
Push-Pull Functional Reactive Programming

Conal Elliott
LambdaPix

cona l@conal .net

Abstract

Functional reactive programming (FRP) has simple and powerful
semantics, but has resisted efficient implementation. In particular,
most past implementations have used demand-driven sampling,
which accommodates FRP’s continuous time semantics and fits
well with the nature of functional programming. Consequently,
values are wastefully recomputed even when inputs don’t change,
and reaction latency can be as high as the sampling period.

This paper presents a way to implement FRP that combines
data- and demand-driven evaluation, in which values are recom-
puted only when necessary, and reactions are nearly instantaneous.
The implementation is rooted in a new simple formulation of FRP
and its semantics and so is easy to understand and reason about.

On the road to a new implementation, we’ll meet some old
friends (monoids, functors, applicative functors, monads, mor-
phisms, and improving values) and make some new friends (func-
tional future values, reactive normal form, and concurrent “unam-
biguous choice”).

Categories and Subject D escriptors D.1.1 [Software]: Program-
ming Techniques—Applicative (Functional) Programming

General Terms Design, Theory

Keywords Functional reactive programming, semantics, concur-
rency, data-driven, demand-driven

1. Introduction
Functional reactive programming (FRP) supports elegant program-
ming of dynamic and reactive systems by providing first-class,
composable abstractions for behaviors (time-varying values) and
events (streams of timed values) (Elliott 1996; Elliott and Hudak
1997; Nilsson et al. 2002).1 Behaviors can change continuously
(not j ust frequently), with discretization introduced automatically
during rendering. The choice of continuous time makes programs
simpler and more composable than the customary (for computer
programming) choice of discrete time, j ust as is the case with
continuous space for modeled imagery. For instance, vector and
3D graphics representations are inherently scalable (resolution-
independent), as compared to bitmaps (which are spatially dis-
crete). Similarly, temporally or spatially infinite representations are

1See http ://haskell .org/haskellwiki/FRP for more references.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’ ’09, September 3, 2009, Edinburgh, Scotland, UK.
Copyright ?c 2009 ACM 978-1-60558-508-6/09/09. . .$5.00
more composable than their finite counterparts, because they can be
scaled arbitrarily in time or space, before being clipped to a finite
time/space window.

While FRP has simple, pure, and composable semantics, its ef-
ficient implementation has not been so simple. In particular, past
implementations have used demand-driven (pull) sampling of reac-
tive behaviors, in contrast to the data-driven (push) evaluation typ-
ically used for reactive systems, such as GUIs. There are at least
two strong reasons for choosing pull over push for FRP:

• Behaviors may change continuously, so the usual tactic ofidling
until the next input change (and then computing consequences)
doesn’t apply.

• Pull-based evaluation fits well with the common functional
programming style of recursive traversal with parameters (time,
in this case). Push-based evaluation appears at first to be an
inherently imperative technique.

Although some values change continuously, others change only
at discrete moments (say in response to a button click or an object
collision), while still others have periods of continuous change al-
ternating with constancy. In all but the purely continuous case, pull-
based implementations waste considerable resources, recomputing
values even when they don’t change. In those situations, push-based
implementations can operate much more efficiently, focusing com-
putation on updating values that actually change.

Another serious problem with the pull approach is that it im-
poses significant latency. The delay between the occurrence of an
event and the visible result of its reaction, can be as much as the
polling period (and is on average halft hat period). In contrast, since
push-based implementations are driven by event occurrences, reac-
tions are visible nearly instantaneously.

Is it possible to combine the benefits ofpush-based evaluation—
efficiency and minimal latency—with those ofpull-based evaluation—
simplicity of functional implementation and applicability to tem-
poral continuity? This paper demonstrates that it is indeed possible
to get the best of both worlds, combining data- and demand-driven

evaluation in a simple and natural way, with values being recom-
puted only, and immediately, when their discrete or continuous
inputs change. The implementation is rooted in a new simple for-
mulation of FRP and its semantics and so is relatively easy to
understand and reason about.

This paper describes the following contributions:

• A new notion of reactive values, which is a purely discrete sim-
plification of FRP’s reactive behaviors (no continuous change).
Reactive values have simple and precise denotational semantics
(given below) and an efficient, data-driven implementation.

• Decomposing the notion of reactive behaviors into independent
discrete and continuous components, namely reactive values
and (non-reactive) time functions. Recomposing these two no-
tions and their implementations results in FRP’s reactive behav-
iors, but now with an implementation that combines push-based

and pull-based evaluation. Reactive values have a lazy, p urely
data representation, and so are cached automatically. This com-
posite r epresentation captures a new reactive normal f orm for
FRP.

• Modernizing the FRP interface, by r estructuring much of its
functionality and semantic definitions around standard type
classes, as monoids, functors, applicative functors, and monads.
This restructuring makes the interface more familiar, reduces
the new interfaces to learn, and provides new expressive p ower.
In most cases, the semantics are defined simply b y choosing the
semantic functions to b e type class m orphisms (Elliott 2009).

• A notion of composable f uture values, which embody pure
values that (in many cases) cannot yet be known, and is at
the h eart of this new formulation of r eactivity. Nearly all the
functionality of future values is provided via standard type
classes, with semantics defined as class morphisms.

• Use of W arren Burton’s “improving values” as a r ichly struc-
tured (non-flat) type for time. Events, reactive values, reactive
behaviors, and future values can all b e parameterized with re-
spect t o t ime, which can be any ordered t ype. Using improving
values (over an arbitrary ordered type) for time, the semantics
of future values becomes a p ractical implementation.

• A new technique for semantically determinate concurrency via
an “unambiguous choice” operator, and use of this technique to
provide a new implementation of improving values.

2. Functional reactive programming

FRP revolves around two composable abstractions: events and be-

haviors (Elliott and Hudak 1997). Because FRP is a functional
paradigm, events and b ehaviors describe things that exist, r ather
than actions that have happened or are to happen (i.e., what is, not
what does). Semantically, a (reactive) behavior is j ust a function of
time, while an event (sometimes called an “event source”) is a list
of time/value pairs (“occurrences”).

type Ba = T → a

type Ea = [(Tb, a)] -- for non-decreasing times

Historically in FRPb, T = R. As we’ll see, however, the semantics
of behaviors assumes only that T is totally ordered. The type Tb of
occurrence times is T extended with −∞ and ∞.

uOrrrgeinncaellyt im, FeRsP is hTad e xat ennodtieodnw oitfh e −ve∞ntsa nasd a∞ s.ingle value wbith
time, which led to a somewhat awkward p rogramming style with
explicit temporal loops (tail recursions). The sequence-of-pairs for-
mulation above, described in, e.g., (Elliott 1998a; Peterson et al.
1999) and assumed throughout this paper, hides discrete t ime it-
eration, j ust as behaviors hide continuous “iteration”, r esulting in
simpler, more declarative specifications.

