
Giving

Brent A. Yorgey
Stephanie Weirich

University of Pennsylvania

{byorgey,sweirich}@cis.upenn.edu

Abstract
Static type systems strive to b e r ichly expressive while still b eing
simple enough for programmers to use. W e describe an experiment
that enriches Haskell’s kind system with two features promoted
from its type system: data t ypes and polymorphism. The new sys-

tem has a very good power-to-weight r atio: it offers a significant
improvement in expressiveness, b ut, b y re-using concepts that pro-
grammers are already familiar with, the system is easy to u nder-
stand and implement.

Categories and S ubjectD escriptors D.3.3 [Language Constructs
and Features]: Data types and structures, Polymorphism; F .3.3
[Studies of Program Constructs]: Type structure

General Terms Languages, Design

Keywords Haskell, promotion, kinds, polymorphism

1. Introduction

Static type systems are the world’s most successful application
of formal methods. T ypes are simple enough to make sense to
programmers; they are tractable enough to b e machine-checked on
every compilation; they carry no run-time overhead; and they p luck
a harvest of low-hanging fruit. It makes sense, therefore, to seek to
build on this success by making the type system more expressive
without giving up the good properties we h ave mentioned.

Every static type system embodies a compromise: it rejects
some “good” programs and accepts some “bad” ones. As the
dependently-typed p rogramming community knows well, the abil-
ity to express computation at the type level can improve the “fit”;
for example, we might b e able to ensure that an alleged red-black
tree really has the red-black property. Recent innovations in Haskell
have b een moving in exactly this direction. Notably, GADTs [24]
and t ype families [25] turn the type system into a (modest) pro-
gramming language in its own right.

Permission to make digital or hard copies of all or part of this work for personal o r
classroom use is granted without fee provided that copies are not made or d istributed
for profit or commercial advantage and t hat copies bear this notice and the full citation
on the first p age. To copy otherwise, to republish, to post on servers or t o r edistribute
to lists, requires prior specific permission and/or a fee.

TLDI’12, January 28, 2012, Philadelphia, PA, USA.
Copyright ©2012 ACM 978-1-4503-1 120-5/12/01. . .$10.00

Haskell a Promotion

Julien Cretin Simon P eyton J ones

INRIA Dimitrios Vytiniotis

julien.cretin@inria.fr Microsoft Research Cambridge
{simonpj,dimitris}@microsoft.com

Jose ´ Pedro Magalh˜a es

Utrecht U niversity
jpm@cs. uu.nl

But, embarrassingly, type-level p rogramming in Haskell is al-
most entirely untyped, because the kind system has too few kinds

(?, ? → ? , and so on). Not only does this prevent the programmer

(fr?o,m? →prop? ,era lnyd des xporo enss)i.nN go hteo rn ilnyte dnot,e s bt uht sst uppreidve enrtr othrse p inr otygrpea-mlemveelr

programs simply cause type-level evaluation to get stuck r ather

than properly generating an error (see §2). In addition to b eing too

permissive (by having too few kinds), the kind system is also too

restrictive, because it lacks p olymorphism. The lack of kind p oly-
morphism is a well-known wart; see, for example, Haskell’s fam-
ily of Typeable classes (§2.5), with a separate (virtually identical)
class for each k ind.

In t his p aper we describe a design that fixes these problems,
and we sketch its implementation in GHC, our Haskell compiler.
Our design is inspired by Conor McBride’s Strathclyde Haskell
Enhancement (SHE) p reprocessor [19], which automatically pro-
motes datatypes to b e datakinds. Our work goes well b eyond SHE
by also introducing kind p olymorphism, and integrating t hese two
new features with convenient source syntax and full type (and k ind)
inference.

From a type-theoretic p oint of view, this paper has little new to
say: full-spectrum dependently typed languages like Coq [3 1] or
Agda [23] are more expressive still. But, as we discuss in more de-
tail in §7, these languages are in some ways too powerful: they have
a h igh barrier to entry b oth for programmers (who want to write
programs in natural and straightforward ways) and implementors
(who have to worry about efficiently executing these programs).
Instead, we start from the other end: we carefully extend a state-
of-the-art functional programming language with features that ap-
pear in dependently-typed languages. Our primary audience is the
community of Designers and Implementors of Typed Languages, to
whom we offer a big increase in expressive p ower for a very modest
cost in terms of intellectual and implementation complexity.

Specifically, our contributions are:

• We extend Haskell with a rich kind system, including kind poly-
morphism. Suitable value and type constructors are automati-
cally promoted to become type and kind constructors, respec-
tively (we explain precisely which constructors can be lifted
in §3.3). We show, by example, that these modest extensions

offer a large gain in expressiveness (§2).

• We formalize an explicitly-typed intermediate language, Sys-
tem F↑C (pronounced “FC-pro”), that embodies the new kind
system (§3). FC↑ is no toy: we have implemented it in GHC as
a modest extension of GHC’s existing intermediate language,
System FC. Our extension t o this intermediate language guides
our overall design—going further would require much more
significant effort.

• GHC uses FC↑ throughout its optimization phases, and each op-
timization must ensure that the transformed program is well-
typed. So the metatheory of FC↑ is of practical importance, es-
pecially subject r eduction (§4). In addition to subject reduction
we prove progress, which ensures that coercions can be erased
at runtime without compromising type safety.

• We describe the modifications to GHC’s type inference engine
(§5) and the source language extensions (§6) to support the
new features. (Haskell is a large language, so these sections are
necessarily informal.)

Finally, we discuss related work (§7) as well as directions for future
research (§8).

Our goal throughout is to provide maximum gain for minimum
pain. One could go further in terms of supported features, but
we believe we h ave found a sweet spot. The new extensions are
fully implemented, and will soon be released as part of GHC. The
experience of GHC’s users will then inform our u nderstanding of
possible future developments in the design space of dependently-
typed p rogramming languages.

2. Typed type-level programming

We b egin with an informal motivation for the extensions of our
system.

2.1 Promoting datatypes

Consider the following standard implementation of length-indexed
vectors in Haskell:

data Zero
data Succ n

data Vec ::? → ? → ? where
Ntial e::c V: :e?c a Z? e r→o
Cons :: a → Vec a n → Vec a (Succ n)

We declare two empty datatypes, Zero and Succ, to serve as
“type-level values”, and use a generalized algebraic datatype
(GADT) [24] to define a type Vec whose first argument is the type
of its elements and whose second argument is a type-level natural
number r eflecting the length of its values.

However, for a language like Haskell with a strong, static type
system, this example is rather embarrassing: it is untyped! The
type parameter to Succ has kind ?, which gives us no indication
that we intend for it to always b e a type-level representation of a
natural number. The same is true of the second parameter to Vec.
Essentially, ? is serving as the single type in a “uni-typed” type
system.1 We are not p revented from writing nonsensical types such
as Succ Bool or Vec Zero Int.

It would be much b etter to be able to write

data Nat = Zero | Succ Nat

data Vec ::? → Nat → ? where
VtNai lV c: :: :V ?e→c →a NZaetro→
VCons :: a → Vec a n → Vec a (Succ n)

This is the sort of thing we could write in a language with a full-
spectrum dependent type system, such as Agda [23]. We have de-
clared a normal datatype Nat, and Vec takes as its second argument
a value of type Nat. Our intention for the arguments of Vec is now
clear, and writing Vec Zero Int will rightly yield a type error.

1 Well, not quite uni-typed, because we have arrow kinds, but close.
In our new system the a bove example is now valid Haskell!

In the declaration of Vec we can see that Nat is used as a k ind.
Following SHE, we achieve this effect by automatically p romoting
(suitable) datatypes to b ecome kinds; and their data constructors
(Zero and Succ in this case) to become type-level data. In effect
this gives the Haskell programmer the ability to declare their own
kinds, b y declaring datatypes and p romoting them up a level.

These datakinds may also b e used in GHC’s indexed type fami-
lies (i.e. type functions). For example,

type family Plus (a :: Nat) (b :: Nat) :: Nat
type instance Plus Zero b = b
type instance Plus (Succ a) b = Succ (Plus a b)

In general, a suitable (§3.3) datatype declaration

data T = C1 T1 | C2 T2 | ...

not only defines a type constructor T and data constructors C1, C2,
. . . , but also a kind T, a type constructor C1 of k ind T1 → T
.(.us.i,nb gu ttha el sp oro amk oitnedd k Ti,nd as yTp eanc do nTs1t)ru, catondr Csim1 oilafrk lyi fdorT th1e →othTe r
constructors.

2.2 Resolving namespaces

Although in principle a simple idea, in practice this approach leads
to an awkward naming problem for source Haskell programs, be-

cause Haskell allows type constructors and data constructors to
have the same name:

data T = T Int

If we see “T” in a type, does it refer to the type T (of k ind ?) or the
promoted data constructor T (of kind Int → T)? In such cases, we
padroopmto ttehed dfoaltlaoc woinngst rnuocttaotrio Tn:(oplfa kinin Td nmte →ansT Tt)h?e Itny psue chocn sasterusc,tw oer,
while 'T, with a prefixed single quote, denotes the promoted data
constructor. So the fully explicit version of the foregoing example
looks like this:

data Nat = Zero | Succ Nat

data Vec ::? → Nat → ? where
aVtaNiVl c: :: :V ?e→c →a N'Zaetro→
VCons :: a → Vec a n → Vec a ('Succ n)

Where the promotion is unambiguous, the quote may be omitted.
We do not require (or allow) the quote notation in kinds, be-

cause there is no ambiguity to resolve. W e do not allow promoting
types which are themselves indexed b y a promoted data constructor
(§3.3), so anything in a kind other than ? can only be a promoted
type.

