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1. Why we need typed abstract syntax?
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What is typed abstract syntax? §1

I values have types

I values can be composed

I types prevent invalid compositions of values

data Expr a where
Val :: a → Expr a
Apply :: Expr (b → a)→ (Expr b)→ Expr a
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What is typed abstract syntax? §1

I descriptions of values have types

I descriptions of values can be composed

I types prevent invalid compositions of descriptions of values

data Expr a where
Val :: a → Expr a
Apply :: Expr (b → a)→ (Expr b)→ Expr a
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Where does Typed Astract Syntax arise? §1

I we want to implement Embedded Domain Specific
Languages

I which inherit their type system from the host language
I instead of directly building the semantics we:

I build the typed abstract syntax tree
I which we analyse, transform and from which we finally

construct the semantics

Our ultimate goal is to “compile” embedded languages just as
we compile normal languages.
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I we want to implement Embedded Domain Specific
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GADTs §1

Generalised Algebraic Data Types enable us to encode the
typing of the EDSL in the typing of the host language:

data Exp a where
IntVal :: Int → Exp Int
BoolVal :: Bool → Exp Bool
Add :: Exp Int → Exp Int → Exp Int
Cons1 :: Exp a → Exp [a ] → Exp [a ]
Nil1 :: Exp [a ]
LessThan :: Exp Int → Exp Int → Exp Bool
If :: Exp Bool → Exp a

→ Exp a → Exp a

The price we pay is that we have to maintain well-typedness
during program transformations.
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EDSL’s may contain references §1

We extend Expr with an argument describing the environment
in which referred values are located:

data Expr a env where
Var :: Ref a env → Expr a env
IntVal :: Int → Expr Int env
BoolVal :: Bool → Expr Bool env
...

lookup :: Ref a env → env → a
eval :: Expr a env → env → a
eval (Var r) e = lookup r e
eval (IntVal i) = i
eval (BoolVal b) = b
eval (Add x y) e = eval x e + eval y e
...
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Sidestepping: Type equality §1

Using a GADT we can provide the witness of the proof that two
types are equal:

data Equal :: ∗ → ∗ → ∗ where
Eq :: Equal a a

If a non-⊥ value Eq a b takes part in a successful pattern
match, the type checker may conclude that the types a and b
are the same; otherwise the Eq could not have been produced.



[Faculty of Science
Information and Computing Sciences]

7

Sidestepping: Type equality §1

Using a GADT we can provide the witness of the proof that two
types are equal:

data Equal :: ∗ → ∗ → ∗ where
Eq :: Equal a a

If a non-⊥ value Eq a b takes part in a successful pattern
match, the type checker may conclude that the types a and b
are the same; otherwise the Eq could not have been produced.



[Faculty of Science
Information and Computing Sciences]

8

Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)
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Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

Environments are nested products
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Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

References can be compared; if they are equal they return the
proof that the values they refer to have the same type:

match :: Ref a env → Ref b env → Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x ) (Suc y) = match x y
match = Nothing
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Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

References can be compared; if they are equal they return the
proof that the values they refer to have the same type:

match :: Ref a env → Ref b env → Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x ) (Suc y) = match x y
match = Nothing

Here a and b are equal
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Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

A first attempt:

type TwoLists = (((),Expr [Int ] TwoLists)
,Expr [Int ] TwoLists)
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Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

A first attempt:

type TwoLists = (((),Expr [Int ] TwoLists)
,Expr [Int ] TwoLists)

Unfortunately this is not correct Haskell: the type is recursive
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Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

We split the environment in two type parameters: the used
environment and the defined environment:

data Env :: ( ∗ → ∗ → ∗ )→ ∗ → ∗ → ∗
where Empty :: Env term used ()

Ext :: Env term used defined → term a used
→ Env term used (defined , a)
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Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

We split the environment in two type parameters: the used
environment and the defined environment:

data Env :: ( ∗ → ∗ → ∗ )→ ∗ → ∗ → ∗
where Empty :: Env term used ()

Ext :: Env term used defined → term a used
→ Env term used (defined , a)

By choosing the two environment parameters to be the same
we enforce that the environemnt is closed.
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Example §1

The expression:

let x = 1 : y
y = 2 : x

is now encoded as:

type Final = (((), [Int ]), [Int ])
x = Var (Suc Zero) :: Expr [Int ] Final
y = Var Zero :: Expr [Int ] Final
decls :: Env Expr Final Final
decls = Empty ‘Ext ‘ Cons (IntVal 1) y

‘Ext ‘ Cons (Intval 2) x

We have nicer syntax for this
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The problem: Common Subexpression
Elimination §1

Suppose we want to transform the program:

a = 4;
b = (a + 4) + (a + 4);

into:

a = 4;
x = a + a;
b = x + x ;

In order to do so we have to build a new environment,
containing the extra definition for x , and the new right hand
sides for a and b. This new environment is built incrementally.
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The Transformation Library §1

Eventually all references have to point into the final
environment. We thus introduce the following types:

type FinalEnv t usedef = Env t usedef usedef
newtype T e s = T {unT :: ∀x . Ref x e → Ref x s }

Whenever we add a new element to the environment under
construction we have to update the already existing references.
Instead we make a function available which maps them directly
into the final environment:

...

...

T env2 s T env3  sT env1 s

1 2 N

Env t s env1 Env t s env2 Env t s env3 Env t s s

T s s
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The Trafo type §1

...

...