The semantic domains Ba and Ea correspond to the behavior
and event data types, via semantic f unctions:

at :: Behavior a → Ba
occs :: BEvehenatv ao →→ EBa

This section focuses on the semantic models underlying FRP,
which are intended for ease of understanding and formal reasoning.
The insights gained are used in later sections to derive new correct
and efficient representations.

FRP’s Behavior and Event types came with a collection of
combinators, many of which are instances of standard type classes.

To dress FRP in modern attire, this p aper uses standard classes and
methods wherever possible in place of names from “Classic FRP”.

2.1 Behaviors

Perhaps the simplest behavior is time, corresponding to the identity
function.

time :: Behavior Time
at time = id

2.1.1 Functor

Functions can be “lifted” to apply to b ehaviors. Classic FRP
(CFRP) had a family of lifting combinators:

liftn :: (a1 → .. . → an → b)
→ (Beh→av. i.o.r→ a1 →→ ... →) Behavior an → Behavior b)

Lifting is pointwise and synchronous: the value of liftn f b1...bn at

tti.m2e t ist her esulto fa pplyingf t ot hev alueso ft heb iat(exactly)
at (liftn f b1 ... bn) = λt → f (b1 ‘ at‘ t) ... (bn ‘ at‘ t)

The Functor instance for behaviors captures unary lifting, with
fmap r eplacing FRP’s lift1.

fmap :: (a → b) → Behavior a → Behavior b

The semantic domain, functions, also form a functor:

instance Functor ((→) t) where
sfmtaanpc fe g u=n c ft ◦o g

The meaning of f map on behaviors mimics f map on the meaning
of behaviors, following the p rinciple of denotational design using

t“yspeme aclnatsicsm inostrapnhcies”m:3s(Elliott2 009)a ndc apturedi nt hef ollowing
instancesem Functor Behavior where

at (fmap f b) = f map f (at b)
= f ◦ at b

In other words, at is a natural transformation, or “functor m or-
phism” (for consistency with related t erminology), from Behavior
to B (Mac Lane 1998).

The semantic instances in this paper (“instancesem ...”)
specify the semantics, not implementation, of type class instances.

2.1.2 Applicative functor

Applicative functors (AFs) are a recently explored notion (McBride
and Paterson 2008). The AF interface has two methods, pure and
(<∗ >), which correspond to the monadic operations return and
ap. >A)p,pw lihciactihvec ofurrnecsptoorsn dart eo m thoerem msotrnuacdtiucredo p (elreassti op nospur elattuedrn) th anand
functors and less structured (more populated) than monads.

infixl 4 <∗ >
icnlafisxsl F 4u <n ∗c >tor f ⇒ Applicative f where

pure :n: cat o→r ff ⇒a
(p<ur ∗> e) :::: a f (→a →f a b) → f a → f b

These two combinators suffice to define liftA2, liftA3, etc.

infixl 4 <$ >
(<$ >) :: Functor f ⇒ (a → b) → f a → f b
f <$ > a =:: fFmuanpct fo raf

liftA2 :: Applicative f ⇒ (a → b → c)
→:: A f pap →lic a ft bv e→f f ⇒ ⇒c

liftA2 f→ →af fba a=→ →f <f$ b > →a < f ∗> c b

2Haskellism:T he atf unctionh erei sb eingu sedi nb othp refix form(ont he
left) and infix form (on the right).

3 Haskellism: Function application has higher (stronger) p recedence than
infix operators, so, e.g., f ◦ at b ≡ f ◦ (at b) .

liftA3 :: Applicative f ⇒ (a → b → c → d)
→:: A f pap →lic a ft bv e→f f ⇒ ⇒c (→a →f db

liftA3 f→ →af fba c →= flifb tA→ 2 ff ca b→ < f∗ > d c
.. .

The left-associative (<$ >) is j ust a synonym for f map—a stylistic
preference—while liftA2, liftA3, etc. are generalizations of the
monadic combinators liftM2, liftM3, etc.

CFRP’s lift0 corresponds to pure, while lift2, lift3, etc corre-
spond to liftA2, liftA3, etc., so the Applicative instance replaces
all of the liftn.4

Functions, and hence B, form an applicative functor, where
pure and (<∗ >) correspond to the classic K and S combinators:

instance Applicative ((→) t) where
pure =A cpolincsatt
f <∗ > g = λt → (f t) (g t)

The Applicative instance for functions leads to the semantics
of the Behavior instance of Applicative. As with Functor above,
the semantic function distributes over the class methods, i.e., at is
an applicative functor morphism:

instancesem Applicative Behavior where
at (pure a) = pure a

= const a

at (bf <∗ > bx) = at bf <∗ > at bx
= λt → <(∗ b> f a‘ aatt ‘b t) (bx ‘ at‘ t)

So, given a function-valued behavior bf and an argument-valued
behavior bx, t o sample bf <∗ > bx at time t, sample bf and bx at t
and apply one result to the <o∗ t> heb r.

This (<∗ >) operator is the h eart of FRP’s concurrency model,
whTichh iss (s<e m∗ >a)nto icpaelralyt odreti esrt mhienah teea,r tsyo nfcF hRroPn’osuc so, anncudr creonnctyinm uoouds.e

2.1.3 Monad

Although Behavior is a semantic Monad as well, the implemen-
tation developed in Section 5 does not implement Monad.

2.2 Events

Like behaviors, much of the event functionality can be packaged
via standard type classes.