2.3 Kind p olymorphism for promoted types

We also allow p romoting p arameterized datatypes, such as lists.
For example:

data H List :: [?] → ? where
HtNa iHl s::t H: :L[i?s]t '→[→]
HCons :: a → H List as → HList (a : as)

Here we h ave declared HList, the type of heterogeneous singly-
linked lists. The index of HList is a list of types which records the

types of the elements (created b y promoting the list datatype). For
example,

HCons "Hi " (HCons True HNil) :: HList (String : Bool : '[])

is a heterogeneous list containing two values of different types.
Haskell allows the syntactic sugar [a, b] for the explicit list (a :
b : []), and we support the same sugar in types, thus:

HCons "Hi " (HCons True HNil) :: HList '[String, Bool]
The p refix quote serves, as before, to distinguish the type-level list
from the list type in, say reverse :: [a] → [a] .

mIf thheis l sptr toympeoti nio,ns iys rteov ebres eal :l:o[wae]d→ , w [aha].t is the kind of the
promoted data constructor '(:)? Since the data constructor (:) i s
type-polymorphic, the promoted constructor '(:) must be kind-
polymorphic:

'(:) ::∀X. X → [X] → [X]

where X is a kind variable.
Weree Xhai vsea abk yi n ndow va rseiaebnl eth.e most significant modifications to the

kind language. Haskell k inds now include the kind of types of val-
ues, written ?, other base kinds formed from promoted datatypes,
arrow kinds, and p olymorphic kinds. This means that we can only
promote data constructors with t ypes analogous to one of these
kinds. In p articular, we will not promote data constructors with
constrained types (including GADTs) or higher-order type p oly-
morphism. We return to this issue in §3.3.

2.4 Kind polymorphism for datatypes

Kind p olymorphism is useful independently of p romotion. Con-
sider the following datatype declaration:

data TApp f a = MkTApp (f a)

This code has always been legal Haskell, but, lacking kind p oly-
morphism, the kind of TApp was d efaulted to (? → ?) → ? → ?

[m1 o8,r Sheiscmtio,nt h e4.k 6]i.n Hdo owf TevAeprp, Tw Aapspd eisf nualttuedrat lloy(? ki→n d-p? o)l y→mo? rp→ hic? ;
just as we do type generalization for term definitions, we now also
do k ind generalization for type definitions. The kind of TApp is
thus inferred as ∀X. (X → ?) → X → ?. (Like all datatypes, the
trhesuuslti n nofef TrrAedpap s m∀ Xust. s (Xtill →b e ??).)

A less contrived example is the following GADT, used to reify
proofs of type equality:

data EqRefl a b where
Refl :: EqRefl a a

The kind of EqRefl also used to default to (? → ? → ?); that
Tis,h eEk qiRndefl fcoE ulqdR oefnlla yl express teoq udaefliatyu bt teotw(e?en→ →typ? es→ →of ?v)a;lut hesa.t
To express equality between type constructors, such as Maybe,
required tediously declaring a separate Eq Refl-like datatype for
each kind, with the only difference being kind annotations on
EqRefl’s type parameters. However, Eq Refl is now inferred to have
the polymorphic kind ∀X. X → X → ?, so it can be used
ethqeuap lloyl wmeollr ohinc any dtw∀ oX ty.pX es o→f th Xe sa→me ?k,in sod. iW t ec anlsb oe alu lsoewd
the programmer to write

data EqRefl (a :: X) (b :: X) where
Rteafl E ::q ∀ RXef.l (∀a(a :: :X: X)().b E: :qRX e)fl w wah ae

if they wish to indicate the kind p olymorphism explicitly.
A final example of a datatype definition that benefits from kind

polymorphism is a higher-kinded fixpoint operator [21]

data M u f a = Roll (f (M u f) a).

Mu can b e u sed to explicitly construct polymorphic recursive types
from their underlying functors2; for instance:

data ListF f a = Nil | Cons a (f a)
tdyaptea LLiisstt Fa f=a M =u NLilist| FC oan

Previously, the k ind of Mu would have been defaulted to ((? →
P?)r →vio (us?l y→, t h?e))k n→d o(?f M→u ? w);o wuldithh at hvee a bdedeitniod ne foafu lkteindd pool (y(m?o→ r-
?ph)i →sm, M?u→ →is ?g)i)ve→ n th (e? p→ oly ?m);o rwphithic tkhienad

Mu ::∀X. ((X → ?) → (X → ?)) → (X → ?)

2 The cognoscenti will know t hat lists can be expressed with a simpler, first-
order fixpoint operator. We use a higher-kinded one here because it can also
handle an indexed type such as Vec.
and can now b e used to construct r ecursive types indexed on kinds
other than ?. For example, here is an explicit construction of the
Vec datatype from §2.2:

data VecF (a ::?) (f :: Nat → ?) (n :: Nat) where
VtFaN Vile F::(aVe: c:?F)a(ff :Z: Neroat
VFCons :: a → f n → VecF a f (Succ n)

typVeFC CVoencs a :: na =→ Mf un (→Ve cVFe caF) na

This time, Mu is instantiated to ((Nat → ?) → (Nat → ?)) →
(TNhiast i→m e?,) .M

2.5 Kind polymorphism for classes

Classes can also usefully b e kind-polymorphic. This allows us, for
example, to clean up Haskell’s family of Typeable classes, which
currently look like this:

class Typeable (a :: ?) where
typeOf :: a → TypeRep

clatsypse TOyfpe ::aa bl→e 1 T(ay p::e ?R e→p ?) where
atsypseT Oyfp1e :a a:b b∀ leb1. (aa ab: :→? →Typ ?e)Rw eph

.. . and so on ...

The lack of k ind p olymorphism is p articularly u nfortunate here;
the library has only a fixed, ad hoc, collection of Typeable classes.
With kind polymorphism we can write

class Typeable a where
typeOf :: Proxy a → TypeRep

We have generalized in two ways h ere. First, Typeable gets a
polymorphic kind: Typeable :: ∀X. X → Constraint3, so that it
cpaonly m beo rusphedic fok irn tdy:p eTsy pofe any k::in ∀dX. .SX econ →d, Cwoen snetreadi stome way to
generalize the argument of typeOf , which we have done via a poly-
kinded data type Proxy:

data Proxy a = Proxy

The idea is that, say typeOf (Proxy :: Proxy Int) will r eturn the
type representation for Int, while typeOf (Proxy :: Proxy Maybe)
will do the same for Maybe. The proxy argument carries no
information—the t ype has only one, nullary constructor—and is
only present so that the programmer can express the type at which
to invoke typeOf . Because there are no constraints on the k ind of
a, it is safe to assign Proxy the p olymorphic kind ∀X. X → ?.

tTi hses au fseert oisa aslsilogwneP dr otox y ptr ohveip deol yinmsotarnpcheisc okifn nthde ∀ Xcla.s Xs T→ yp e?.able
for specific k ind and type instantiations, such as:

instance Typeable Int where
typeOf = ... -- some representation for Int

instance Typeable Maybe where
typeOf = ... -- some representation for Maybe

Even though the class declaration is k ind p olymorphic, the in-
stances need not be.

2.6 Kind polymorphism for terms

So far, we h ave given examples of types with polymorphic kinds.
It is also useful to have terms whose types involve kind polymor-
phism. We have already seen several, since data constructors of
kind-polymorphic data types have kind-polymorphic types, thus:

Proxy :: ∀X. ∀(a :: X) . Proxy a
RPeroflx :: ∀∀ XX.. ∀∀ ((aa :: XX)).. EPrqoRxeyfla a a

Here is a more substantial example, taken from McBride [20].
Consider, first, the type constructor (:→) defined as follows:

3 The Constraint kind is a new base kind introduced t o classify the types
of evidence terms, such as type class dictionaries—more about this feature
in §3.

type s :→ t = ∀i. s i→ t i

If s, t :: κ → ? are type constructors indexed b y types of kind κ,

tIhfe sn, st ::→κ t→ →is t?hae etyt pyep oef cinodnestxr-upcrteosresri vnindgexf uendcb tiyont ysp fersom of sk iton dtκ.
nFso r :e→xamt i pslte h, ecot nyspied oefr tinhed efux-npcrteisoenr vvdinugpf uwnchitciohn dsuf rploimca tsest o oet ac.h

element of a length-indexed vector, guaranteeing to preserve the
length of the vector:

vdup :: Vec a n → Vec (a, a) n
vdup VNil →= VVeNcil
vdup (VCons a as) = VCons (a, a) (vdup as)

Using the type synonym above, vdup’s type can be rewritten as

vdup :: Vec a :→ Vec (a, a) .

McBride observes that it is possible (and useful) to define func-
tors that lift index-preserving functions (like vdup) from one in-
dexed set (such as Vec a n) to another (such as square matrices
Vec (Vec a n) n). He introduces the notion of an indexedf unctor

class IFunctor f where
imap :: (s :→ t) → (f s :→ f t)

and goes on to present several interesting instances of this class.
Now, what are the k inds of s, t, and f ? A bit of thinking (or

simply running GHC’s type checker) reveals that there must b e
kinds X1 and X2 such that s, t, and f have the kinds

s, t :: X1 → ?

fs ::t (:X: X1 →→ →??) → (X2 → ?)

All three are mentioned in the type of imap, which ought to b e
polymorphic over X1 and X2. The full type of imap must therefore
pbeo

∀X1 X2 .∀ f :: (X1 → ?) → (X2 → ?) .∀s, t :: X1 → ?.

IFunctor f ⇒ (s :→ t) → (f s :→ f t).

Note that this type involves two different sorts of ∀ abstractions: the
Nfirostte eat bhsattra thcitss otyvpeer tinhev ok lvinedsst wX1o danifdfe eXre2n, tws hoertrseo afs ∀tha eb bostthreacrsti aobnsst:rat hcet
ofirvestr athbset rtyacptes coovnesrtt rhuectk oinrsd ss,X Xt, aanndd fX.

As an aside, this example highlights an interesting difference
between FC↑ and SHE [19], which restricts the k ind of f to

f :: ('a → ?) → ('b → ?).

That is, using SHE, f can only transform types indexed by some
promoted k inds, whereas in our implementation f can transform
types indexed by arbitrary kinds. This is certainly no failing of
SHE, which p laces this r estriction on k ind polymorphism for the
sensible r eason that promoted kinds can all b e “erased” to ?, and
as a textual p reprocessor SHE cannot b e expected to do m uch else.
However, this does show one of the advantages of a natively imple-
mented, strongly typed implementation over a textual preprocessor.

