } s(T \text { env s })(\text { Ref a s }) \\
& \text { app_cse }(\text { Var } r)=\operatorname{proc}(T \text { tenv_s }) \rightarrow \\
& \text { return } A \prec \text { tenv_s } r
\end{aligned}
\]

\section*{Dealing with a single expression}
\[
\begin{aligned}
& \text { app_cse :: Expr a env } \\
& \rightarrow \text { TrafoCSE env } s(T \text { env s) (Ref a s) } \\
& \text { app_cse }(\text { Var } r)=\mathbf{p r o c}(T \text { tenv_s }) \rightarrow \\
& \text { return } A \prec \text { ten o_s } r
\end{aligned}
\]

\section*{Dealing with a single expression}


\section*{Dealing with a single expression}
\[
\begin{aligned}
& \text { app_cse }:: \text { Expr a env } \\
& \rightarrow \text { TrafoCSE env } s(T \text { env s })(\text { Ref a s) } \\
& \text { app_cse }(\text { Var } r)=\operatorname{proc}(T \text { tenv_s }) \rightarrow \\
& \text { return } A \prec \text { tenv_s } r
\end{aligned}
\]
\[
\begin{aligned}
& \text { app_cse e@(LessThan x y) } \\
& =\operatorname{proc} t t \rightarrow \\
& \text { do } l \leftarrow \text { app_cse } x \prec t t \\
& r \leftarrow a p p_{\text {_cse }} y \prec t t \\
& \text { insertIfNew } e \prec \text { LessThan (Var l) (Var r) }
\end{aligned}
\]
...

\section*{Running the transformations}
```

refTransformer :: Env Ref s env }->T\mathrm{ env s
refTransformer refs =T (}\lambdar->\mathrm{ lookupEnv r refs)

```

\section*{Running the transformations}
```

refTransformer :: Env Ref s env }->\mathrm{ T env s
refTransformer refs =T (}\boldsymbol{\lambda}->\mathrm{ lookupEnv r refs)

```

The result of \(c s e \_e n v\) is used to compute its own input. Hence we use mdo:
```

trafo :: Decls env }->\mathrm{ TrafoCSE env s () (T env s)
trafo decls = proc }-
mdo let tt = refTransformer refs
refs }\leftarrowcse_env decls \prect
returnA \prectt

```

\section*{Running the transformations}
```

refTransformer :: Env Ref s env }->\mathrm{ T env s
refTransformer refs =T (}\boldsymbol{\lambda}->\mathrm{ lookupEnv r refs)

```

The result of \(c s e \_e n v\) is used to compute its own input. Hence we use mdo:
```

trafo :: Decls env }->\mathrm{ TrafoCSE env s () (T env s)
trafo decls = proc }\mp@subsup{}{-}{}
mdo let tt = refTransformer refs
refs }\leftarrow\mathrm{ cse_env decls ఒtt
returnA \prec tt

```

Finally we present the function cse which simply runs the trafo and extracts the result:
```

cse ::\forallenv . Decls env -> TDecls env
cse decls
= case runTrafo (trafo decls) emptyMemo () of
Result _ t env }->\mathrm{ TDecls env t

