
[Faculty of Science
Information and Computing Sciences]

Merging Parsers

IFIP 2.1, Rome meeting

Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Feb 7, 2012

[Faculty of Science
Information and Computing Sciences]

1-1

1. History

[Faculty of Science
Information and Computing Sciences]

1-2

Originally we had two libraries

The original uulib library had two modules:

1. permuting parsers

2. parsing merged lists

[Faculty of Science
Information and Computing Sciences]

1-3

Parsing permuted structures

Permuting structures are abundant:

@inProceedings

{ BaarsLoehSwierstra2001,

author = { Baars, Arthur and Loeh, Andres

and Swierstra, S. Doaitse},

title = { Parsing Permutation Phrases},

booktitle = { Preliminary proceedings of

Haskell workshop 2001,

UU-CS-2001-23},

year = 2001,

pages = {171--182},

editor = {Hinze, Ralf},

}

[Faculty of Science
Information and Computing Sciences]

1-4

Permuted structures

I The order of the elements is irrelevant

I Each item occurs exactly once

I Elements may have different types

I Some elements are optional

Traditional ways of parsing such structures are clumsy.

[Faculty of Science
Information and Computing Sciences]

1-4

Permuted structures

I The order of the elements is irrelevant

I Each item occurs exactly once

I Elements may have different types

I Some elements are optional

Traditional ways of parsing such structures are clumsy.

[Faculty of Science
Information and Computing Sciences]

1-5

Merged lists

Many inputs consist of a couple of merged lists, which we want
to process separately:

1. Haskell: priorities, data definitions, types, classes,
instances, type specifications, normal definitions

2. AG system: data definitions, attribute introductions,
semantic functions, Haskell fragments

[Faculty of Science
Information and Computing Sciences]

1-6

Observation

If we restrict lists to length < 1, the parser for merged lists boils
donw to a permutation parser.

Can we generalise the way we parse merged
lists to parse more general structures?

The aim of this talk is to present a binary combinator <||>,
such that p<||> q runs p and q in an interleaved way, i.e. the
input is split into two sublists which are consumed by p
respectively q.

[Faculty of Science
Information and Computing Sciences]

1-6

Observation

If we restrict lists to length < 1, the parser for merged lists boils
donw to a permutation parser.

Can we generalise the way we parse merged
lists to parse more general structures?

The aim of this talk is to present a binary combinator <||>,
such that p<||> q runs p and q in an interleaved way, i.e. the
input is split into two sublists which are consumed by p
respectively q.

[Faculty of Science
Information and Computing Sciences]

1-6

Observation

If we restrict lists to length < 1, the parser for merged lists boils
donw to a permutation parser.

Can we generalise the way we parse merged
lists to parse more general structures?

The aim of this talk is to present a binary combinator <||>,
such that p<||> q runs p and q in an interleaved way, i.e. the
input is split into two sublists which are consumed by p
respectively q.

[Faculty of Science
Information and Computing Sciences]

2-1

2. Demo

[Faculty of Science
Information and Computing Sciences]

3-1

3. Grammars

[Faculty of Science
Information and Computing Sciences]

3-2

Applicative

The class Applicative describes sequential composition of
“parsers”:

class Applicative p where
(<∗>) :: p (b→ a)→ p b→ p a
pure :: a → p a

Parsers are combined using <∗>, where the result of the
combined parser is produced by applying the result of the left
operand (of type b→ a)) to the result of the right operand (of
type b).

[Faculty of Science
Information and Computing Sciences]

3-3

Alternative

The class Alternative describes choice:

class Alternative p where
(<|>) :: p a→ p a→ p a
empty :: p a

Alternative parsers are combined using <|>, and empty
describes the always failing parser.

[Faculty of Science
Information and Computing Sciences]

4-1

4. Grammars

[Faculty of Science
Information and Computing Sciences]

4-2

Unwanted ambiguity

The following parser is ambiguous:

pa = . . . -- recognises the string "a"

pb = . . . -- recognises the string "b"

p ‘opt‘ v = p<|> pure v
ap = (++)<∗> (pa ‘opt‘ "x")<||> pb

This parser will recognise ”ab”, ”ba”, ”b” and ”b” again, since
the empty string recognisable by (pa ‘opt‘ "x") can be thought
to be located before or after the ”b”.

We decide to only include
the second result.

[Faculty of Science
Information and Computing Sciences]

4-2

Unwanted ambiguity

The following parser is ambiguous:

pa = . . . -- recognises the string "a"

pb = . . . -- recognises the string "b"

p ‘opt‘ v = p<|> pure v
ap = (++)<∗> (pa ‘opt‘ "x")<||> pb

This parser will recognise ”ab”, ”ba”, ”b” and ”b” again, since
the empty string recognisable by (pa ‘opt‘ "x") can be thought
to be located before or after the ”b”. We decide to only include
the second result.

[Faculty of Science
Information and Computing Sciences]

4-3

Gram

The data type Gramm and Alt are used to represent merging
parsers.

data Gram f a = Gram [Alt f a] (Maybe a)
data Alt f a = ∀b.Seq (f (b→ a)) (Gram f b)

| ∀b.Bind (f b) (b→ Gram f a)
| Single (f a)

The first elements in the Seq, Bind and Single alternatives are
parsers which are ready to be “run”, and which may not be
interrupted, i.e. which accept a consecutive part of the input.