2.7 Kind-indexed type families

In GHC type families are type-indexed. With the addition of kind-
polymorphism we may now write k ind- and type-indexed f amilies,
as the example b elow demonstrates:

type family Shape (a :: X) :: ?

type instance SShhaappee ((aa :::: ?X) = a
type instance Shape (a ::? → X) = Shape (a ())

The above type family is an example of arity-generic programming,
where Shape t denotes the application of the type constructor t to
as many copies of the unit type as its k ind allows. This form of kind
indexing allows for code reuse, since without it the programmer
would have to declare separate type families at each k ind, in a
manner similar to the current treatment of the Typeable c lass.

2.8 Summary

So far, we have demonstrated the nature of programs that can be
written with our two new features:

• Automatic p romotion of datatypes to be kinds and data con-
structors to b e t ypes.

• Kind polymorphism, for k inds, types (including kind-indexed
type families and type classes), and terms.

The former allows us to give informative kinds to types, thereby
excluding bad programs that were p reviously accepted. The latter
accepts a wider class of good p rograms, and increases re-use, j ust
like type polymorphism. Both features are integrated with type and
kind inference.

Our extensions not only enable p rogrammers to write new and
interesting p rograms, but also help clean up existing libraries. For

instance, the HList library [13] may b e entirely rewritten without
code duplication and extra type classes to track well-kindedness.
Similarly, the Scrap Your Boilerplate library [14, 15] can benefit
from the kind-polymorphic Typeable class described previously.

3. System FC↑
In this section we present the extensions to GHC’s intermediate
language, System FC [29], that are necessary to support these new
source language features. System F C is an explicitly typed interme-
diate language which has simple syntax-directed typing rules and is
robust to program transformation. Through the mechanism of type
(and now k ind) inference, source Haskell programs are elaborated
to well-typed System FC programs, a process that guarantees the
soundness of type inference.

This section presents the technical details of System FC and its
extensions, to provide a semantics for the new features. Because FC
is a small language, it allows us to make precise exactly what our
new design does and does not support. Moreover, System FC has a
straightforward metatheory, so we can justify our design decisions
by demonstrating that our additions do not complicate r easoning
about the properties of the system (§4).

For clarity, we call the extended language of this paper System
FC↑ (pronounced “FC-pro”), r eserving the name System FC for the
prior version of the language.

3.1 System FC↑ overview

The expression syntax of System FC↑ is given in F igure 1, with
the differences from System FC highlighted. A s the language is
explicitly typed, this syntax r eferences kinds (κ) and types (τ),
which appear in F igure 3 and Figure 4 .

The syntax also mentions coercions (γ), which explicitly en-
code type equalities arising from type family instance declarations
and GADT constructors (plus a Haskell-specific form of type gen-
erativity, newtype declarations). For example, each type family
instance declaration gives rise (through elaboration) to an equal-
ity axiom that equates the left and the r ight-hand side of the in-
stance declaration. Such axioms can be composed and transformed
to form coercions between more complex types. The r ole of coer-
cions is not central to this p aper, so we r efer the reader to related
work for more details on motivation and uses of coercions [29, 33],
or the foundations of type equalities in type theory [16].

This abstract syntax of FC↑ makes no mention of the quote-
marks of §2.2 because the quotes are required only t o resolve
ambiguity in the concrete syntax of Haskell. As a convention, we
use overline notation to stand for a list of syntactic elements, such
as the branches of a case expression p → u . Multi-substitution,
sausc hth aesb τra [σnc/hae]s , o isf foa nlc ya sweel el-xdperfeinsseido nwp he→ n t uhe. l Misutsl hti-asvueb tshtiet ustaiomne,

length.
e, u ::= Expressions

| x Variables
|| xλx: τ. e | e1 e2 Abstraction/application
|| Λλxa:: τκ.. ee || e τ Type abstraction/application

|||| KλeΛc:κ Xτ..ee| e γ DKKCaiionnteddarc aa cibpoopsnnlts iartcabraucsttctiirotoaonrncstion/application
|| cKase e of p →u Case analysis
|| ec a.s γ Casting

p ::= Patterns

| K Yb :κc :σx :τ Datac onstructorp attern

q ::= Term-level names
| x Term variables
|| Kx Data constructors
|| cK Coercion variables and axioms

w ::= Type-level names
| a Type variables
|| Ha Type constants
|| FH Type functions

bnd ::= q: τ | w: κ | |X :? Bindings

Γ ::= ∅ | Γ, bnd Contexts

Figure 1. Syntax of expressions and contexts

System FC has three forms of abstraction, over expressions
λx: τ. e, types Λa: κ. e, and coercions λc: τ. e. F igure 1 shows
that System FC↑ adds a fourth abstraction form, ΛX. e, to abstract
over kinds. Correspondingly, tbhset term language o.fe FC↑ i nacblsutrdacets
four forms of application, for expressions, coercions, types, and
kinds. In order to make sure that all subtleties of the semantics are
clearly exposed, we choose not to merge the four abstraction forms
into one (and similarly applications), as is customary in pure type
systems [2]; they are, however, combined in our implementation.

Γ‘ tme :τ

Γ‘ tmeΓ: τ‘ t1meΓ. ‘ cγ o: γτ : 2τ 1∼τ 2 TC AST

ΓΓ ‘,tm XΛ:?X. ‘etm: e∀ : Xτ .τ TK ABS

Γ‘ tmΓe‘ tm: e∀ Xκ. :ττ [Γκ/ X‘k]κ:? TK APP

Γ ‘tm e : T κ σ
fΓor‘ each

Kj:∀X.∀a:κj.∀Yj.∀bj:ηj.ψj→ ϕj→ (TX a) ∈ Γ0
ηj0=η j[κ/X]
ψ0j=ψ j?κ/X?[σ/a]

ϕΓj0,X=j:ϕ ?j,?bκj:/ηXj,?c[σj:/ψaj0],xj:ϕj0‘tmuj:τ TC ASE
Γ ‘tm case e of Kj Yjbj:η0jcj:ψj0xj:ϕj0 → uj : τ

Figure 2. T yping r ules (selected)
Expression t yping The typing j udgement for terms is syntax-
directed and largely conventional; Figure 2 gives the typing r ules
for some of the n ovel syntactic forms. Explicit type coercions of
the form e .γ are used to cast the type of an expression e from
τ1 to τ2, given γ, a proof that the two types are equal. Note that
although t hese coercions are explicit in the intermediate language,
they h ave no runtime significance and are erased b y GHC in a later
compilation stage.

Rule TC ASE is used to typecheck pattern matching expressions
and will be discussed in more detail in §3.2, where we address
datatypes.

ι ::= Base kinds

| ? Star

| Constraint Constraintk ind

κ, η ::= Kinds

| X Kind variables
|| ι Base kinds
|| κ1 → κ2 Arrow k inds

||T∀X κ.κ KPriondmpo toeldy tmypoerp hciosnmstant
Figure 3. Syntax of kinds

H ::= Type constants
| T Datatypes
|| T(→) Arrow
|| ((→∼)) Equality

σ, τ, ϕ, ψ ::= Types
| a Variables
|| Ha Constants
|| FH Type functions

| K Promotedd atac onstructors
|| ∀ a: κ. τ Polymorphic types

| ∀X.τ Kind-polymorphic types
|| τ1 τ2 Type application
|| ττ κ Kind application

γ, δ ::= Coercions
| c κ γ Variables and Axioms
|| hcτκ i Reflexivity
|| sym γ Symmetry

|| γ1 m# γ2 Transitivity
|| γ ∀ a:# κγ. γ Type polytype cong

| ∀X#γ .γ Kindp olytypec ong
| γ1 γ2 Type app cong

|| γγ[τκ] TKyinpdea inpsptac notinagtion
| γ[κ] Kindi nstantiation

| nthi γ Nth argument p rojection

Figure 4. Syntax of types and coercions

Kinds The syntax of kinds of FC↑ is given in Figure 3. In addi-
tion to the familiar ? and κ1 → κ2 kinds, the syntax introduces
kind variables X and p olymor→phicκ kinds ∀ X. κ. The kind well-
fkoirnmdev danreiasbs reusle Xs a aren dgp ivoelny mino rFpihguicrek 5i.n dKsin ∀dXs a.κre. .uT nhi-etyk pinedd iwn tehlle-
sense that there exists only one sort of kinds: ?. Two more notable
syntactic forms of kinds are includedi nF C↑:

• Applications of promoted datatypes (§2), of the form T κ . We
discuss the details of this mechanism in §3.3.

Γ‘ kκ: ? Kindv alidity
ΓX ‘:?kX∈ : Γ ? KV VAR

Γ‘ kι: ? KV BASE
Γ‘ kΓκ ‘1k:κ? 1→Γκ ‘ 2k:κ? 2:? KV ARR

ΓΓ, X ‘k:∀?X ‘.kκκ::? ? KV ABS

Γ ‘k κ1 : ? .. Γ ‘k κn : ?

∅‘ tyTΓ :‘ ?k nT→κ :? ? KV LIFT

Γ‘ tyτ :κ Kinding
‘Γ Γ ‘tyww:κ: ∈κ Γ KV AR

‘ ΓK:Γτ‘ t ∈yKΓ : ∅κ ‘ τ κ KL IFT

Γ ‘kκΓ: ‘t? y∀Γa,:a κ:.κτ : ‘tyι τ: ι KA BS

Γ‘ tyτ1:Γ κ 1‘ty→τ1κ τ22:Γκ 2‘ tyτ2:κ 1 KA PP

ΓΓ, X‘ ty:?∀X ‘t.yττ: : ι ι KK ABS

Γ‘ tyΓτ ‘ty: τ ∀κ X1.κ: κ[Γκ1 ‘/kXκ]1:? KK APP

Γ‘ tyΓτ1 ‘ty:τ1ι 1→Γ τ2‘ ty:τ2ι 2:ι 2 KA RRT

Γ ‘ty(∼): ∀ X.X‘Γ→ X → C onstraint KE Q

Figure 5. Formation rules for kinds and types

• Another small extension of System F↑C is a special base k ind
Constraint [4], which classifies types r epresenting evidence,
such as type class dictionaries and type equalities. W hile in
source Haskell such evidence is implicit, the elaboration of
a source program into F↑C constructs explicit evidence terms
whose types h ave kind Constraint. We use the metavariable ι

to refer to an arbitrary base kind (? or Constraint).

The k ind well-formedness r ules in Figure 5 ensure that kinds are
first-order, in the sense that w e do not include any kind operators.
In other words, Maybe b y itself is not a k ind, although Maybe ? is,
and there are no classifiers for kind variables other than ?.