T env2 s T env3  sT env1 s

1 2 N

Env t s env1 Env t s env2 Env t s env3 Env t s s

T s s

type Trafo t s =
∀env1 . ∃env2 . T env2 s → Env t s env1

→ (T env1 s, Env t s env2 )

Env t s env1 the environment constructed thus far

T env2 s represents the number of future additions to the
environment

Env t s env2 the updated environment, in which env2 is (an
extension of) env1

T env1 s the updated T env2 s
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Extend with an arrow like interface §1

We extend the type with an arrow-like interface:

type Trafo t s a b =
∀env1 . ∃env2 . a → T env2 s → Env t s env1

→ (b, T env1 s, Env t s env2 )

In our example a will e.g. be the mapping which tells us where
the old variables have ended up in the new environment.
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Meta-information §1

Since the elements in the constructed environment cannot be
fully inspected (parts depend on the T which is still has to be
constructed by future transformations), we maintain meta
information m:

type Trafo m t s a b =
∀env1 . m env1

→ ∃env2 .

( m env2
, a → T env2 s → Env t s env1
→ (b, T env1 s, Env t s env2 )

)
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Haskelize §1

Since Haskell only allows existenstial constructors in
combination with a data constructor we have to write:

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1 )

data TrafoE m t s a b env1 =
∀env2 . TrafoE (m env2 )

( a → T env2 s → Env t s env1
→ (b, T env1 s, Env t s env2 )

)
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Creating a new Ref -erence §1

The meta-data type has to be filled in depending on the
situation:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

Here t a s is the term we add to the environemnt, and Ref a s
is the reference pointing to this element in the final
environment!
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Creating a new Ref -erence §1

newSRef = Trafo (λ → TrafoE Unit extEnv)

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv
= λta (T tr) env → (tr Zero,T (tr . Suc),Ext env ta)
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Creating a new Ref -erence §1

newSRef = Trafo (λ → TrafoE Unit extEnv)

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv
= λta (T tr) env → (tr Zero,T (tr . Suc),Ext env ta)

Tell the predecessors that an element was added

Map the newly added element into the final environment

Extend the environment with the new term ta
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Running the Trafos §1

When we are done we require that the used and the built
environment are equally labelled, hence we use FinalEnv :

data Result m t b
= ∀env2 . Result (m env2 ) (b env2 )

(FinalEnv t env2 )

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

use equals def
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Common Subexpression Elimination §1

After CSE we have a larger, closed environment:

type Decls env ′ = Env Expr env ′ env ′

We also compute a ref-transformer which maps old references in
env to new references in env ′:

data TDecls env = ∀env ′ . TDecls (Decls env ′)
(T env env ′)

The type of cse now becomes:

cse :: Decls env → TDecls env
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Maintain a Memo table §1

In the meta-information we maintain a memo table, which we
use to remember which expressions labelled with env have
already been incorporated in the new environment:

newtype Memo env env ′

= Memo
(∀x . Expr x env
→ Maybe (Ref x env ′)

)
emptyMemo :: Memo env ()
emptyMemo = Memo (const Nothing)
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Maintain a Memo table §1

In the meta-information we maintain a memo table, which we
use to remember which expressions labelled with env have
already been incorporated in the new environment:

And we construct the type of our transformations:

type TrafoCSE env = Trafo (Memo env) Expr
extMemo :: Expr a env → Memo env env ′

→ Memo env (env ′, a)
extMemo e (Memo m)

= Memo (λs → case equals e s of
Just Eq → Just Zero
Nothing → fmap Suc (m s)

)
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Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r
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app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

Where do the old variables go?
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Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

Where do the old variables go?

Position of this expression
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Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

app cse e@(LessThan x y)
= proc tt →
do l ← app cse x ≺ tt

r ← app cse y ≺ tt
insertIfNew e ≺ LessThan (Var l) (Var r)

. . .
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Running the transformations §1
refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input.Hence
we use mdo:

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t



[Faculty of Science
Information and Computing Sciences]

22

Running the transformations §1
refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input.Hence
we use mdo:

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t



[Faculty of Science
Information and Computing Sciences]

22

Running the transformations §1
refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input.Hence
we use mdo:

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t



[Faculty of Science
Information and Computing Sciences]

23

GHC problems §1

Unfortunately we have used lazy pattern binding on the
existential type TrafoE :

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1 )

data TrafoE m t s a b env1 =
∀env2 . TrafoE (m env2 )

(a → T env2 s → Env t s env1 →
(b, T env1 s, Env t s env2 )
)

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TRafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env
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The blunt solution: unsafeCoerce §1

unsafeCoerce :: a → b
runTrafo :: (∀s . Trafo m t s a (b s))→ m ()→ a

→ Result m t b
runTrafo trafo m a = case trafo of

Trafo trf → case trf m of
TrafoE m2 f →

case f a (T unsafeCoerce) Empty of
(rb, tt , env2 )→

Result (unsafeCoerce m2 )
rb
(unsafeCoerce env2 )
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2. Conclusion
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Why is this so complicated ... §2

If we have lazy evaluation, we also want it at the type level!

f :: ∀a . (a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

But this is not System-F!



[Faculty of Science
Information and Computing Sciences]

26

Why is this so complicated ... §2

If we have lazy evaluation, we also want it at the type level!

f :: ∀a . (a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
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Alternative: move the final s inwards §2

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1 )

data TrafoE2 m t a b env1 =
∀env2 . TrafoE2

(m env2 )
(∀s . a s → T env2 s → Env t s env1
→ (b s, T env1 s, Env t s env2 )

)

Unfortunately now a and b have an s parameter,and we can no
longer use the arrow notation.
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Conclusion §2

I The library was originally built for constructing the
Left-Corner transform, which removes left-recursion from
typed grammars (see our Haskell Workshop 2008 paper).

I The library has been used unmodified for left-factorisation
of typed grammars, and the cse we have seen here.

I Library is available from Hackage

I The library enables a whole new way of dealing with
embedded domain specific languages.
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