2.2.1 Monoid

Classic FRP had a never-occurring event and an operator to merge
two events. T ogether, these combinators form a monoid, so ∅ and
(tw⊕o) e(vHenastsk.el Tlo’sg e mtehmepr,t tyh asned c o mmapbpineantdo)r rfe oprlmacea mtheo CoiFdR,sP o n ∅am aneds

n(⊕ev)er(EHa asnkedl (l’s. s| . m).e
vTerheE eav nendt(.m|.o).noid differs from the list monoid in that (⊕) must

preserve tveemntpmo roaln omidond oiftofenrisci frtoy.m

instancesem Monoid (Event a) where
occs ∅ = []
occs (∅e ⊕ e0) = occs e ‘merge‘ occs e0

Temporal merging ensures a time-ordered r esult and has a left-bias
in the case of simultaneity:

merge :: Ea → Ea → Ea

[] ‘merge‘ vs = vs
us ‘merge‘ [] = us
((ˆta , a) :ps) ‘merge‘ ((ˆtb, b) : qs)

| tˆa 6 tˆb = (tˆa, a) : (ps ‘merge‘ ((ˆtb, b) : qs))
| otherwise = (tˆb, b) : (((tˆa , a) : ps) ‘merge‘ qs)

Note that occurrence lists may b e infinitely long.

4 The formulation of the liftn in terms of operators corresponding to pure
and (<∗ >) was noted in (Elliott 1998a, Section 2.1).

2.2.2 Functor

Mapping a function over an event affectsjust the occurrence values,
leaving the times unchanged.

instancesem Functor Event where
occs (fmap f e) = map (λ(tˆa , a) → (tˆa, f a)) (occs e)

2.2.3 Monad

Previous FRP definitions and implementations did not have a
monad instance for events. Such an instance, however, is very
useful for dynamically-generated events. For example, consider
playing Asteroids and tracking collisions. Each collision can b reak
an asteroid i nto more of them (or none), each of which has to b e
tracked for more collisions. Another example is a chat r oom hav-
ing an enter event whose occurrences contain new events like speak
(for the newly entered user).

A unit e vent has one occurrence, which is always available:

occs (return a) = [(−∞, a)]

The j oin operation collapses an event-valued event ee:

joinE :: Event (Event a) → Event a

Each occurrence of ee delivers a new event, all of which get merged
together into a single event.

occs (joinE ee) =
foldr merge [] ◦ map delayOccs ◦ occs ee

delayOccs :: (Tb, Event a) → Ea
delayOccs (tˆe ,b e) = [n(ˆtte a ‘)m→ ax‘E tˆa , a) | (tˆa , a) ← occs e]

Here, delayOccs enbsures that inner events cannot occur before they
are generated.

This definition of occs hides a subtle problem. If ee has in-
finitely many non-empty occurrences, then the f oldr, if taken as
an implementation, would have to compare the first occurrences of
infinitely many events to see which is the earliest. However, none
of the occurrences in delayOccs (tˆe , e) can occur before time
ˆte, and the delayOccs applications are given monotonically non-
decreasing times. So, only a finite p refix of the events generated
from ee need be compared at a time.

2.2.4 Applicative functor

Any monad can b e made into an applicative functor, b y defining
pure = return and (<∗ >) = ap. However, this Applicative
pinusrtaenc= e =isr uetnulirknelya ntod b (e< very u =sef ualp f.oHr Eovweenvte.r C,ot hnissid Aepr fpulniccatitiovne-
and argument-valued events ef and ex . The event ef <∗ > ex would
be equivalent to ef ‘ ap‘ ex and h ence to

ef >> = λf → ex >> = λx → return (f x)

or more simply

ef >> = λf → f map f ex

The r esulting event contains occurrences for every pair of occur-
rences of ef and ex, i.e., (tˆf ‘max‘ tˆx ,f x) for each (tˆf , f) ∈
occs ef and (tˆx , x) ∈ occs ex. If there are m occurrences fo)f ef

and n occurrenc,exs)o∈f e oxc, tshee n there will m ×n occurrences of
ef <∗ > ex. Since the max,itm huemn hofe rtew ow ivllalm ues× ×isn nono ec cvuarlureen ocers sto hef
othe<∗r ,> >the ere are at most m + n distinct values of tˆf ‘max‘ tˆx . Hence
the m ×n occurrences must all occur in at most m + n tempo-
trhaellym mdi× stinn cto cclcuusrtreerns.c eAsl tmeurnstatia vlello y,c counre cno autldm goisvtem ma r +ela ntivt eem mtipmoe-
semantics by u sing (+) in place of max.

2.3 Combining behaviors and events

FRP’s b asic tool for introducing reactivity combines a behavior and
and an event.

switcher :: Behavior a → Event (Behavior a)
→ :: BBeehhaavviioorr aa

The behavior b0 ‘switcher‘ e acts like b0 initially. Each occurrence
of the behavior-valued event e provides a new p hase of behavior
to switch to. Because the phases themselves (such as b0) may be
reactive, each transition may cause the switcher behavior to lose
interest in some events and start reacting to others.

The semantics of b0 ‘switcher‘ e chooses and samples either b0
or the last behavior from e before a given sample time t:

(b0 ‘switcher‘ e) ‘ at‘ t = last (b0 : before (occs e) t) ‘ at‘ t

before :: Ea → T → [a]
before os t = [a | →(tˆa[, a) ← os, tˆa < t]

As a simple and common specialization, stepper produces
piecewise-constant b ehaviors (step functions, semantically):

stepper :: a → Event a → Behavior a
a0 ‘pspteeprp: :ear ‘ e→ =E pure a0 →‘swB itechhaevri‘o r(pa ure <$ > e)

Hence

at (a0 ‘stepper‘ e) = λt → last (a0 : before (occs e) t)

There is a subtle p oint in the semantics of switcher. Consider
b0 ‘stepper‘ (e ⊕ e0). If each of e and e0 has one or more occur-
ren‘csetse patp etrhe‘ (seam ⊕e etime, then the ones from e0 will get reacted to
last, and so will appear in the switcher behavior.

3. From semantics to implementation

Now we h ave a simple and precise semantics for FRP. Refining it

into an efficient implementation requires addressing the following
obstacles.

• Event merging compares the two occurrence times in order to
choose the earlier one: tˆa 6 ˆtb. If time is a flat domain (e.g.,

tˆDboaurbelek)n,o twhins.c S oinmcpea roiscocnur croeunlcde t niomtet sak aerep ln aocte gu ennteilrab lolythk tˆnaoawndn
until they actually arrive, this comparison would hold up event
reaction u ntil the later of the two occurrences, at which time
the earlier one would be responded to. For timely response, the
comparison must complete when the earlier occurrence hap-
pens.5 Section 4 isolates this problem in an abstraction called
“future values”, clarifying exactly what properties are required
for a type of future times. Section 9 presents a more sophisti-
cated r epresentation of time that satisfies these p roperties and
solves the comparison problem. This r epresentation adds an ex-
pense of its own, which is removed in Sections 10 and 11.