Types The types of FC↑ are given in Figure 4 , and their kind-
ing rules appear in Figure 5. The new constructs include (i) kind-
polymorphic types ∀X. τ, (ii) k ind application τ κ, and (iii) p ro-
pmooltyemd draphtai cct oynpsetsruc∀ tXor.sτ. ,K(iini)d-k ipnodlyma pporlpichaitci ntypτ esκ ,ca lansdsi(fiyii)kp inrod--
abstractions in the expression language. The syntax τ κ applies a
type constructor with a polymorphic kind to a kind argument. There
is no explicit k ind abstraction form in the type language for the
same reason that there is n o explicit type abstraction f orm—type
inference in the presence of anonymous abstractions would require
higher-order u nification.

The syntax of constants includes the equality constructor (∼),
whTichh e hs asy nthtaex p ooflc yomnosrtapnhtisc iknicndlu d ∀e Xst .h Xe →qu Xlit y→c o Cnostnruscttraoirn(t∼ ∼b)y,
wrulhiec Khh EaQs. Thhei sp omlyemanosr t phhaitc ek qiunadli∀ tyX Xco.nXstr→ ainX ts w→ ritt eCno nτ1s ∼ra iτn2t a brey

Γ‘ coγ :τ Coerciont yping
c: ∀X. ∀a:η. (τ1 ∼ τ2) ∈ Γ
fco:r∀ eXac.h∀ γi ∈. (γτ,

Γ ‘co γi γ: σi ∼ ϕi

Γ‘ coc κγ : (τ1Γ?‘κ /σ Xi,?ϕ[σi/:a(])ηi∼ [κ(/τX2?]κ)/X?[ϕ/a]) CV ARAX

Γ‘ cΓo‘ htτyiτ: :τ κ ∼ τ CR EFL

Γ‘ cΓo ‘scyoγm γ:τ : 1τ ∼2∼τ 2 τ1 CS YM

Γ ‘coγ1Γ: ‘ cτ1oγ∼1τ 22Γ:‘ τ c1o∼γ2τ 3:τ 2∼τ 3 CT RANS

Γ, a: κ ‘# γτ1 ,τ2 : ι

Γ ‘co∀Γa:,κa .:γκ ‘: co∀ γa:: κτ .τ11∼∼τ ∀ 2a:κ.τ2 CT ABS

Γ, X: ? ‘ τ1 , τ2 : ι

Γ ‘coΓ∀,XX :.?γ ‘: co∀ γX: .ττ 11∼∼∀ τ X2.τ2 CK ABS

Γ ‘ σ1 , σ2 : κ1 → κ2 Γ ‘ τ1 , τ2 : κ1

Γ ‘coγ1Γ ‘:coσ γ11∼γ2σ 2:σ 1Γτ‘ 1co∼γ2σ 2:τ2τ 1∼τ 2 CA PP

Γ ‘ τ1 , τ2 : ∀ X. κ0

Γ ‘cΓoγ ‘co :γ τ κ1∼: τ τ 12κ Γ∼ τ‘ k2κκ:? CK APP

Γ‘ coγΓ : ‘co ∀aγ:[σκ].τ: 1τ ∼1[σ∀ /aa:]κ∼ .τ2τ 2[σΓ/‘ aty]σ: κ CT INST

Γ ‘cΓo γ‘co :γ ∀[κX].: τ1τ 1∼[κ/∀ XX].∼ τ2 τ2[Γκ/‘ kXκ]:? CK INST

ΓΓ ‘c‘ ocoγn :thH jγκ τ : ∼τ jH ∼κ τ jτ0 0 CN TH

Figure 6. Formation rules for coercions

actually formed from the application of the constant (∼) to a kind
aanctdu tawlloy tfyorpem eadrguf rmoment ths eoaf pthplatic kaitinodn. I onf F thCe, ct hoisn setaqunat(l it∼y)cot onsa t krainindt
was a special form, but the addition of polymorphic kinds means
that it can be i nternalized and treated j ust like any other type
constructor. To keep the syntactic overhead low, we continue to use
the notation τ1 ∼ τ2 to stand for the application (∼) κ τ1 τ2 when
the kind is unim∼poτr tantot ostra cnldea fro rfrt ohme tahpep cliconattieoxnt.

Another minor p oint is the use of ι to classify the b ase kinds
in rules KA BS and KK ABS (Figure 5). A conventional system
would require that a t ype ∀a.τ has kind ?, but in our system it
cwaonu hldav ree qeuiithreert hk aitnda a?t opre eC∀ oan.τstr ahianstk, binedca? u,se b ub to tihn o cluarsss ifyys teympe ist
inhabited by values.

Coercions Coercions, also shown in Figure 4 , are “proofs” that
provide explicit evidence of the equality between types. The j udge-
ment Γ ‘co γ : τ1 ∼ τ2 expresses the fact that the coercion γ is
am epnrotoΓ f o‘f equality b e∼twτ een the t ypes τ1 and τ2. If such a deriva-
tion is possible, it i s an invariant of the relation that τ1 and τ2 have
the same kind, and that k ind instantiates the (∼) constructor in the
tchoencs alumsieonk i nofd ,tha en dr e tlhaattio kni.n

The coercion forms are best understood by looking at their for-
mation rules, shown in Figure 6. Coercion variables and uses of
primitive axioms are typed by r ule CV ARAX. Recall that primi-
tive coercion axioms may be kind-polymorphic since type family
instance declarations in source Haskell may be kind-polymorphic,
such as the last Shape instance from §2.7. W hen such axioms are

‘Γ Contextw ell-formedness

‘∅ GWFE MPTY

‘‘Γ Γ,X X:# ? Γ GWFS ORT

‘Γ Γ‘‘ kΓ κ,a ::? κa# Γ GWFT YVAR

‘Γ Γ‘‘ kΓ κ,F :? :κF# Γ GWFT YFUN

κ = ∀ X.κ → ?

‘Γ Γ‘‘ kΓ κ,T :? :κT# Γ GWFT YDATA

‘Γ Γ‘ ‘tyΓ τ,x : :κ τx #Γ GWFV AR

τ = ∀X. ∀a:κ. ∀Y. ∀b:η. (σ → (T X a))

‘Γ Γ ‘tyτ :‘?Γ ,KK :# τΓ GWFC ON

τ = ∀X. ∀a:κ. (τ1 ∼ τ2)

‘Γ Γ ‘tyτ‘: Γ C ,oc n:sτtraintc# Γ GWFA X

Figure 7. Context formation r ules

used, they must be applied to kind and coercion arguments. In this
rule and elsewhere, the notation Γ ‘ σ, ϕ : κ ensures that both
rtuylpeesa nσd dae ndls ϕ hhearvee, ,tt hhee san omtae ikoinndΓ Γin‘ ‘thσe ,sϕam :e context.

Coercions include rules for reflexivity, symmetry, transitiv-
ity and congruence (rules CT ABS through CK APP). Coercions

can be destructed, through instantiation (C TINST and CK INST)
as well as b y appealing to the injectivity of type constructors
(C NTH). Notice that in r ule CN TH the kinds of the two appli-
cations are required to be the same—this syntactically ensures that
coercions are always between types of exactly the same k ind.

Contexts System FC↑ allows top-level definitions for datatypes T,
type functions F, and equality axioms c. Rather than give concrete
syntax for declarations of these three constants, we instead give
formation r ules for the initial context in which terms are type-
checked, shown in Figure 7. The notation x # Γ indicates that x is
fresh for Γ.

Operational s emantics Selected rules of the operational seman-
tics of F↑C appear in Figure 8, including the β-reduction r ules for
abstraction forms and for case expressions. The operational seman-
tics includes crucial “push” r ules, inherited from FC, which make
sure that coercions do not interfere with evaluation. For example,
rule SP USH illustrates a situation where a coercion may interfere
with a β-reduction. In t hat case γ must be a coercion between two
function types, (τ1 → τ2) ∼ (σ1 → σ2). The rule decomposes γ

into two simpler co→erciτo n)s a∼n(d σrew→rite σs the term to expose oppor-
tunities for r eduction.

3.2 Kind polymorphism and datatypes

We allow datatype definitions to have polymorphic kinds. However,
rule GWFT YDATA requires all type constants t o h ave p renex kind
quantification, 4

T:∀X.κ → ?.

4Weu set hen otation∀ X.τa sa na bbreviation for∀ X1.∀X2. ...τ. Like-

wWisee, u κs e→t h ?e naobbtarteiovina∀t esX κ1 → as κ2 →bb . . . →tio ?n.

e −→e 0 One-stepr eduction

(λx:τ.e)e0−→[e0/x]e SB ETA

(λc:τ.e)γ− →[γ/c]e SC BETA

(Λa:κ.e)τ− →[τ/a]e ST BETA

(ΛX.e)κ− →[κ/X]e SK BETA

KiY b:ηc :ψx :ϕ→ u i∈p → u SC ASE

case Ki κ σ κ0 τ γ e ohf p →iu h −→

ui[e/x][γ/c] hτ/bi hκ0/Yi

(v .γ)e− →(v (e. s ym(nth1γ))). n th2γ SP USH

(v. γ)τ− →v τ . γ [τ] ST PUSH

(v. γ)κ− →v κ . γ [κ] SK PUSH
∅ ‘co γ0 : T κ σ1 ∼ T κ σ 2
K∅:‘ ‘∀X. ∀a:κ. ∀Y. ∀b∼:ηT . (ψ κ 1σ∼ψ 2 → ϕ → (T X a)) ∈ Γ

ψ01=ψ 1hτ/bihκ0/Yi?κ/X?
ψϕ200== ϕψ h2τh/τb/ibihκhκ0/0Y/iY?iκ?/κX/X??
for each hγj ∈ i γh,

γj0 = sym ([a→7nthγ 0]ψ1 j) # γj # [a→7nthγ 0]ψ2j

for eac=h ej ∈ e ,

e0j=e j.[a→7nthγ 0]ϕj0 SC PUSH
case(Kκ σ 1κ0τγ e). γ 0ofp → u − →

case K κ σ2κ0 τ γo0 fep0 o →f p →u

(v. γ 1). γ 2−→v . (γ1#γ 2) SC OMB
#γ

Figure 8. Operational semantics# oγf FC↑ (selected r ules)

In other words, type constants must take all of their kind arguments
before any of their type arguments. This restriction simplifies their
semantics. For example, because type constants are injective, equa-
tions between them may b e decomposed into equations between
their type arguments, as in the r ule CN TH. By not allowing kind
and type arguments to mix, we can write this r ule succinctly.

