
[Faculty of Science
Information and Computing Sciences]

Typed Transformations of Typed Abstract
Syntax

Arthur Baars Doaitse Swierstra Marcos Viera

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia,
Spain

Dept. of Information and Computing Sciences, Utrecht University, the
Netherlands

Instituto de Computación, Universidad de la República, Uruguay

Lecture14, AFP, Jan 17, 2011

[Faculty of Science
Information and Computing Sciences]

2

1. Why we need typed abstract syntax?

[Faculty of Science
Information and Computing Sciences]

3

What is typed abstract syntax? §1

I values have types

I values can be composed

I types prevent invalid compositions of values

data Expr a where
Val :: a → Expr a
Apply :: Expr (b → a)→ (Expr b)→ Expr a

[Faculty of Science
Information and Computing Sciences]

3

What is typed abstract syntax? §1

I descriptions of values have types

I descriptions of values can be composed

I types prevent invalid compositions of descriptions of values

data Expr a where
Val :: a → Expr a
Apply :: Expr (b → a)→ (Expr b)→ Expr a

[Faculty of Science
Information and Computing Sciences]

4

Where does Typed Astract Syntax arise? §1

I we want to implement Embedded Domain Specific
Languages

I which inherit their type system from the host language
I instead of directly building the semantics we:

I build the typed abstract syntax tree
I which we analyse, transform and from which we finally

construct the semantics

Our ultimate goal is to “compile” embedded languages just as
we compile normal languages.

[Faculty of Science
Information and Computing Sciences]

4

Where does Typed Astract Syntax arise? §1

I we want to implement Embedded Domain Specific
Languages

I which inherit their type system from the host language

I instead of directly building the semantics we:

I build the typed abstract syntax tree
I which we analyse, transform and from which we finally

construct the semantics

Our ultimate goal is to “compile” embedded languages just as
we compile normal languages.

[Faculty of Science
Information and Computing Sciences]

4

Where does Typed Astract Syntax arise? §1

I we want to implement Embedded Domain Specific
Languages

I which inherit their type system from the host language
I instead of directly building the semantics we:

I build the typed abstract syntax tree
I which we analyse, transform and from which we finally

construct the semantics

Our ultimate goal is to “compile” embedded languages just as
we compile normal languages.

[Faculty of Science
Information and Computing Sciences]

4

Where does Typed Astract Syntax arise? §1

I we want to implement Embedded Domain Specific
Languages

I which inherit their type system from the host language
I instead of directly building the semantics we:

I build the typed abstract syntax tree

I which we analyse, transform and from which we finally
construct the semantics

Our ultimate goal is to “compile” embedded languages just as
we compile normal languages.

[Faculty of Science
Information and Computing Sciences]

4

Where does Typed Astract Syntax arise? §1

I we want to implement Embedded Domain Specific
Languages

I which inherit their type system from the host language
I instead of directly building the semantics we:

I build the typed abstract syntax tree
I which we analyse, transform and from which we finally

construct the semantics

Our ultimate goal is to “compile” embedded languages just as
we compile normal languages.

[Faculty of Science
Information and Computing Sciences]

5

GADTs §1

Generalised Algebraic Data Types enable us to encode the
typing of the EDSL in the typing of the host language:

data Exp a where
IntVal :: Int → Exp Int
BoolVal :: Bool → Exp Bool
Add :: Exp Int → Exp Int → Exp Int
Cons1 :: Exp a → Exp [a] → Exp [a]
Nil1 :: Exp [a]
LessThan :: Exp Int → Exp Int → Exp Bool
If :: Exp Bool → Exp a

→ Exp a → Exp a

The price we pay is that we have to maintain well-typedness
during program transformations.

[Faculty of Science
Information and Computing Sciences]

5

GADTs §1

Generalised Algebraic Data Types enable us to encode the
typing of the EDSL in the typing of the host language:

data Exp a where
IntVal :: Int → Exp Int
BoolVal :: Bool → Exp Bool
Add :: Exp Int → Exp Int → Exp Int
Cons1 :: Exp a → Exp [a] → Exp [a]
Nil1 :: Exp [a]
LessThan :: Exp Int → Exp Int → Exp Bool
If :: Exp Bool → Exp a

→ Exp a → Exp a

The price we pay is that we have to maintain well-typedness
during program transformations.