• For each sample time t, the semantics of switcher involves
searching through an event for the last occurrence before t.This
search becomes costlier as t increases, wasting time as well
as space. While the semantics allow random time sampling, in
practice, behaviors are sampled with monotonically increasing
times. Section 8 introduces and exploits monotonic time for
efficient sampling.

• The semantics of behaviors as functions leads to an obvious, but
inefficient, demand-driven evaluation strategy, as in p ast FRP
implementations. Section 5 introduces a reactive normal form
for behaviors that reveals the reactive structure as a sequence
of simple non-reactive phases. Wherever phases are constant (a
common case), sampling happens only once per p hase, driven
by occurrences of relevant events, as shown in Section 8.

5 Mike Sperber noted this issue and addressed it as well (Sperber 2001).

4. Future values

A FRP event occurrence is a “future value”, or simply “future”,
i.e., a value and an associated time. To simplify the semantics and
implementation of events, and to provide an abstraction that may
have uses outside of FRP, let’s now focus on futures. Semantically,

type Fa = (Tb, a)

force :: Futureb a → Fa

Like events and behaviors, much of the interface for future
values is packaged as instances of standard type classes. Moreover,
as with b ehaviors, the semantics of these instances are defined as
type class morphisms. The process of exploring these morphisms
reveals requirements for the algebraic structure of Tb.

4.1 Functor

The semantic domain for futures, p artially applied pairing, is a
functor:

instance Functor ((,) t)
where f map h (t, a) = (t, h a)

The semantic f unction, f orce, is a functor morphism:

instancesem Functor Future where
force (fmap h u) = f map h (force u)

= (t, h a) where (t, a) = f orce u

Thus, mapping a function over a future gives a future with the same
time but a t ransformed value.

4.2 Applicative functor

For applicative functors, the semantic instance (pairing) requires an
additional constraint:

instance Monoid t ⇒ Applicative ((,) t) where
pure cae t= ⇒(∅A, Aap)
(t,f) <∗ > (t0, x) == ((t∅ ,⊕a)t0, f x)

When t is a future time, what meanings do we want for ∅
andW W(⊕he)n? Ttw iso fa ut fuurteu rveal utiemse c,aw n hbaet c momeabniinnegds o dnolyw wweh ewna nbtot hfo arr∅e

aknndow(⊕n, s?oT (w⊕o) u=t mrea vxal. Since n∅ bise caon midbeinnteitdy o fnolry (w ⊕h)e, ni t footlhlowa rse
tkhnaotw w∅n = minBound, axn.d S so Tbe must nhai vdee a lietyasf to erle(m⊕e)n, itt.

tT ∅h=e Am ppinlBicoautivned ,sea mndan soticbs for futures f ollow f rom these con-
siderations choosing f orce to bbe an applicative functor morphism:

instancesem Applicative Future where

force(purea) ==p (∅u,rae) a
== ((m∅,ian)Bound, a)

force (uf <∗ > ux) = f orce uf <∗ > f orce ux
= (tˆf,f) <∗ > >(tˆxf ,o x)
= (tˆf ⊕)ˆt<x ,∗ > f x)
= (tˆf ‘⊕max‘ tˆx,f x)

where
(tˆf ,f) = f orce uf

(tˆx, x) = f orce ux

Now, of course these definitions of (⊕) and ∅ do not h old
for Narobwit,rao rfy cto, uervseen fhoers eord deefriendit itoynpseso , fso(⊕th)e ap nadiri∅ ngd ionsn taontch eo lodf
Applicative provides helpful clues about the algebraic structure of
future times.

Alternatively, for a relative-time semantics, use the Sum m onoid

in place of the Max monoid.

4.3 Monad

Given the Monoid constraint on t, the type constructor ((,) t) is
equivalent to the more familiar writer monad.

instance Monoid t ⇒ Monad ((,) t) where
srteatunrnce eaM o=i d(∅t , a⇒)
(tˆa, a) >> = h = ((tˆ∅a, ⊕ ˆtb, b)

where (tˆb, b) = ⊕h a

Taking f orce to be a monad morphism (Wadler 1990),

instancesem Monad Future where
force (return a) = return a

= (minBound, a)

force (u >> = k) = f orce u >> = f orce ◦ k
= f(tˆoar ‘emu ax> > ‘ =tˆbf, b)

where (tˆa , a) = f orce u
(tˆb , b) = f orce (k a)

Similarly, j oin collapses a future future into a future.

joinF :: Future (Future a) → Future a
force (::jo FinuFtu rueu)(=u tju orien a()fm →apF uf oturcree (a force uu))

= (tˆu ‘max‘ ˆta, a)
where (tˆu , u) = f orce uu

(tˆa, a) = f orce u

So, the value of the j oin is the value of the of the inner future, and
the time matches the later of the outer and inner futures. (Alterna-
tively, the sum of the future times, in relative-time semantics.)

4.4 Monoid

A useful (⊕) for futures simply chooses the earlier one. Then, as
an identity ⊕fo)r f (⊕), t∅u must m bep tyhce hfuootusrees tt hhaet never ra orrnivee.s T. (So aTbs
amnu sidt ehnatviety a fno upper b ∅o umnuds.t)

instancesem Monoid (Future a) where
force ∅ = (maxBound, ⊥)

force (ua ⊕ ub) = uifn dˆta, 6 tˆb then ua else ub

where
(tˆa, ,) = f orce ua
(tˆb, ,) = f orce ub

(This definition does not correspond to the standard monoid in-
stance on pairs, so f orce is not a monoid morphism.)

Note that this Monoid instance (for future values) uses maxBound
and min, while the Monoid instance on future times uses minBound
and max.

4.5 Implementing futures

The semantics of futures can also be used as an implementation,
if the type of f uture times, FTime (with meaning Tb), satisfies the
properties encountered above:

• Ordered and bounded with lower and upper b ounbds of −∞ and
O∞r d(ier.ee.,d ba enfdorb eo aunndd eadft ewri tahll l oswameprla en tdimu epsp)e, rrbe ospuencdtisvo elfy− .

• A monoid, in which ∅ = −∞ and (⊕) = max.

• To b e useful, the representation must reveal partial information
about times (specifically lower bounds), so that time compar-
isons can complete even when one of the two times is not yet
fully k nown.