Data constructors for kind-polymorphic datatypes must t hem-
selves be kind polymorphic (the alternative would be to allow kind
equalities, j ust as type equalities are currently allowed for GADTs,
but we do not: see §3.4). Rule GWFC ON requires data construc-
tors to have types of the following form:

K: ∀X. ∀a:κ. ∀Y. ∀b:η. ϕ → (T X a)

Data constructors can be p olymorphic over kinds and types, all
of which must show up as parameters to the datatypes that they
construct. Furthermore, data constructors can take additional kind
and type arguments that do not appear in the r esult type, as well
as term arguments whose types may include constraints on any of
the quantified type variables. As a result, data constructor values
carry six lists of arguments. (Above, ϕ includes b oth the types of

the coercion and expression arguments.)
The treatment of these six arguments shows up in the formation

rule for case expressions (T CASE, from Figure 2), and the two
reduction rules for case expressions (S CASE and SC PUSH, from
Figure 8). T hese rules were already quite involved in System FC—
adding kind p olymorphism is a straightforward modification.

The rule TC ASE typechecks a case expression. In this rule, the
lists κ and σ are the kind and type parameters to somed atatype
T. These arguments replace the k ind and type variables X and a ,

Twh.e Trehveesre tahreguy appear eipnl atchee tchaesek ienxdpa rnesdsit oynp.e T vhaer raubllee stX hena tnydp ea-,
checks each b ranch of the case expression in a context extended
with the “existential” k ind and type variables, as well as the coer-
cion assumptions and constructor arguments of that branch.

The rule SC ASE describes the normal r eduction of a case ex-
pression. If the scrutinee is a data constructor value, the appropri-
ate branch is selected, after substitution of the last four arguments
carried b y the data constructor value—the “existential” k inds and
types, coercions, and expression arguments.

If there is a coercion around the data constructor value, r ule
SC PUSH pushes the coercion into the arguments of the data con-
structor. Again, the complexity of the semantics of this r ule is in-
herited from System FC. The coercion γ 0 and expression arguments

eera atreio nea [cah→7t ranntshfo γr]mτe.dT bhyist yo ppeersa“ tiloifnter de”plt aocc eosee raccihont ys,pu esv inagrit ahbeleo pa -i
earpaptieoanrin[ag→7 →inn tthhe type Tτh iwsi otph ar ctoioenrcr ieopnl ncteshei γ. Wt yep edv isacruiasbsl etha is
operation in more detail in §4. For more on the operation of this
rule, we refer readers to previous work [29, 33].

3.3 Promotion

We allow the “promotion” of certain type c onstructors i nto k inds,
and the p romotion of certain data constructors to become types. But

exactly which type and data constructors are promoted, and what
kinds do the promoted data constructors have? The answers may
be found in Figure 5:

• Type constructors. Rule KV LIFT states that T κ is a valid k ind
only if T is a fully applied type constructor of k ind ?n → ? .

• Data constructors. Rule KL IFT states that a data constructor
K may b e treated as a type if K’s type τ can b e promoted
to a kind κ, via the j udgement ∅ ‘ τ κ, whose rules
taore agk ivinedn κ in, F viigautr hee e9j .u Tdgheem leatntter∅ ∅j u‘ dgeτ me nt mκe,r ewlyh sr eepl raucleess
type p olymorphism in τ with k ind p olymorphism in κ, and
checks that type constructors mentioned in τ can themselves
be p romoted.

The r ule for promoting type constructors is deliberately r estrictive.
There are many Haskell t ype constructors that do not have kinds of
the form ?n → ?.

• We do not promote higher-order types of kind, say, (? → ?) →
?W. eIfd owne odti dp osom, owtee hwigouhledr- onerdeedr t ay pricesho erf kcliansdsi,f sicaayt,i(o?n →of k ?i)n →ds
to ensure that such promoted h igher-order types were applied
to appropriate arguments.

• We do not promote a type whose kind itself involves promoted
types, such as Vec : ? → Nat → ?. If we did so, the second
tayrgpuems,e sunct htoa VsV ece cw o:u? ld→ →haN vea tto→ →b e? a. fkiw nde cdlidasss oif,iet dh e bs ye cNoantd.
In order to make this possible we would either have t o allow
“double p romotion” (such as p romoting a natural number value
all the way to the k ind level), or make the type and kind levels
fully dependent. Either approach would complicate matters, so
we rule them out for now.

• We do not promote type constructors with p olymorphic k inds.
If we did, we would need a system of polymorphic sorts to

accommodate the promoted kinds. At present, this seems like
extra complication for little benefit.

The guiding p rinciple here is that kinds are not classified, or, to
put it another way, there is only one sort ? in the kind validity
judgement Γ ‘k κ : ?.

Θ‘ τ κ Typel ifting
aΘ →7‘ Xa ∈XΘ LV AR

ΘΘ‘ ‘ τ1τ 1 →κ1τ 2 Θ‘ κ1τ 2→ κ 2κ2 LA RR

ΘΘ ‘,a∀ a →7:? X. τ‘ τ ∀ Xκ.κ LA BS

∅ ‘tyT :Θ? n‘ →T τ? ΘT‘ κ τ i κin LA PP

Figure 9. Type to kind translation

3.4 Design principle: no kind equalities!

There is one other major restriction on promoted types: we do not
promote GADTs. This limitation derives from an important design
principleo fF ↑C: we don ota llow equalityc onstraints between kinds,
nor kind coercions. Since GADT data constructors take coercions
between types as arguments, their p romotions would necessarily
require coercions between kinds. Disallowing kind equality con-
straints and coercions means that α-equivalence is the only mean-
ingful equivalence for kinds, which dramatically simplifies the sys-

tem.
The difficulty with kind constraints lies with type equivalence.

In FC↑, all nontrivial type conversions must be made explicit in the
code, through the use of coercions. Coercions simplify the metathe-
ory of the FC language, b y rendering type checking trivially decid-
able and separating the type soundness proof from the consistency
of the type equational theory. In the j argon of dependent type the-
ory, FC has a trivial definitional equality (types are equal only when
α-equivalent) and an expressive p ropositional equality (coercions
are p roofs of a much coarser equality between types.)

The presence of nontrivial kind equivalences muddies the def-
inition of propositional equality between types. W e would need to
generalize the coercion j udgement to mention two types as well as
their kinds. But what should the interpretation of this j udgement
be? That the types and their kinds are equal? Should we be able to
extract a p roof of kind equality from a proof of type equality? Such
a system would lead to bloated proofs and many additional rules.

We plan to address these issues in future work, using ideas
from Observational Type Theory [1]. But even if we are able to
design a sensible core language, there is still the issue of the
complexity of the source language. Heterogeneous equality in Coq
and Agda is notoriously difficult for users to understand and use. By
only allowing one-level indexing, we have defined a simple, well-
behaved language for users to get started with dependently-typed
programming.

4. Metatheory

We now turn to the formal properties of FC↑, and u ltimately show
that the system enjoys subject reduction and progress under some
consistency requirements about the initial environment. W e begin
with some scaffolding lemmas.

Lemma 4.1 (Kind substitution).

1. If‘ Γ1 , (X: ?), Γ2 and Γ1 ‘k κ : ? then ‘ Γ1 , Γ2 [κ/X].

2. τIf[κΓ01/,X(X]: :?)κ,.Γ2‘tyτ : κa‘ndκΓ:1? ‘k thκen0:‘ ? Γ thenΓ[1κ,/ΓX2[]κ.0/X]‘ ty
3. IfΓ 1 ,(X: ?), Γ2 ‘k η : ? and Γ1 ‘k κ : ? then Γ1 , Γ2[κ/X] ‘k

η[κ/,X(X] X: :??.
The lemmas above are p roved simultaneously b y induction on

the h eight of the derivation. In each case, the induction hypothesis
asserts that all lemmas hold for derivations of smaller height. They
have to b e proved simultaneously, as each of the three j udgements
appeals to the other two.

Lemma 4.2 (Type substitution).

1. If‘ Γ1 , (a: η), Γ2 and Γ1 ‘ty τ : η then ‘ Γ1 ,Γ2 [τ/a].

2. Iσf[τΓ/1a,(]a ::η κ).,Γ2‘tyσ :κ andΓ1‘tyτ :η t henΓ1,Γ2[τ/a]‘ ty
3. IfΓ 1 , (a: η), Γ2 ‘k κ : ? and Γ1 ‘ty τ : η then Γ1 ,Γ2 [τ/a] ‘k

κ : ?.

With these two lemmas, we can p rove that the derived coercions
of our system are homogeneous.

Lemma 4.3 (Coercion homogeneity). I f Γ ‘co γ : τ1 ∼ τ2 then
ΓL ‘m τm1 ,τ42 3: Cκo feorrc sioonmeh o kimnodg κe.n

As a corollary, if Γ ‘co γ : τ1 ∼ τ2 then Γ ‘ty τ1 ∼

τ2 :A sC ao ncosrtroallianrty, ,si ifncΓ e t h‘e two types hav∼e t hτe stahemne kΓin‘ d and th∼e
application of the (∼) constructor is possible b y rule KE Q.

lMicoarteioonveo rf, ct hoeer(c∼io)nc odenrsivtruatciotonrs s(lp ikoes styibplee abnydr uk liendK KdE erivations)
are preserved by type and k ind substitution.

Lemma 4.4 (Kind substitution in coercions). IfΓ 1 , (X: ?) , Γ2 ‘co
γ : τ1 ∼ τ2 and Γ1 ‘k κ : ? then Γ1 , Γ2 [κ/X] (‘cXo :γ?[)κ,/ΓX] :

τ1[κ/X] ∼∼ τ τ2[κ/X].