[Faculty of Science
Information and Computing Sciences]

6

EDSL’s may contain references §1

We extend Expr with an argument describing the environment
in which referred values are located:

data Expr a env where
Var :: Ref a env → Expr a env
IntVal :: Int → Expr Int env
BoolVal :: Bool → Expr Bool env
...

lookup :: Ref a env → env → a
eval :: Expr a env → env → a
eval (Var r) e = lookup r e
eval (IntVal i) = i
eval (BoolVal b) = b
eval (Add x y) e = eval x e + eval y e
...

[Faculty of Science
Information and Computing Sciences]

6

EDSL’s may contain references §1

We extend Expr with an argument describing the environment
in which referred values are located:

data Expr a env where
Var :: Ref a env → Expr a env
IntVal :: Int → Expr Int env
BoolVal :: Bool → Expr Bool env
...

lookup :: Ref a env → env → a
eval :: Expr a env → env → a
eval (Var r) e = lookup r e
eval (IntVal i) = i
eval (BoolVal b) = b
eval (Add x y) e = eval x e + eval y e
...

[Faculty of Science
Information and Computing Sciences]

7

Sidestepping: Type equality §1

Using a GADT we can provide the witness of the proof that two
types are equal:

data Equal :: ∗ → ∗ → ∗ where
Eq :: Equal a a

If a non-⊥ value Eq a b takes part in a successful pattern
match, the type checker may conclude that the types a and b
are the same; otherwise the Eq could not have been produced.

[Faculty of Science
Information and Computing Sciences]

7

Sidestepping: Type equality §1

Using a GADT we can provide the witness of the proof that two
types are equal:

data Equal :: ∗ → ∗ → ∗ where
Eq :: Equal a a

If a non-⊥ value Eq a b takes part in a successful pattern
match, the type checker may conclude that the types a and b
are the same; otherwise the Eq could not have been produced.

[Faculty of Science
Information and Computing Sciences]

8

Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

[Faculty of Science
Information and Computing Sciences]

8

Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

Environments are nested products

[Faculty of Science
Information and Computing Sciences]

8

Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

References can be compared; if they are equal they return the
proof that the values they refer to have the same type:

match :: Ref a env → Ref b env → Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x) (Suc y) = match x y
match = Nothing

[Faculty of Science
Information and Computing Sciences]

8

Typed References §1

Ref -erences are labelled with the type a of the value they point
to in an environment env :

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

References can be compared; if they are equal they return the
proof that the values they refer to have the same type:

match :: Ref a env → Ref b env → Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x) (Suc y) = match x y
match = Nothing

Here a and b are equal

[Faculty of Science
Information and Computing Sciences]

9

Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

A first attempt:

type TwoLists = (((),Expr [Int] TwoLists)
,Expr [Int] TwoLists)

[Faculty of Science
Information and Computing Sciences]

9

Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

A first attempt:

type TwoLists = (((),Expr [Int] TwoLists)
,Expr [Int] TwoLists)

Unfortunately this is not correct Haskell: the type is recursive

[Faculty of Science
Information and Computing Sciences]

9

Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

We split the environment in two type parameters: the used
environment and the defined environment:

data Env :: (∗ → ∗ → ∗)→ ∗ → ∗ → ∗
where Empty :: Env term used ()

Ext :: Env term used defined → term a used
→ Env term used (defined , a)

[Faculty of Science
Information and Computing Sciences]

9

Mutally Recursive Declarative Structures §1

We want to represent:

let x = 1 : y
y = 2 : x

We split the environment in two type parameters: the used
environment and the defined environment:

data Env :: (∗ → ∗ → ∗)→ ∗ → ∗ → ∗
where Empty :: Env term used ()

Ext :: Env term used defined → term a used
→ Env term used (defined , a)

By choosing the two environment parameters to be the same
we enforce that the environemnt is closed.