Assuming these t hree properties for FTime, the implementa-
tion of futures is easy, with most of the functionality derived (using
a GHC language extension) from the pairing instances above.

newtype Future a = Fut (FTime, a)
deriving (Functor, Applicative, Monad)

A Monoid instance also follows directly from the semantics in
Section 4 .4:

instance Monoid (Future a) where

∅ = Fut (maxBound, ⊥)
=-- Fpruotbl(emmaaxtiBc:o

ua@(Fut (tˆa , ,)) ⊕ ub@(Fut (tˆb, ,)) =
if tˆa 6 tˆb ,th) e)n⊕ ua else ub

This definition of (⊕) has a subtle, but important, problem.
ConTshiidserd ceofminpitiuotinngo fth(e⊕ e)arh liaesst aofs uthbtrelee, fb utuutrei ms, (ourtaa n⊕t ,up b)ro b⊕l eumc,.
and suppose that uc is earliest, so that tˆc < tˆa ‘min‘ ˆtb⊕. u No) m⊕ a tuter
what the representation of FTime is, the definition of (⊕) above

ttcˆahaen6ne oaˆttrblpi eirsro ddo efutec trheom asinneyet di im.nf eToshrama trrat teiivosetns w, aii .lbleou .,usu tunat htlilelytˆt ba ime‘eu mn oiafnnsu ‘wtˆabe,⊕rw abu hlebichu unn(ttaiills
we’ve supposed) is after ˆtc.

To solve this problem, change the definition of (⊕) on futures
to iTmom seodlviaetet lhyi s yip elrdob bal etimm,ec hasa tnhgee (t lahzeild ye feivnailtiuoanteod f) m(⊕in) oofn t fhuet utwreos
future times. Because min yields an FTime instead of a boolean,
it can produce partial information about its answer from partial
information about its inputs.

-- working definition:
Fut (tˆa, a) ⊕ Fut (tˆb, b) =

Fut (,ˆtaa)‘m⊕ iFn u‘ ttˆb(, if tˆa 6 tˆb then a else b)

This new definition requires two comparison-like operations in-
stead of one. It can b e further improved b y adding a single oper-
ation on future t imes that efficiently combines min and (6).

4.6 Future times

Each of the three required p roperties of FTime (listed in Sec-
tion 4 .5) can b e layered onto an existing type:

type FTime = Max (AddBounds (Improving Time))

The Max wrapper adds the required monoid instance while

inheriting Ord and Bounded.

newtype Max a = Max a deriving (Eq, Ord, Bounded)

instance (Ord a, Bounded a) ⇒ Monoid (Max a) where
s∅t B=o uMndaxed dma in)B⇒ ou Mndon
∅Max a ⊕ Max b = Max (a ‘max‘ b)

The AddBounds wrapper adds new least and greatest e lements,
preserving the existing ordering.

data AddBounds a =
MinBound | NoBound a | MaxBound deriving Eq

instance Bounded (AddBounds a) where
minBound = MinBound
maxBound = MaxBound

For an unfortunate technical reason, AddBounds does not derive
Ord. The semantics of Haskell’s deriving clause does not guar-
antee that min i s defined i n terms of min on the component t ypes.
If min i s instead defined via (6) (as currently in GHC), then par-
tial information in the type parameter a cannot get p assed through
min. For this reason, AddBounds has an explicit Ord instance,
given in part in Figure 1.

The final wrapper, Improving, is d escribed in Section 9. It adds
partial information to times and has min and (6) that work with
partially known values.

5. Reactive normal form

FRP’s behavior and event combinators are very flexible. For in-
stance, in b0 ‘switcher‘ e, the phases (b0, ...) themselves may be
reactive, either as made b y switcher, or by f map or (<∗ >) ap-
prelaiecdti vtoe , ree aitchteivrea bse mhaavdieor bs.y Ts whisit fclhexeirb,io litryb iys fnmo atprou obrle(<a∗ t> >al)l fapor-

instance Ord a ⇒ Ord (AddBounds a) where
MstiannBcoeu nOdrd ‘a m i⇒n‘=Mdsin aB)ow unhder
‘min‘ MinBound = MinBound
NoBound a ‘min‘ NoBound b = NoBound (a ‘min‘ b)
u ‘min‘ MaxBound = u
MaxBound ‘min‘ v = v

-- similarly for (6) and max

Figure 1. Ord instance for the AddBounds type

the function-based semantics in Section 2, but how can we find our
way to an efficient, data-driven implementation?

Observed over time, a reactive behavior consists of a sequence
of non-reactive phases, p unctuated by events. Suppose b ehaviors
can b e viewed or r epresented in a form that reveals this p hase struc-
ture explicitly. Then monotonic behavior sampling could be imple-
mented efficiently b y stepping forward through this sequence, sam-
pling each p hase until the next one begins. For constant phases (a
common case), sampling would then be driven entirely by relevant
event occurrences.

Definition: A b ehavior-valued expression is in reactive normal
form (RNF) if it has the form b ‘switcher‘ e, where the lead
behavior b is non-reactive, i.e., has no embedded switcher (or
combinators defined via switcher), and the behaviors in e are also
in RNF.

For instance, b can b e built up from pure, time, f map, and
(<∗ >). To convert arbitrary behavior expressions i nto RNF, one

c(a< n∗> p)r.o Tviodec oenqvuearttio anrbali rraerwyritb ee hruavleiso rthe axtp mresosvioe nsswi intctoheR rNs Fo,u to nofe
switcher heads, out of fmap, (<∗ >), etc, and p rove the correctness

sofw ithtceshee req hueaatdison,os uftr oomff mthea ps,e (m<a∗ >n ti)c,se tinc ,Sa encdtip onro v2.e F thoer ceoxarrmecptlnee,

fmap f (b ‘switcher‘ e) ≡ f map f b ‘switcher‘ f map f e

The r est of this p aper follows a somewhat different p ath, inspired
by this rewriting idea, defining an RNF-based r epresentation.

5.1 Decoupling discrete and continuous change

FRP makes a fundamental, type-level distinction between events
and behaviors, i.e., between discrete and continuous. Well, not
quite. Although (reactive) b ehaviors are defined over continuous
time, they are not n ecessarily continuous. For instance, a behavior
that counts k ey-presses changes only discretely. L et’s further tease
apart the discrete and continuous aspects of b ehaviors into two
separate types. Call the p urely discrete p art a “reactive value” and
the continuous part a “time function”. FRP’s notion of reactive
behavior decomposes neatly into these two simpler notions.