Lemma 4.5 (Type substitution in coercions). I f Γ1 , (a: η) , Γ2 ‘co

γτ1[τ:/aτ]1∼ ∼ τ2 τ[2τ/aand].Γ 1 ‘tyτ :η t henΓ 1,Γ2[τ/a] ‘coγ[τ/a] :
We may also substitute coercions inside other coercions:

Lemma 4.6 (Coercion substitution in coercion).

1. IfΓ 1 , (c: τ1 ∼ τ2), Γ2 ‘co γ : σ1 ∼ σ2 and Γ1 ‘co γ0 : τ1 ∼

τ2 then Γ1 ,Γ∼2 [γτ 0/c] ‘co‘ γ[γ0/c] : ∼σσ1 ∼ σ2.
2. I f ‘ Γ1 , (c: τ1 ∼ τ2), Γ2 and Γ1 ‘co ∼γσ0 : τ1 ∼ τ2 then

I‘f Γ‘1, Γ ΓΓ2[γ0/c].
3. IfΓ 1 , (c: τ1 ∼ τ2) , Γ2 ‘ty τ : κ and Γ1 ‘co γ0 : τ1 ∼ τ2 then

Γ1 , Γ2 [γ0/c]∼ ∼‘tτy τ : κ.‘

4. IfΓ 1 , (c: τ1 ∼ τ2), Γ2 ‘k κ : ? and Γ1 , Γ2 [γ0/c] ‘k κ : ?.

4.1 Subject reduction

To show subject reduction, we first prove a substitution theorem for
terms.

Theorem 4.7 (Substitution).

1. I f Γ1, (X: ?), Γ2 ‘tm e : τ and Γ1 ‘k κ : ? then
Γ1 , Γ2, [(κX/:X?] ‘,tmΓ e[κ‘/X] : τ[κ/X].

2. I f Γ1 , (a: η), Γ‘2 ‘[tκm/ e : τ a]n.d Γ1 ‘ty σ : η then
Γ1 , Γ2 [σ/a] ‘tm e [‘σ/a] : τ[σ/a].

3. IfΓ 1 , (c: σ1 ∼ σ2), Γ2 ‘tm e : τ and Γ1 ‘co γ : σ1 ∼ σ2
then Γ1 , Γ2 [γ∼/cσ] ‘tm e [γ‘/c] : τ.

We also need a substitution lemma for terms:

Lemma 4.8 (Expression substitution). IfΓ 1 , (x: σ) , Γ2 ‘tm e : τ

and Γ1 ‘tm u : σ then Γ1 , Γ2 ‘tm e [u/x] : τ.

Finally, the crux of subject r eduction is the so-called lifting
lemma, which also has the same key role for proving subject r educ-
tion in previous work on FC. Recall the lifting operation from §3.2,
denoted [a7→γ]τ. Lifting provides a way to convert a type to a coer-
cdieonno bt eyd s[aub→7stγit]uτti.nL gi fittisn gfrp eer otyvipdee sv aariw aabylet os wc oitnhv cerote arct iyopnest ob e atwc oeeern-
types of the appropriate kind. Its formal definition is straightfor-
ward.
Lemma 4.9 (Lifting). IfΓ , (a: κ) ‘ty τ : η and Γ ‘co γ : τ1 ∼

Lτ2e wmimtha aΓ4 .‘9 (τL1 ,τfti2 :g κ. Ithf eΓn, (Γa :‘cκo)[a ‘→7τγ]τ: η: aτn[dτ1Γ Γ/a‘] ∼ τ[τ2/a]∼.

With all the scaffolding in place, we can show that evaluation
preserves types.

Theorem 4 .10 (Subject r eduction). Let Γ0 be the initial environ-
ment that does not contain any term, type, or k ind variable bindings
(we will refer to this as the top-level environment in w hatf ollows).
The f ollowing is true: if Γ0 ‘tm e1 : τ and e1 −→ e2 then
Γ0 ‘tm e2 : τ.

4.2 Progress

Despite the tedious scaffolding lemmas, subject reduction is not
hard conceptually, since each evaluation rule constructs prooft erms
which justify the typeability of the reduct.

Progress, on the other hand, is more interesting: the formal op-
erational semantics of FC↑ involves coercions and pushing coercions
in terms, and we must make sure that these coercions do not stand in
the way of ordinary β-reductions. If coercions could prevent some
reductions, that would contradict our claim that coercions can b e
safely and entirely erased at runtime. The coercion erasure of a
“safe” stuck F↑C term could lead to a crashing program.

Intuitively, for progress to hold we must impose the r estriction
that if a coercion coerces the type of a value to another value type

then the two value types have the same runtime representation. We
formalize this condition below.

Definition 4 .11 (Value type). A type τ is a value type in an envi-
ronment Γ if Γ ‘ty τ : ι and moreover it is of the form H κ σ , or
r∀o na:m κe.n σt, Γoi rf f∀Γ ΓX‘ . σ.

To prevent unsound type equalities, the initial environment con-
taining axioms and datatypes (but no term, type, and coercion vari-
ables) should be consistent, a notion that we directly adapt from
previous work on FC [29, 33].

Definition 4.12 (Consistency). A context Γ is consistent iff

• IfΓ ‘co γ : Hκ σ ∼ τ, and τ is a value type, then τ = Hκ ϕ.
• If ΓΓ ‘coγ γ : (∀ a: κ. σ) ∼ τ, avnaldu τ yisp a tvhaelnueτ type, tκheϕn.

Iτf =Γ ∀ ‘ a: κ. ϕ.

• If =Γ ∀‘aco: γ : (∀ X. σ) ∼ τ, and τ is a value type, then
Iτf =Γ Γ∀ ‘ X. ϕ.

Under the assumption of consistency for the top-level defini-
tions we can state and prove p rogress.

Theorem 4 .13 (Progress). IfΓ 0 ‘tm e : τ and Γ0 is a top-level
consistent environment, then eithe‘r e is a value possibly wrapped
in casts, or e −→ e0for s ome e0.

As defined above, consistency is a property not only of the
initial environment but also of the coercion formationj udgement. It
is therefore not easy to check. For this reason, previous work [33]
gives sufficient conditions exclusively on the top-level environment
which guarantee consistency (for a similar but simpler coercion
language). These conditions can b e adapted in a straightforward
way here—the only interesting bit is that type family axioms now
involve type and kind arguments and b oth forms of arguments have

to be taken into account when checking the overlap ofthese axioms.
We finally r emark that unsound equalities such as Int∼Bool

canW Wbee fdienrailvleydr ebmy rtekrm thsa, tsu inncseo Inntd∼ eBqouaolil i ise s jus sutc ha taysp eIn, ∼soB oonoel

may bweo nddereirv ehdow b ytyt eperm mssa,fes tiyn ccean I npto∼ssBiboloyl hi soljd u. tF oa r itnypstea,ns coe, otnhee
following is valid FC↑ code:

f :: (Int∼Bool)
ff :=: (I⊥n

Fortunately, such terms do not p ose any danger t o type safety,
because the syntax prevents us from injecting ordinary terms into
the universe of coercions and using them to erroneously cast the
types of other expressions.

5. Surface language and elaboration

When extending Haskell’s surface syntax to expose the new fea-
tures to users, we found two major issues that needed to b e ad-
dressed. First, a new mechanism for namespace resolution was
needed; second, we had to decide when and to what degree kind
generalization should b e p erformed.

5.1 Namespace resolution

As we saw in §2.2, type and data constructors h ave separate names-
paces, so that type constructors and data constructors can be given
the same name. This practice is common in Haskell programs, start-
ing with Prelude declarations such as (,) and [] . However, when
data constructors can appear in types, it is no longer clear what
namespace should b e used to resolve type constants. SHE explored
one solution to this problem: it requires all promoted data construc-
tors and kinds to b e surrounded by curly braces.

data Vec ::? → {Nat } → ? where

VtNai lV c::: :V ?e→c →a {{N NZa a}t
VCons :::: aV →c aV{ ecZ a} {n} → Vec a {S n}

Note that curly b races can surround type expressions, not j ust
data constructors, as in {S n} above. Such notation is useful for
edaxtparec sosinosntrsu cwtoitrhs ma suli tnip {lyS lin f}teda bcoovme.pS onuechntn s. tHaotiwoenv iseru , isenf uSlH foEr,
type variables with promoted kinds must also be lifted, meaning
that SHE is based on lifting values r ather than j ust constructors.

In contrast, we separate the issue of namespace resolution from
that of semantics b y adopting the single quote mechanism. Each
(ambiguous) data constructor must be marked. We find that this
notation is easier to specify, as the treatment of t ype variables is
completely standard. Furthermore, because quotes can often be
omitted, it is also visually lighter.

5.2 Kind generalization

The second issue that we needed to address in the source language
extension was the specification of where kind generalization should
occur, and how it should interact with type and kind annotations and
lexically scoped type (and now kind) variables.

In general, our extension tries to be consistent with the existing
treatment of type p olymorphism. Kind variables are generalized
at the same places that type variables are, and k ind variables can
be brought into scope using annotations j ust like type variables.
Furthermore, kind variables that appear in type argument signatures
are quantified. For example, the declaration of T below is valid, and
the kind of T i s inferred to be ∀X. (X → ?) → X → ?.

data T (a :: X → ?) b = K (a b)

In the same way, kind polymorphism can be explicitly specified
in class declarations. For example, the definition of IFunctor in
§2.6 is accepted j ust as it appears there, but the programmer may

also write this more explicit definition:

class IFunctor (f :: (X1 → ?) → X2 → ?) where
aimssaI pF :u u: n∀ c(tso,r rt(:f: :X: 1(X→ →?) . ?()s →:→X t) →→ ?(f) ws h:→er fe t)

The first line brings the kind variables X1 and X2 into scope, along
wThiteh fitrhest tyl ipnee vbrairnigabsl eth ef ; kainll dav rea rthiaebnl mese XntioanneddX Xin the type of imap.

6. Implementation

We have a p reliminary implementation of our system ready for
release with GHC version 7.4. This initial release includes a solid
implementation of FC↑ in the Core language; the source-language
features, and the kind inference that supports them, mostly work but
are less fully tested. The changes required to the compiler, although
widespread, were surprisingly modest. We briefly summarize them
here. To understand this explanation it may help to r ecall that
GHC’s type i nference engine elaborates input terms b y filling in
implicit type and kind abstractions and applications, so t hat the
terms can subsequently b e desugared i nto F ↑C.
6.1 The Core language

We extended GHC’s Core language to support kind p olymorphism,
which was mostly straightforward. The only awkward point was
that we often abstract a term over a set of type variables whose
order used to b e immaterial. Now we need to abstract over type
and kind variables, and we must ensure that the kind variables come
first, because they may appear in the kinds of the type variables.