I Alt f a wil not recognise the empty string

I the Maybe a part describes whether a grammar can accept
the empty string, and the result if this is the case

[Faculty of Science
Information and Computing Sciences]

4-3

Gram

The data type Gramm and Alt are used to represent merging
parsers.

data Gram f a = Gram [Alt f a] (Maybe a)
data Alt f a = ∀b.Seq (f (b→ a)) (Gram f b)

| ∀b.Bind (f b) (b→ Gram f a)
| Single (f a)

The first elements in the Seq, Bind and Single alternatives are
parsers which are ready to be “run”, and which may not be
interrupted, i.e. which accept a consecutive part of the input.

I Alt f a wil not recognise the empty string

I the Maybe a part describes whether a grammar can accept
the empty string, and the result if this is the case

[Faculty of Science
Information and Computing Sciences]

4-4

Parsers can be lifted to Gramars

A requirement is that parsers can be split in a part recognising
a non-empty string and a value to be returned when the empty
string can be recognised:

getOneP :: Maybe (P t a)-- provided by the base parsing lib

getZeroP :: Maybe a -- provided by the base parsing lib

mkGram :: P t a→ Gram (P t) a
mkGram p = Gram (maybe [] (pure ◦ Single) (getOneP p))

(getZeroP p)

[Faculty of Science
Information and Computing Sciences]

5-1

5. Building Merging Parsers

[Faculty of Science
Information and Computing Sciences]

5-2

Constructing parsers from Grammars

Grammars can be converted to parsers:

mkParserM :: (Monad f,Applicative f, . . .)⇒ Gram f a→ f a
mkParserM (Gram ls le)

= foldr (<|>) (maybe empty pure le) (map mkParserAlt ls)

mkParserAlt (pb2a ‘Seq‘ gb) = pb2a<∗>mkParserM gb
mkParserAlt (pc ‘Bind‘ c2ga) = pc>>= (mkParserM ◦ c2ga)
mkParserAlt (Single pa) = pa

[Faculty of Science
Information and Computing Sciences]

5-3

<||>

We will fom now on ignore the Binds. The operator <||>
follows the applicative interface:

(<||>) :: Functor f ⇒ Gram f (b→ a)→ Gram f b→ Gram f a
pg@(Gram pl pe)<||> qg@(Gram ql qe)

= Gram ([(uncurry <$> p) ‘Seq‘ (((,)<$> pp)<||> qg)
| p ‘Seq‘ pp← pl]

++ [p ‘Seq‘ qg | Single p← pl]
++ maybe [] (λpv→ map (pv<$>) ql) pe

. . . -- similar for qg

) (pe<∗> qe)

Note that this huge structure is built lazily during the actual
parsing, as need arises!

[Faculty of Science
Information and Computing Sciences]

5-3

<||>

We will fom now on ignore the Binds. The operator <||>
follows the applicative interface:

(<||>) :: Functor f ⇒ Gram f (b→ a)→ Gram f b→ Gram f a
pg@(Gram pl pe)<||> qg@(Gram ql qe)

= Gram ([(uncurry <$> p) ‘Seq‘ (((,)<$> pp)<||> qg)
| p ‘Seq‘ pp← pl]

++ [p ‘Seq‘ qg | Single p← pl]
++ maybe [] (λpv→ map (pv<$>) ql) pe

. . . -- similar for qg

) (pe<∗> qe)

Note that this huge structure is built lazily during the actual
parsing, as need arises!

[Faculty of Science
Information and Computing Sciences]

6-1

6. Class Instances for Gram

[Faculty of Science
Information and Computing Sciences]

6-2

Gram is a Functor

Grammars obey the conventional interface for parsers. The only
difference is that they describe the break points.

instance Functor f ⇒ Functor (Gram f) where
fmap f (Gram alts e) = Gram (map (f<$>) alts) (f <$> e)

instance Functor f ⇒ Functor (Alt f) where
fmap a2c (pb2a ‘Seq‘ gb) = ((a2c◦)<$> pb2a) ‘Seq‘ gb
fmap a2c (Single pc) = Single (a2c<$> pc)

[Faculty of Science
Information and Computing Sciences]

6-3

Gram is Alternative

instance Functor f ⇒ Alternative (Gram f) where
empty = Gram [] Nothing
Gram ps pe<|> Gram qs qe = Gram (ps ++ qs) (pe<|> qe)

[Faculty of Science
Information and Computing Sciences]

6-4

Gram is Applicative

instance Functor f ⇒ Applicative (Gram f) where
pure a = Gram [] (Just a)
Gram l le <∗>∼rg@(Gram r re)

= Gram (map (‘fwdby‘rg) l
++ maybe [] (λe→ map (e<$>) r) le
) (le<∗> re)

(pb2c2a ‘Seq‘ gb) ‘fwdby‘ gc
= (uncurry <$> pb2c2a) ‘Seq‘ ((,)<$> gb<∗> gc)

(Single pb2a) ‘fwbby‘ gb
= pb2a ‘Seq‘ gb

[Faculty of Science
Information and Computing Sciences]

6-5

Conclusions

I Grammars are like parsers, but with <||> added

I Grammars are constructed lazily

I code is actually very simple

I types do the work, and tell us how to glue

I limited requirements on underlying parsing strategy

Constructs like:

many p = (:) p<||>many p<|> pure []

look innocent, but branch infinitely! Special care is needed.

[Faculty of Science
Information and Computing Sciences]

6-5

Conclusions

I Grammars are like parsers, but with <||> added

I Grammars are constructed lazily

I code is actually very simple

I types do the work, and tell us how to glue

I limited requirements on underlying parsing strategy

Constructs like:

many p = (:) p<||>many p<|> pure []

look innocent, but branch infinitely! Special care is needed.

	History
	Demo
	Grammars
	Grammars
	Building Merging Parsers
	Class Instances for Gram