Recall from Section 1that continuous time is one of the reasons
for choosing p ull-based evaluation, despite the typical inefficiency
relative to push-based. As we will see, reactive values can be eval-
uated in push style, leaving p ull for time functions. Recomposing
reactive values and time functions yields an RNF r epresentation
for reactive b ehaviors that reveals their p hase structure. The two
separate evaluation strategies combine to produce an efficient and
simple hybrid strategy.

5.2 Reactive values

A reactive value is like a reactive behavior but is r estricted to
changing discretely. Its meaning is a step function, which is fully
defined b y its initial value and discrete changes, with each change
defined by a time and a value. Together, these changes correspond
exactly to a FRP event, suggesting a simple representation:

data Reactive a = a ‘Stepper‘ Event a
The meaning of a reactive value is given via translation into a
reactive b ehavior, using stepper:

rat :: Reactive a → Ba
rraatt :(:a R0 e‘Satcetpivpeear ‘ e→) =B at (a0 ‘stepper‘ e)

= λt → last (a0 : before (occs e) t)

where before i s as defined in Section 2.3.
With the exception of time, all behavior operations in Section 2

(as well as others not mentioned there) produce discretely-changing
behaviors when given discretely-changing b ehaviors. Therefore, all
of these operations (excluding time) have direct counterparts for
reactive values. In addition, reactive values form a monad.

stepperR :: a → Event a → Reactive a
switcherR :: :: aRe→ actE ivvee nat →a →EvR eneta c(tRiveeaca tive a)

→:: RReeaaccttiivvee aa

instance Functor Reactive
instance Applicative Reactive
instance Monad Reactive

The semantic function, rat, is a morphism on Functor, Applicative,
and Monad:

instancesem Functor Reactive where
rat (fmap f b) = f map f (rat b)

= f ◦ rat b

instancesem Applicative Reactive where
rat (pure a) = pure a

= const a

rat (rf <∗ > rx) = rat rf <∗ > rat rx
= λt → (<r∗ f> >‘ rr aatt‘ tr) (rx ‘rat‘ t)

instancesem Monad Reactive where

rat (return a) = return a
= const a

rat (r >> = k) = rat r >> = rat ◦ k
== λratt →r >(= ratr a◦t tk◦) k(rat r t) t
== λλtt →→ r(raat t(◦k k(r)a (tr art t r)) t t)

The j oin operation may b e a bit easier to follow than (>> =).

rat (joinR rr) = j oin (fmap rat (rat r))
= j oin (rat ◦ rat rr)
== λjoti n→(rraatt ◦(rr aatt r rrr)t) t

Sampling j oinR rr at time t then amounts to sampling rr at t to
get a reactive value r,which is itself sampled at t.

5.3 Time functions

Between event occurrences, a reactive behavior follows a non-
reactive function of time. Such a t ime function is most directly and
simply represented literally as a function. However, functions are
opaque at run-time, preventing optimizations. Constant functions
are particularly helpful to r ecognize, in order to perform dynamic
constant p ropagation, as in (Elliott 1998a; Nilsson 2005). A simple
data type suffices for recognizing constants.

data Fun t a = K a | Fun (t → a)

The semantics is given by a function that applies a Fun to an
argument. All other functionality can be neatly packaged, again, in
instances of standard type classes, as shown in Figure 2. T here is a
similar instance for Arrow as well. The semantic function, apply,
is a morphism with respect to each of these classes.

Other optimizations could b e enabled b y in a similar way. For
instance, generalize the K constructor to polynomials (adding a
Num constraint for t). Such a representation could support pre-
cise and efficient differentiation and integration and prediction of

data Fun t a = K a | Fun (t → a)

apply :: Fun t a → (t → a) -- semantic function
apply (K a) = →co(nts→t a
apply (Fun f) = f

instance Functor (Fun t) where
fmap f (K a) = K (f a)
fmap f (Fun g) = Fun (f ◦ g)

instance Applicative (Fun t) where
pure = K
K f <∗ > K x = K (f x)
cf <∗ > cx = Fun (apply cf <∗ > apply cx)

instance Monad (Fun t) where
return = pure
K a >> = h = h a
Fun f >> = h = Fun (f >> = apply ◦ h)

Figure 2. Constant-optimized functions

some synthetic events b ased on r oot-finding (e.g., some object col-
lisions). The opacity of the function arguments used with f map and
arr would, however, limit analysis.

5.4 Composing

Reactive values capture the purely discrete aspect of reactive be-
haviors, while time functions capture the purely continuous. Com-
bining them yields a representation for reactive behaviors.

type Behavior = Reactive ◦ Fun Time

Type composition can b e defined as follows:

newtype (h ◦ g) a = O (h (g a))

Functors compose into functors, and applicative functors into
applicative functors (McBride and Paterson 2008).

instance (Functor h, Functor g)
⇒ Functor (h ◦ g) where

fmap f (O⇒ hF guan)c t=o rO(h(f◦ mga)p w(fhmearpe f) hga)

instance (Applicative h, Applicative g)
⇒ Applicative (h ◦ g) where

pure a a=t Ove ((phur◦ eg ()pw urhe ar)e)
O hgf <∗ > O hgx = O (liftA2 (<∗ >) hgf hgx)

The semantics of behaviors combines the semantics of its two
components.

at :: Behavior a → Ba
aatt :(: :OB rehf)a v=io jroai n →(fmB ap apply (rat rf))

= λt → apply (rat rf t) t

More explicitly,

O (f ‘Stepper‘ e) ‘ at‘ t = last (f : before (occs e) t) t

This last form is almost identical to the semantics of switcher in
Section 2.3.

This r epresentation of b ehaviors encodes reactive n ormal form,
but how expressive is it? Are all of the Behavior combinators
covered, or do some stray outside of RNF?

The time combinator is non-reactive, i.e., p urely a function of
time:

time = O (pure (Fun id))
The Functor and Applicative instances are provided automati-

cally from the instances for type composition (above), given the in-
stances for Reactive and Fun (specified in Section 5 and to b e de-
fined in Section 7). Straightforward but tedious calculations show
that time and the Functor and Applicative instances have the se-
mantics specified in Section 2.
Idoubt that there is a Monad instance. While the semantic do-

main B is a monad, Ithink its j oin surpasses the meanings that can
be represented as reactive time functions. For p urely discrete ap-
plications, however, reactive b ehaviors can b e replaced by reactive
values, including the Monad functionality.