6.2 Type inference for t erms

The type inference engine needed to be extended in two main ways:

• When instantiating the type ofa kind-polymorphic function, say

f :: ∀ X. ∀ a: X. τ we must instantiate a fresh unification k ind
vfar :i:a∀ bXle .fo∀r aX:X, a.nτd wa efrm eshus tu ninisfitcaantitoiante etya pf er evsahriau bnilefi cfoatri oan, kwinithd
avanr iapabplreof poriraX te ,ka inndd.

• When unifying a type variable with a t ype we m ust unify its
kind with the kind of the type.

All kind unifications are solved on the fly b y the usual side-
effecting unification algorithm, and do not generate evidence. I n
contrast, type equalities are often gathered as constraints to b e
solved later, and are witnessed by evidence in the form of coercion
terms [26]. Not having to do this step for kind equalities rests on
the design principle discussed in §3.4.

6.3 Kind inference for types

GHC allows the u ser to write type signatures, such as

f :: Typeable a ⇒ [Proxy a] → TypeRep

When elaborating this t ype signature, the inference engine p er-
forms k ind generalization of the type, yielding the FC↑ type

f : ∀X. ∀ a : X. Typeable X a → [Proxy X a] → TypeRep

Type declarations themselves are a little more complex. Consider

data T f a = MkT (S a f) | TL (f a)
ddaattaa ST bf g == MMkkST ((TS g fb))

These two mutually recursive definitions must b e k ind checked
together. Indeed the situation is precisely analogous to the well-
studied problem of type inference for mutually r ecursive term def-
initions.

• We sort the type declarations into strongly connected compo-
nents, and kind check them in dependency order.

• A type constructor can b e used only monomorphically within
its mutually recursive group.

• Type inference assigns each type constructor a k ind variable,
then walks over the definitions, generating and solving k ind
constraints.

• Finally, the k ind of each constructor in the group is generalized.

Class declarations are handled in the same way. There is nothing
new here—it all works in p recisely the same way as for terms—so
we omit a precise account.

7. Related work

Promoting d ata t ypes The starting point for this work has b een
Conor McBride’s Strathclyde Haskell Enhancement preproces-
sor [19], which, among other features, allows users to promote
datatypes to be u sed i n the type language. Throughout this paper,
we have already discussed several points of both similarity and
difference between our work and SHE.

The language extensions we describe h ere are most closely
related to the LX calculus [6] and the Ωmega language [27, 28].
These languages also allow the definition of datakinds and type-
level functions over datatypes. Like b oth of these systems, GHC
maintains a p hase separation: terms can depend on types, but not
vice versa. In terms of expressiveness, FC↑ is very similar to LX:
FC↑ includes k ind polymorphism and does not require t ermination
proofs for t ype-level computation, but lacks anonymous functions
at the type-level. However, FC↑ is less expressive than Ωmega, which
allows GADT p rogramming at the type level. Because datakinds
may be indexed, Ωmega also allows the definition of d atatypes in
the k ind language. In fact, Ωmega has a hierarchy of levels (types,
kinds, superkinds, etc.) where each level includes datatypes that can

be indexed by elements from any of the h igher levels. All datatype
definitions are “level-polymorphic”, meaning that they can be used
at any level. On the other hand, Ωmega does not compile to an
explicitly t yped language with evidence terms, and L X does not
include explicit evidence for type equalities. This m akes it h arder
in those languages to reason about type safety, robustness under
transformations, and the soundness of type and kind inference. In
FC↑ many of the restrictions in our design (such as no evidence-
based kind-equalities) are motivated by our desire to k eep the
explicitly typed intermediate language simple.

Our extension does not add full-spectrum dependency to Haskell.
It merely makes the p hase distinction less distinct. Full-spectrum
languages actually allow program expressions to invade the type
system, but in the presence of nontermination or other effects, of-
ten limit those expressions to a subset with a trivial definition of
equality. For example, the Aura programming language [12] and
Licata and Harper’s Positive Dependent T ypes [17] only allow de-
pendency on values of positive types (such as datatypes formed
from strict products and sums). Alternatively, the F∗ language [30]
allows dependency for all values, but mandates a trivial definition
of equality for functions. In contrast, promotion is more similar to
the duplication described above. Although Haskell datatypes are
nonstrict, we do not promote values, only the constructors used to
form them.

Agda takes the p romotion idea one step further with its experi-
mental support for universepolymorphism5. InAgda, all definitions
(including datatypes) may b e polymorphic over their level. Func-
tions that work with such datatypes may also be level p olymorphic,
so the same function can b e used both at runtime and for type-level
computation. This extension is much more sophisticated than the
simple form of p romotion that we describe h ere, and its interac-
tions with the r est of the type system are not yet well understood.

Kind p olymorphism Kind polymorphism i s an often r equested
feature for Haskell in its own right. In fact, the Utrecht Haskell
Compiler (UHC)6 [7] already supports kind p olymorphism. I n par-
ticular, unknown k inds of type constructors do not default to k ind
?, but are instead generalized. The p articular motivation for this ad-
dition to UHC seems to b e the ability to define a kind-polymorphic
Leibniz equality datatype:

data Eq a b = Eq (∀f. f a → f b)

However, UHC d oes not compile to a typed intermediate language
like System FC↑.

5 http ://wiki .portal .chalmers .se/agda/agda. .php?n=Main .
UniversePolymorphism
6 http : //www . cs .uu .nl/wiki/UHC

Kind p olymorphism has also b een added to typed intermediate
languages, even when the source language did not include k ind
polymorphism. Trifonov et al. [32] found that the addition of kind
polymorphism to the FLINT/ML compiler allowed it to b e fully
reflexive. In other words, they were able to extend their type-
analyzing operations so that they are applicable to the type of any
runtime value in the language.

More formally, the p roperties of a p olymorphic lambda calculus
with kind polymorphism were studied by Girard [8]. Girard showed
that this calculus can encode a variant of the Burali-Forti paradox
and is thus inappropriate for use as a constructive logic. This p roof
of “Girard’s paradox” is described in detail by Barendregt [2].
Hurkens later simplified t his paradox [11]. It is not clear whether
this result h olds for our system, since we do not directly allow
function abstraction at the type or kind levels. However, even if
it did, it would r esult in a non-normalizing term, which Haskell

already has in abundance.

Kind-indexed t ype families The idea of allowing type functions
to dispatch on kinds is a fairly novel component of t his extension.
Work b y Morrisett et al. on intensional type analysis [9] included
an operator that dispatched on types, but not k inds. Indeed, the
extension of that work b y Trifonov et al. [32] relied on the fact
that kind p olymorphism was p arametric. In System FC, w e h ave
separated the soundness of the language from the decidability of
type checking [33].

Although we do not yet have many motivating examples of
the use of kind-indexed type families, we still believe that they
have great potential. For example, we can use them to define the
polykinded-types [10] found in Generic Haskell. System FC↑ cannot
yet write the p olytypic functions that inhabit such types, but we
plan to further extend the language with such support (see §8.5).

Why not f ull-spectrum d ependent t ypes? One might well ask:
why notj ust use, say, Agda [23] or Coq [3]? W hat benefit is there in
adding dependent type features to Haskell without going all the way
to a full-spectrum dependently typed language? W e see a n umber
of advantages of our evolutionary approach:

• Type inference. Haskell enjoys robust type inference, even for
top-level terms. Adding full dependent types would severely
complicate matters at b est. Promotion, however, requires only
slight enhancements to existing inference mechanisms (§5).

• Phase distinction. Since Haskell types never actually depend
on terms and vice versa, types can be safely erased b efore
runtime. T his is still true for promoted values. Erasure analysis
for full-spectrum languages, on the other h and, i s an active area
of r esearch.

• Explicit, strongly t yped evidence. This allows us to b e cer-

tain that type and kind inference is sound and does not accept
programs that may crash at runtime.

• Simple type checking. System FC, into which GHC desugars
Haskell source code, enjoys a simple, linear-time type checking
algorithm, guided b y the presence of explicit coercion terms.
This remains true for our promoted variant. T ype checking the
core language for a full-spectrum dependently typed intermedi-
ate language, on the other h and, must take into account a more
complex equivalence on types which includes β-equivalence.

• Optimization. T hanks again to the presence of explicit coer-
cion terms, Haskell’s core language can b e aggressively opti-
mized while r emaining statically typed.

• Familiarity. Many p rogrammers are already familiar with
Haskell, and it enjoys a large collection of existing libraries
and tools. Modest, b ackwards-compatible extensions will b e
adopted in ways that major, breaking changes cannot.

8. Future work

One of the main driving forces behind the current design of F↑C has
been simplicity. W e wanted to make sure we have all the details
solidly in place before introducing any complications. T here are,
however, several further directions we would like to explore.

8.1 Promoting functions

If we can promote (some) term-level data constructors to type
constructors, why not promote (some) term-levelf unctions to type-
level functions? We have not done so yet because we already have
a carefully-limited way to define type-level functions, and it seems
awkward to specify exactly which term-level functions should be

promoted. However, the resulting code duplication is irksome, and
there is no difficulty in principle, so we expect to revisit t his topic
in the light of experience.

8.2 Generating singleton t ypes

When using promoted types as indices, one quickly comes to desire
the ability to do case analysis on them. Ofcourse, this is not directly
possible, since types are erased before runtime. A well-known tech-
nique for overcoming this limitation is the use of singleton types,
which allow doing case analysis on value-level representatives in
lieu of types (the survey article on programming in Ωmega [28] of-
fers an excellent introduction t o this technique). We would like t o
avoid this additional source of code duplication by automatically
generating singleton types from datatype declarations.