```

\section*{GHC problems}

Unfortunately we have used lazy pattern binding on the existential type TrafoE:
data Trafo m tsab=
Trafo ( \(\forall\) env1 . m env1 \(\rightarrow\) TrafoE \(m t s a b e n v 1\) )
data TrafoE m t s a benv1=
\(\forall e n v 2\). TrafoE ( \(m\) env2)
\((a \rightarrow T\) env2 \(s \rightarrow\) Env \(t\) s env1 \(\rightarrow\)
( \(b, \quad\) T env1 \(s, \quad\) Env \(t s\) env2)
\[
\begin{aligned}
\text { runTrafo }:: \forall m \text { t } a b \cdot & (\forall s . \text { Trafo } m t s a(b s)) \\
& \rightarrow m() \rightarrow a \rightarrow \text { Result } m t b
\end{aligned}
\]
runTrafo trafo \(m a=\)
let Trafo trf \(=\) trafo
\[
\text { TRafoE } m 2 f=\operatorname{trf} m
\]
in case \(f a(T\) id) Empty of
\[
\left(b,_{-}, \text {env }\right) \rightarrow \text { Result m2 } b \text { env }
\]
\[
\begin{aligned}
& \text { unsafeCoerce }:: a \rightarrow b \\
& \text { runTrafo }: \\
& \quad:(\forall s \text {. Trafo } m \text { t } s a(b s)) \rightarrow m() \rightarrow a \\
& \\
& \quad \rightarrow \text { Result } m \text { t } b
\end{aligned}
\]
runTrafo trafo \(m a=\) case trafo of
Trafo trf \(\rightarrow\) case trf \(m\) of
TrafoE m2 \(f \rightarrow\)
case \(f a\) (T unsafeCoerce) Empty of \((r b, t t, e n v 2) \rightarrow\)

Result (unsafeCoerce m2) \(r b\)
(unsafeCoerce env2)

\section*{2. Conclusion}

\section*{Why is this so complicated ...}

If we have lazy evaluation, we also want it at the type level!
\[
\begin{aligned}
& f:: \forall a \cdot(a \rightarrow \exists b(b, a, b \rightarrow b \rightarrow \text { Int })) \\
& \text { let }(b, a, g)=f b \\
& \text { in } g b a
\end{aligned}
\]

\section*{Why is this so complicated ...}

If we have lazy evaluation, we also want it at the type level!
\[
\begin{aligned}
& f:: \forall a \cdot(a \rightarrow \exists b(b, a, b \rightarrow b \rightarrow \text { Int })) \\
& \text { let }(b, a, g)=f b \\
& \text { in } g b a
\end{aligned}
\]

But this is not System-F!

\section*{Alternative: move the final \(s\) inwards}
data Trafo2 \(m t a b=\)
Trafo2 ( \(\forall\) env1 . m env1 \(\rightarrow\) TrafoE2 \(m\) t a benv1)
data TrafoE2 \(m\) t a benv1 =
\(\forall e n v 2\). TrafoE2
( \(m\) env2)
\((\forall s . a s \rightarrow T\) env2 \(s \rightarrow\) Env \(t\) s env1
\(\rightarrow(b s, \quad T\) env1 \(s, \quad\) Env \(t s\) env2 \()\)
)

\section*{Alternative: move the final \(s\) inwards}
```

data Trafo2 m t a b=
Trafo2 (\forallenv1 . m env1 -> TrafoE2 m t a b env1)
data TrafoE2 m t a b env1 =
\forallenv2 . TrafoE2
(m env2)
(\foralls . a s ->T env2 s -> Env t s env1
(b s, T env1 s, Env t s env2)
)

```

Unfortunately now \(a\) and \(b\) have an \(s\) parameter, and we can no longer use the arrow notation.

\section*{Conclusion}
- The library was originally built for constructing the Left-Corner transform, which removes left-recursion from typed grammars (see our Haskell Workshop 2008 paper).

\section*{Conclusion}
- The library was originally built for constructing the Left-Corner transform, which removes left-recursion from typed grammars (see our Haskell Workshop 2008 paper).
- The library has been used unmodified for left-factorisation of typed grammars, and the cse we have seen here.

\section*{Conclusion}
- The library was originally built for constructing the Left-Corner transform, which removes left-recursion from typed grammars (see our Haskell Workshop 2008 paper).
- The library has been used unmodified for left-factorisation of typed grammars, and the cse we have seen here.
- Library is available from Hackage

\section*{Conclusion}
- The library was originally built for constructing the Left-Corner transform, which removes left-recursion from typed grammars (see our Haskell Workshop 2008 paper).
- The library has been used unmodified for left-factorisation of typed grammars, and the cse we have seen here.
- Library is available from Hackage
- The library enables a whole new way of dealing with embedded domain specific languages.```