6. Another angle on events

The model of events we’ve b een working with so far is time-
ordered lists of future values, where a future value is a time/value
pair: [(t0 , a0) , (t1, a1) , ...] . If such an occurrence list is nonempty,
another view on it is as a time t0, together with a reactive value
having initial value a0 and event with occurrences [(t1, a1), ...] . If
the occurrence list is empty, then we could consider it to have initial
time ∞ (maxBound), and reactive value of ⊥. Since a future value
itism mae ti ∞me (maandx Bvaoluune,d)it, afnodllor weasc t thivaet vaanl ueev eonft⊥ ⊥(e. mSinpctye oar f untounreemv apltuye)
has the same content as af uture reactive value. This insight leads
to a new representation of functional events:

-- for non-decreasing times
newtype Event a = Ev (Future (Reactive a))

With this representation, the semantic function on events peels off
one time and value at a time.

occs :: Event a → Ea

ooccccss :(:E Evv e(nFtuta (∞→, E))) = []
occs (Ev (Fut ((ˆt∞a , a ‘Stepper‘ e0))) = (tˆa , a) : occs e0

Why use this r epresentation of events instead of directly mim-
icking the semantic model E? The future-reactive r epresentation
will b e convenient in defined Applicative and Monad instances
below. It also avoids a subtle problem similar to the issue of com-
paring future times using (6), discussed in Section 4 .5. The defini-
tion of merge in Section 2.2. 1determines that an event has no more
occurrences by testing the list for emptiness. Consider filtering out
some occurrences of an event e. Because the emptiness test yields a
boolean value, it cannot yield partial information, and will have to
block until the prefiltered occurrences are k nown and tested. These
issues are also noted i n Sperber (2001).

7. Implementing operations on reactive values

and events

The representations of reactive values and events are now tightly
interrelated:

data Reactive a = a ‘Stepper‘ Event a
newtype Event a = Ev (Future (Reactive a))

These definitions, together with Section 5, make a convenient basis
for implementing F RP.

7.1 Reactive values

7.1.1 Functor

As usual, f map f applies a function f to a reactive value p ointwise,
which is equivalent to applying f to the initial value and to each
occurrence value.

instance Functor Reactive where
fmap f (a ‘Stepper‘ e) = f a ‘Stepper‘ f map f e

7.1.2 Applicative

The Functor definition was straightforward, because the Stepper
structure is easily p reserved. Applicative is more challenging.

instance Applicative Reactive where ...

First the easy part. A p ure value becomes reactive by using it as the
initial value and ∅ as the (never-occuring) change event:

pure a = a ‘Stepper‘ ∅

Consider next applying a reactive function to a reactive argument:

rf@(f ‘Stepper‘ Ev uf) <∗ > rx@(x ‘Stepper‘ Ev ux) =
f x ‘Stepper‘ Ev u

where u = ...

The initial value is f x, and the change event occurs each time
either the function or the argument changes. If the function changes
first, then (at that future time) apply a new reactive function to an
old reactive argument:

fmap (λrf0 → rf0 <∗ > rx) uf

Similarly, if the argument changes first, apply an old reactive func-
tion and a new reactive argument:

fmap (λrx0 → rf <∗ > rx0) ux

Combining these two futures as alternatives:6

u = f map (λrf0 → rf0 <∗ > rx) uf ⊕
fmap (λrx0 →→ rf <<∗ ∗> > rx0) ux

More succinctly,

u = ((<∗ > rx) <$ > uf) ⊕ ((rf <∗ >) <$ > ux)

A wonderful thing about this (<∗ >) definition for Reactive is
thatA Aitw aountodmerfauticlat lhliyn g rea ubsoesu ttt hhei sp r(<ev∗ >iou)sd vefailnuieti oonf ftoher Rfueanccttiiovne oi sr

argument when the argument or function changes. This caching
property is especially handy in nested applications of (<∗ >), which
cparonp aerritsye seie thsepre ceixaplllyic hitalnyd oyri nthn roeustgehd laipfptAli2c,a lioifntAs3o ,f (et<c ∗>. C)o, nwshidicehr
u = liftA2 f r s or, equivalently, u ≡ (f <$ > r)<∗ > s, where r and
s are reactivef vr a lsuo ers,, ewquithiv ianlietniatlly v,aulu ≡es (rf0 < a$ >ndr s)0<, ∗ r> essp,ewchtiveerleyr. Tanhed
initial value u0 of u is f r0 s0. If r changes from r0 to r1, then the
new value of f <$ > r will b e f r1, which then gets applied to s0, i.e.,
u1 ≡ f r1 s0. Ifinstead s changes from s0 to s1, then u1 ≡ f r0 s1.
In th≡isf flar tter case, the old value f r0 of f <$ > r is passed o≡n fwr ithout
having to be r ecomputed. The savings is significant for functions
that do some work b ased on partial applications.

7.1.3 Monad

The Monad instance is perhaps most easily understood via its join:

joinR :: Reactive (Reactive a) → Reactive a

The definition of joinR is similar to (<∗ >) above:

joinR ((a ‘Stepper‘ Ev ur) ‘Stepper‘ Ev urr) =
a ‘Stepper‘ Ev u

where u = ...

Either the inner future (ur) or the outer future (urr) will arrive first.
If the inner arrives first, switch and continue waiting for the outer:

(‘switcher‘Ev urr) <$ > ur

The (<$ >) here is over futures. If instead the outer future arrives
first, abandon the inner and get new reactive values from the outer:

6 Recall from Section 4.1that f map f u arrives exactly when the future u

arrives, so the (⊕)’s choice in this case depends only on the relative timing
oarfr uf sa,n sdo ux .

join <$ > urr

Choose whichever comes first:

u = ((‘switcher‘Ev urr) <$ > ur) ⊕ (join <$ > urr)

Then plug this j oin into a standard Monad instance:

instance Monad Reactive where
return = pure
r >> = h = j oinR (fmap h r)

7.1.4 Reactivity

In Section 2.3, stepper (on behaviors) is defined via switcher. For
reactive values, stepperR corresponds to the Stepper constructor:

stepperR :: a → Event a → Reactive a
stepperR :=: a aSt →eppE evre

The more general switching form can b e expressed in terms of
stepperR and monadic j oin:

switcherR :: Reactive a → Event (Reactive a)
→:: RReeaaccttiivvee aa

r ‘switcher→R‘ er a=c j oinR (r ‘stepperR‘ er)

7.2 Events

7.2.1 Functor

The Event functor is also easily defined. Since an event is a future
reactive value, combine f map on Future with f map on Reactive.

instance Functor Event where

fmap f (Ev u) = Ev (fmap (fmap f) u)

7.2.2 Monad

Assuming a suitable j oin for events, the Monad instance is simple:

instance Monad Event where
return a = Ev (return (return a))
r >> = h = j oinE (fmap h r)

This definition of return makes a regular value into an event b y
making a constant reactive value (return) and wrapping it up as an
always-available future value (return).