For instance, consider implementing a function replicate,
which creates a Vec of a certain (statically determined) length.
This can b e accomplished with the help of singleton type SNat:

data SNat :: Nat → ? where
StZae rSoN :a: tS: :NNa ta tZ→e ro
SSucc :: SNat n → SNat (Succ n)

replicate :: SNat n → a → Vec a n
rreepplliiccaattee SSNZaerton →= VVeNcil
replicate (SSucc n) x = VCons x (replicate n x)

Automatically generating singleton types is not h ard [19, 22]. More
interesting would b e the design of convenient surface syntax to
completely hide their use, so users could j ust “pattern match on
types”.

8.3 Promoting primitive datatypes

Another useful extension would b e the p romotion of primitive

built-in datatypes, such as integers, characters, and strings. For
instance, having promoted string literals as types would allow us to
go well b eyond heterogeneous type-level lists to type-level records,
as in the Ur programming language [5].

There are no implementation or theoretical difficulties with sim-
ply p romoting primitive datatypes. However, our i mplementation
does not yet promote primitive datatypes because, to make this fea-
ture truly usable, we would also like to promote primitive oper-
ations on these datatypes (such as integer addition or string con-
catenation) and integrate these operations with type inference and
evidence generation. Some promising work in this direction is Di-
atchki’s recent addition of type-level naturals to GHC.7

8.4 Closed type families

Type families, as currently implemented in GHC, are open [25]: it
is always possible to add more clauses to a type family definition at
any time, as long as they do not overlap with existing clauses. In a
world where the only b ase k ind is ?, this makes sense, since ? itself
is open. However, with the ability to promote closed datatypes to

7 http ://hackage .haskell .org/trac/ghc/wiki/TypeNats
kinds, we now have type families which are “naturally” closed. For
example, given a type family Foo with two clauses, Foo Zero = ...
and Foo (Succ n) = ..., it is impossible to add any more well-
kinded clauses without overlap. Could the compiler somehow take
advantage of this knowledge?

8.5 Kind-indexed GADTs

Recall the definition ofthe Typeable class with a kind-polymorphic
type from §2.5:

class Typeable a where

typeOf :: Proxy a → TypeRep

Notice that typeOf ’s return type, TypeRep, does not mention a. It
would be nicer to have typed TypeReps by using GADTs whose
constructors r efine types and kinds, for instance:

data TypeRep (a :: κ) where
RepInt :: TypeRep Int
RepList :: (∀a. TypeRep a → TypeRep [a]) → TypeRep []

Notice that RepInt must have type TypeRep ? Int in FC↑ whereas
RepList returns TypeRep (? → ?) [] . However, supporting k ind-
RinedpexLeisdt G reAtuDrnTss Tisy ptreiRckeyp. J (?ust→ →as ?G)A [D].T Hso cwuerrveenr,tl syu ipnptroortdinucgek tiyndpe-
equalities, t hese k ind-indexed GADTs could i ntroduce k ind equal-
ities, an avenue that we are not prepared to take (see the discussion
in §3.4).

On the other hand, there may be j ust enough machinery already
in FC↑ tod ealw ithk ind-indexedG ADTsi na m orep rimitivef ashion
than ordinary GADTs, by employing unifiers for k ind equalities,
in the same way that GADTs used to b e implemented in pre-FC
times [24]. W e p lan to explore this direction in the future.

Acknowledgments

Thanks t o Conor McBride, Tim Sheard, the members of the P enn
PL Club, and the anonymous reviewers for many helpful and inspir-
ing suggestions. This work was partially supported b y the National
Science Foundation (NSF grants 0910500 and 1116620).

References

[1] T. Altenkirch, C. McBride, and W. Swierstra. Observational equality,
now! In P roceedings of the 2 007 workshop o n Programming
languages meets program verification, PLPV ’07, pages 57–68, New

York, NY, USA, 2007. ACM.

[2] H. P. Barendregt. L ambda calculi with types, p ages 117–309. Oxford
University Press, Inc., New York, NY, USA, 1992.

[3] Y. Bertot and P. Cast e´ran. I nteractive Theorem Proving and Program
Development. Coq ’Art: The Calculus of I nductive Constructions.
Texts in T heoretical Computer Science. Springer-Verlag, 1 edition,
June 2004.

[4] M. Bolingbroke. Constraint Kinds for GHC. 2011. URL
http : //blog .omega-prime .co .uk/?p=127.

[5] A. Chlipala. Ur: statically-typed metaprogramming with t ype-level
record computation. SIGPLAN N ot., 45: 122–133, J une 2010. ISSN
0362-1340.

[6] K. Crary and S. Weirich. Flexible type analysis. In P roceedings of
the f ourth ACM SIGPLAN I nternational Conference on Functional
Programming (ICFP ’99), pages 233–248, 1999.

[7] A. Dijkstra, J . Fokker, and S. D. Swierstra. The architecture of the
Utrecht Haskell compiler. In P roceedings of the 2nd ACM SIGPLAN
symposium on Haskell, Haskell ’09, pages 93–104, New York, NY,
USA, 2009. ACM.

[8] J.-Y. Girard. Interpre ´tation f onctionelle et ´ elimination des coupures
de l’arithme ´tique d’ordre supe ´rieur. PhD thesis, Universite ´ P aris VII,
1972.

[9] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In Proceedings of the 2 2ndA CMS IGPLAN-
SIGACT symposium on P rinciples of programming languages, POPL
’95, p ages 130–141, New York, NY, USA, 1995. ACM.

[10] R. Hinze. P olytypic Values Possess P olykinded T ypes. In P roceedings
of the 5th I nternational Conference on M athematics of Program
Construction, MPC ’00, p ages 2–27, London, UK, 2000. Springer-
Verlag.

[11] A. J . C. Hurkens. A Simplification of Girard’s Paradox. In
Proceedings of the Second I nternational Conference on Typed

Lambda Calculi and A pplications, pages 266–278, London, UK,
1995. Springer-Verlag.

[12] L. Jia, J. A . Vaughan, K. Mazurak, J . Zhao, L. Z arko, J . Schorr,
and S. Zdancewic. Aura: a p rogramming language for authorization
and audit. In Proceeding of the 13th ACM SIGPLAN international
conference on Functional p rogramming, I CFP 2008, Victoria, BC,
Canada, S eptember 20-28, 2008, pages 27–38, 2008.

[13] O. Kiselyov, R. L ¨ammel, and K. Schupke. Strongly typed heteroge-
neous collections. In Haskell 04: Proceedings of the ACM SIGPLAN
workshop on Haskell, pages 96–107. ACM Press, 2004.

[14] R. L ¨ammel and S. Peyton J ones. Scrap your b oilerplate: a p ractical
design pattern for generic programming. In P roceedings of the 2003
ACM SIGPLAN international workshop on Types in languages d esign
and implementation, TLDI ’03, pages 26–37, New York, NY, USA,
2003. ACM.

[15] R. L ¨a mmel and S. P eyton Jones. Scrap your b oilerplate with class:
extensible generic f unctions. In Proceedings of the tenth ACM
SIGPLAN international conference on Functionalprogramming, ICFP
’05, p ages 204–215, New York, NY, USA, 2005. ACM.

[16] D. Licata and R. Harper. Canonicity for 2-dimensional type theory. In
POPL ’12. To appear.

[17] D. R. Licata and R. Harper. Positively dependent types. In P LPV ’09:
Proceedings of the 3rd Workshop on Programming L anguages M eets
Program Verification, p ages 3–14, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-330-3.

[18] S. Marlow, editor. Haskell 2010 Language Report. 2010. URL
http : //www .haskell .org/onlinereport/haskell2010/.

[19] C. McBride. The Strathclyde Haskell Enhancement. URL http :
//personal .cis .strath . ac .uk/~conor/pub/she/.

[20] C. McBride. Kleisli arrows of outrageous fortune. 2011. URL
http : //personal .cis .strath. .ac .uk/~conor/Kleisli .pdf.

[21] N. P. Mendler. Predicative type universes and primitive recursion. In

Proceedings, Sixth A nnual I EEE Symposium on L ogic in Computer
Science, 15-18 J uly, 1991, A msterdam, The N etherlands, pages 173–
184. IEEE Computer Society, 1991.

[22] S. Monnier and D. Haguenauer. Singleton types here Singleton types
there Singleton Types Everywhere, 2009.

[23] U. Norell. Towards a p ractical p rogramming language based on
dependent type theory. Chalmers University of Technology, 2007.

[24] S. Peyton J ones, D. Vytiniotis, S. Weirich, and G. W ashburn. Simple
unification-based t ype inference for GADTs. In P roceedings of the
eleventh ACM SIGPLAN international conference on Functional
programming, ICFP ’06, p ages 50–61 . ACM Press, 2006.

[25] T. Schrijvers, S. Peyton Jones, M . M. T . Chakravarty, and M . Sulz-
mann. T ype checking with open type functions. In Proceeding
of the 13th ACM SIGPLAN international conference on Functional
programming, ICFP ’08, p ages 51–62. ACM Press, 2008.

[26] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis.
Complete and decidable type inference for GADTs. In Proceedings
of the 14th ACM SIGPLAN international conference on Functional
programming, I CFP ’09, pages 341–352, New York, NY, USA, 2009.
ACM.

[27] T. Sheard. Type-level Computation Using Narrowing in Omega.
Electr. N otes Theor. Comput. Sci., 174(7): 105–128, 2007.

[28] T. Sheard and N. Linger. Programming in Omega. In CEFP, pages
158–227, 2007.

[29] M. Sulzmann, M . M . T . Chakravarty, S. Peyton Jones, and K. Don-
nelly. System F with type equality coercions. In P roceedings of the
2007 ACM SIGPLAN international workshop on Types in languages
design and implementation, TLDI ’07, p ages 53–66. ACM Press,
2007.

[30] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.
Secure distributed p rogramming with value-dependent types. pages
266–278.

[3 1] The Coq T eam. Coq. URL http : //coq. . inria. .fr.
[32] V. Trifonov, B. Saha, and Z. Shao. Fully R eflexive Intensional T ype

Analysis. In Fifth ACM SIGPLAN International Conference on
Functional P rogramming, pages 82–93. ACM Press, 2000.

[33] S. Weirich, D. Vytiniotis, S. Peyton J ones, and S. Z dancewic. Gener-
ative type abstraction and type-level computation. In Proceedings of
the 38th annual ACM SIGPLAN-SIGACT Symposium on P rinciples of
programming languages, POPL ’ 11, p ages 227–240, New York, NY,
USA, 2011. ACM.