[Faculty of Science
Information and Computing Sciences]

10

Example §1

The expression:

let x = 1 : y
y = 2 : x

is now encoded as:

type Final = (((), [Int]), [Int])
x = Var (Suc Zero) :: Expr [Int] Final
y = Var Zero :: Expr [Int] Final
decls :: Env Expr Final Final
decls = Empty ‘Ext ‘ Cons (IntVal 1) y

‘Ext ‘ Cons (Intval 2) x

We have nicer syntax for this

[Faculty of Science
Information and Computing Sciences]

10

Example §1

The expression:

let x = 1 : y
y = 2 : x

is now encoded as:

type Final = (((), [Int]), [Int])
x = Var (Suc Zero) :: Expr [Int] Final
y = Var Zero :: Expr [Int] Final
decls :: Env Expr Final Final
decls = Empty ‘Ext ‘ Cons (IntVal 1) y

‘Ext ‘ Cons (Intval 2) x

We have nicer syntax for this

[Faculty of Science
Information and Computing Sciences]

11

The problem: Common Subexpression
Elimination §1

Suppose we want to transform the program:

a = 4;
b = (a + 4) + (a + 4);

into:

a = 4;
x = a + a;
b = x + x ;

In order to do so we have to build a new environment,
containing the extra definition for x , and the new right hand
sides for a and b. This new environment is built incrementally.

[Faculty of Science
Information and Computing Sciences]

11

The problem: Common Subexpression
Elimination §1

Suppose we want to transform the program:

a = 4;
b = (a + 4) + (a + 4);

into:

a = 4;
x = a + a;
b = x + x ;

In order to do so we have to build a new environment,
containing the extra definition for x , and the new right hand
sides for a and b. This new environment is built incrementally.

[Faculty of Science
Information and Computing Sciences]

12

The Transformation Library §1

Eventually all references have to point into the final
environment. We thus introduce the following types:

type FinalEnv t usedef = Env t usedef usedef
newtype T e s = T {unT :: ∀x . Ref x e → Ref x s }

Whenever we add a new element to the environment under
construction we have to update the already existing references.
Instead we make a function available which maps them directly
into the final environment:

...

...

T env2 s T env3 sT env1 s

1 2 N

Env t s env1 Env t s env2 Env t s env3 Env t s s

T s s

[Faculty of Science
Information and Computing Sciences]

12

The Transformation Library §1

Eventually all references have to point into the final
environment. We thus introduce the following types:

type FinalEnv t usedef = Env t usedef usedef
newtype T e s = T {unT :: ∀x . Ref x e → Ref x s }

Whenever we add a new element to the environment under
construction we have to update the already existing references.
Instead we make a function available which maps them directly
into the final environment:

...

...

T env2 s T env3 sT env1 s

1 2 N

Env t s env1 Env t s env2 Env t s env3 Env t s s

T s s

[Faculty of Science
Information and Computing Sciences]

13

The Trafo type §1

...

...

T env2 s T env3 sT env1 s

1 2 N

Env t s env1 Env t s env2 Env t s env3 Env t s s

T s s

type Trafo t s =
∀env1 . ∃env2 . T env2 s → Env t s env1

→ (T env1 s, Env t s env2)

Env t s env1 the environment constructed thus far

T env2 s represents the number of future additions to the
environment

Env t s env2 the updated environment, in which env2 is (an
extension of) env1

T env1 s the updated T env2 s

[Faculty of Science
Information and Computing Sciences]

14

Extend with an arrow like interface §1

We extend the type with an arrow-like interface:

type Trafo t s a b =
∀env1 . ∃env2 . a → T env2 s → Env t s env1

→ (b, T env1 s, Env t s env2)

In our example a will e.g. be the mapping which tells us where
the old variables have ended up in the new environment.

[Faculty of Science
Information and Computing Sciences]

15

Meta-information §1

Since the elements in the constructed environment cannot be
fully inspected (parts depend on the T which is still has to be
constructed by future transformations), we maintain meta
information m:

type Trafo m t s a b =
∀env1 . m env1

→ ∃env2 .

(m env2
, a → T env2 s → Env t s env1
→ (b, T env1 s, Env t s env2)

)

[Faculty of Science
Information and Computing Sciences]

16

Haskelize §1

Since Haskell only allows existenstial constructors in
combination with a data constructor we have to write:

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

data TrafoE m t s a b env1 =
∀env2 . TrafoE (m env2)

(a → T env2 s → Env t s env1
→ (b, T env1 s, Env t s env2)

)

[Faculty of Science
Information and Computing Sciences]

17

Creating a new Ref -erence §1

The meta-data type has to be filled in depending on the
situation:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

Here t a s is the term we add to the environemnt, and Ref a s
is the reference pointing to this element in the final
environment!

[Faculty of Science
Information and Computing Sciences]

17

Creating a new Ref -erence §1

newSRef = Trafo (λ → TrafoE Unit extEnv)

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv
= λta (T tr) env → (tr Zero,T (tr . Suc),Ext env ta)

[Faculty of Science
Information and Computing Sciences]

17

Creating a new Ref -erence §1

newSRef = Trafo (λ → TrafoE Unit extEnv)

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv
= λta (T tr) env → (tr Zero,T (tr . Suc),Ext env ta)

Tell the predecessors that an element was added

[Faculty of Science
Information and Computing Sciences]

17

Creating a new Ref -erence §1

newSRef = Trafo (λ → TrafoE Unit extEnv)

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv
= λta (T tr) env → (tr Zero,T (tr . Suc),Ext env ta)

Tell the predecessors that an element was added

Map the newly added element into the final environment

[Faculty of Science
Information and Computing Sciences]

17

Creating a new Ref -erence §1

newSRef = Trafo (λ → TrafoE Unit extEnv)

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv
= λta (T tr) env → (tr Zero,T (tr . Suc),Ext env ta)

Tell the predecessors that an element was added

Map the newly added element into the final environment

Extend the environment with the new term ta

[Faculty of Science
Information and Computing Sciences]

18

Running the Trafos §1

When we are done we require that the used and the built
environment are equally labelled, hence we use FinalEnv :

data Result m t b
= ∀env2 . Result (m env2) (b env2)

(FinalEnv t env2)

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

use equals def

[Faculty of Science
Information and Computing Sciences]

18

Running the Trafos §1

When we are done we require that the used and the built
environment are equally labelled, hence we use FinalEnv :

data Result m t b
= ∀env2 . Result (m env2) (b env2)

(FinalEnv t env2)

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

use equals def

[Faculty of Science
Information and Computing Sciences]

18

Running the Trafos §1

When we are done we require that the used and the built
environment are equally labelled, hence we use FinalEnv :

data Result m t b
= ∀env2 . Result (m env2) (b env2)

(FinalEnv t env2)

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

use equals def

[Faculty of Science
Information and Computing Sciences]

19

Common Subexpression Elimination §1

After CSE we have a larger, closed environment:

type Decls env ′ = Env Expr env ′ env ′

We also compute a ref-transformer which maps old references in
env to new references in env ′:

data TDecls env = ∀env ′ . TDecls (Decls env ′)
(T env env ′)

The type of cse now becomes:

cse :: Decls env → TDecls env

[Faculty of Science
Information and Computing Sciences]

19

Common Subexpression Elimination §1

After CSE we have a larger, closed environment:

type Decls env ′ = Env Expr env ′ env ′

We also compute a ref-transformer which maps old references in
env to new references in env ′:

data TDecls env = ∀env ′ . TDecls (Decls env ′)
(T env env ′)

The type of cse now becomes:

cse :: Decls env → TDecls env

[Faculty of Science
Information and Computing Sciences]

19

Common Subexpression Elimination §1

After CSE we have a larger, closed environment:

type Decls env ′ = Env Expr env ′ env ′

We also compute a ref-transformer which maps old references in
env to new references in env ′:

data TDecls env = ∀env ′ . TDecls (Decls env ′)
(T env env ′)

The type of cse now becomes:

cse :: Decls env → TDecls env

[Faculty of Science
Information and Computing Sciences]

20

Maintain a Memo table §1

In the meta-information we maintain a memo table, which we
use to remember which expressions labelled with env have
already been incorporated in the new environment:

newtype Memo env env ′

= Memo
(∀x . Expr x env
→ Maybe (Ref x env ′)

)
emptyMemo :: Memo env ()
emptyMemo = Memo (const Nothing)

[Faculty of Science
Information and Computing Sciences]

20

Maintain a Memo table §1

In the meta-information we maintain a memo table, which we
use to remember which expressions labelled with env have
already been incorporated in the new environment:

And we construct the type of our transformations:

type TrafoCSE env = Trafo (Memo env) Expr
extMemo :: Expr a env → Memo env env ′

→ Memo env (env ′, a)
extMemo e (Memo m)

= Memo (λs → case equals e s of
Just Eq → Just Zero
Nothing → fmap Suc (m s)

)

[Faculty of Science
Information and Computing Sciences]

21

Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

[Faculty of Science
Information and Computing Sciences]

21

Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

Where do the old variables go?

[Faculty of Science
Information and Computing Sciences]

21

Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

Where do the old variables go?

Position of this expression

[Faculty of Science
Information and Computing Sciences]

21

Dealing with a single expression §1

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

app cse e@(LessThan x y)
= proc tt →
do l ← app cse x ≺ tt

r ← app cse y ≺ tt
insertIfNew e ≺ LessThan (Var l) (Var r)

. . .

[Faculty of Science
Information and Computing Sciences]

22

Running the transformations §1
refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input.Hence
we use mdo:

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t

[Faculty of Science
Information and Computing Sciences]

22

Running the transformations §1
refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input.Hence
we use mdo:

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t

[Faculty of Science
Information and Computing Sciences]

22

Running the transformations §1
refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input.Hence
we use mdo:

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t

[Faculty of Science
Information and Computing Sciences]

23

GHC problems §1

Unfortunately we have used lazy pattern binding on the
existential type TrafoE :

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

data TrafoE m t s a b env1 =
∀env2 . TrafoE (m env2)

(a → T env2 s → Env t s env1 →
(b, T env1 s, Env t s env2)
)

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TRafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

[Faculty of Science
Information and Computing Sciences]

24

The blunt solution: unsafeCoerce §1

unsafeCoerce :: a → b
runTrafo :: (∀s . Trafo m t s a (b s))→ m ()→ a

→ Result m t b
runTrafo trafo m a = case trafo of

Trafo trf → case trf m of
TrafoE m2 f →

case f a (T unsafeCoerce) Empty of
(rb, tt , env2)→

Result (unsafeCoerce m2)
rb
(unsafeCoerce env2)

[Faculty of Science
Information and Computing Sciences]

25

2. Conclusion

[Faculty of Science
Information and Computing Sciences]

26

Why is this so complicated ... §2

If we have lazy evaluation, we also want it at the type level!

f :: ∀a . (a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

But this is not System-F!

[Faculty of Science
Information and Computing Sciences]

26

Why is this so complicated ... §2

If we have lazy evaluation, we also want it at the type level!

f :: ∀a . (a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

But this is not System-F!

[Faculty of Science
Information and Computing Sciences]

27

Alternative: move the final s inwards §2

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1)

data TrafoE2 m t a b env1 =
∀env2 . TrafoE2

(m env2)
(∀s . a s → T env2 s → Env t s env1
→ (b s, T env1 s, Env t s env2)

)

Unfortunately now a and b have an s parameter,and we can no
longer use the arrow notation.

[Faculty of Science
Information and Computing Sciences]

27

Alternative: move the final s inwards §2

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1)

data TrafoE2 m t a b env1 =
∀env2 . TrafoE2

(m env2)
(∀s . a s → T env2 s → Env t s env1
→ (b s, T env1 s, Env t s env2)

)

Unfortunately now a and b have an s parameter,and we can no
longer use the arrow notation.

[Faculty of Science
Information and Computing Sciences]

28

Conclusion §2

I The library was originally built for constructing the
Left-Corner transform, which removes left-recursion from
typed grammars (see our Haskell Workshop 2008 paper).

I The library has been used unmodified for left-factorisation
of typed grammars, and the cse we have seen here.

I Library is available from Hackage

I The library enables a whole new way of dealing with
embedded domain specific languages.

[Faculty of Science
Information and Computing Sciences]

28

Conclusion §2

I The library was originally built for constructing the
Left-Corner transform, which removes left-recursion from
typed grammars (see our Haskell Workshop 2008 paper).

I The library has been used unmodified for left-factorisation
of typed grammars, and the cse we have seen here.

I Library is available from Hackage

I The library enables a whole new way of dealing with
embedded domain specific languages.

[Faculty of Science
Information and Computing Sciences]

28

Conclusion §2

I The library was originally built for constructing the
Left-Corner transform, which removes left-recursion from
typed grammars (see our Haskell Workshop 2008 paper).

I The library has been used unmodified for left-factorisation
of typed grammars, and the cse we have seen here.

I Library is available from Hackage

I The library enables a whole new way of dealing with
embedded domain specific languages.

[Faculty of Science
Information and Computing Sciences]

28

Conclusion §2

I The library was originally built for constructing the
Left-Corner transform, which removes left-recursion from
typed grammars (see our Haskell Workshop 2008 paper).

I The library has been used unmodified for left-factorisation
of typed grammars, and the cse we have seen here.

I Library is available from Hackage

I The library enables a whole new way of dealing with
embedded domain specific languages.

	Why we need typed abstract syntax?
	Conclusion