The j oin operation collapses an event-valued event ee into an
event. Each occurrence of ee delivers a new event, all of which get
adjusted to insure temporal monotonicity and merged together into
a single event. The event ee can h ave infinitely many occurrences,
each of which (being an event) can also have an infinite number of
occurrences. T hus j oinE has the tricky task of merging (a repre-
sentation of) a sorted infinite stream of sorted infinite streams into
a single sorted infinite stream. Since an event is represented as a
Future, the j oin makes essential use of the Future monad7 :

joinE :: Event (Event a) → Event a
joinE (::E Evveenntt u ()E =ve Entve an)t→ →(uE E> v>= en etFa uture ◦ g)

whe(rEev
g (e ‘Stepper‘ ee) = e ⊕ j oinE ee
egF(uetu‘ Srete (pEpevr ‘ue) == ue

7.2.3 Monoid

The Monoid instance r elies on operations on futures:

instance Ord t ⇒ Monoid (Event a) where

s∅t t=⇒ ⇒EMv ∅o
E∅v u ⊕ Ev v == EEvv (∅u ‘mergeu‘ v)

7 This definition is inspired by one from Jules B ean.

The never-occuring event happens in the never-arriving future.
To merge two future reactive values u and v, there are again two

possibilities. If u arrives first (or simultaneously), with value a0 and
next f uture u0, then a0 will b e the initial value and u0 ‘mergeu‘ v
will b e the next future. I f v arrives first, with value b0 and n ext
future v0, then b0 will be the initial value and u ‘mergeu‘ v0 will be
the next future.

mergeu :: Future (Reactive a) → Future (Reactive a)
→:: FFuuttuurree ((RReeaaccttiivvee aa))

u ‘merge→u‘ vF =tu (rein F(RuteRac (ti‘vmeea r)ge‘v) <$ > u) ⊕
((iinnFFuuttRR ((‘um‘meregrege‘v‘)) <<$ $ > > uv))

where
inFutR f (r ‘Stepper‘ Ev u0) = r ‘Stepper‘ Ev (f u0)

8. Monotonic sampling

The semantics of a behavior is a function of time. That function
can b e applied to t ime values in any order. Recall in the seman-
tics of switcher (Section 2.3) that sampling at a time t involves
searching through an event for the last occurrence before t. The
more occurrences take place b efore t, the costlier the search. L azy
evaluation can delay computing occurrences b efore they’re used,
but once computed, these occurrences would remain in the events,
wasting space to hold and time t o search.

In practice, b ehaviors are rendered forward in time, and so are
sampled with monotonically increasing times. M aking this usage
pattern explicit allows for much more efficient sampling.

First, let’s consider reactive values and events. Assume we have
a consumer for generated values:

type Sink a = a → IO ()

For instance, a sink may r ender a number to a GUI widget or
an image to a display window. The functions sinkR and sinkE
consume values as generated by events and reactive values:

sinkR :: Sink a → Reactive a → IO b
sinkE :::: SSiinnkk aa →→ ERveaenctti aa →→ IIOO bb

The implementation is an extremely simple back-and-forth, with
sinkR rendering initial values and sinkE waiting until the next
event occurrence.

sinkR snk (a ‘Stepper‘ e) = snk a >> sinkE snk e
sinkE snk (Ev (Fut (tˆr, r))) = waitFor tˆr >> sinkR snk r

Except in the case of a p redictable event (such as a timer),
waitFor tˆr blocks simply in evaluating the time tˆr of a future
event occurrence. Then when evaluation of tˆr unblocks, the r eal
time is (very slightly past) ˆtr, so the actual waitFor need not do
any additional waiting.

A behavior contains a reactive value whose values are time
functions, so it can be rendered using sinkR if we can come up
with a appropriate sink for time functions.

sinkB :: Sink a → Behavior a → IO b
sinkB :s:n Ski n(Ok arf→) =B dehoa svniokrF a←→ nIe OwTb FunSink snk

sinkR ←snn kFe rf

The p rocedure newTFunSink makes a sink that consumes suc-
cessive time functions. For each consumed constant function K a,
the value a is rendered j ust once (with snk). W hen a non-constant
function Fun f is consumed, a thread is started that r epeatedly
samples f at the current time and renders:

forkIO (forever (f <$ > getTime >> = snk))

In either case, the constructed sink begins by killing the current
rendering thread, if any. M any variations are possible, such as using
a GUI toolkit’s idle event instead of a thread, which has the benefit
of working with thread-unsafe libraries.

9. Improving values

The effectiveness of future values, as defined in Section 4 , depends
on a type wrapper Improving, which adds partial information in
the form of lower bounds. T his information allows a time compar-
ison tˆa 6 tˆb to suceed when the earlier of tˆa and tˆb arrives instead
oinffto hreml aatteior.n I btea flosorea el loithwesrˆtao f‘mˆtaiann‘dtˆbtˆtboiss tk arntop wrondp urceicnigsel loyw.erb ound

Fortunately, exactly this notion was invented, in a more gen-
eral setting, b y Warren Burton. “Improving values” (Burton 1989,
1991) provide a high-level abstraction for parallel functional pro-
gramming with determinate semantics.

An improving value (IV) can b e represented as a list of lower
bounds, ending i n the exact value. An IV representing a simple
value (the exactly function used in Section 4.6), is a singleton list
(no lower bounds). See (Burton 1991, F igure 3) for details.

Of course the r eal value of the abstraction comes from the
presence of lower bounds. Sometimes those b ounds come from
max, but for future times, the b ounds will come to be known over
time. One possible implementation of future times would involve
Concurrent Haskell channels (Peyton J ones et al. 1996).

getChanContents :: Chan a → IO [a]

The idea is to make a channel, invoke getChanContents, and wrap
the result as an IV. Later, lower bounds and (finally) an exact value
are written into the channel. When a thread attempts t o look beyond
the most r ecent lower b ound, it blocks. For this reason, this simple

implementation of improving values must be supplied with a steady
stream of lower bounds, which in the setting of FRP correspond to
event non-occurrences.

Generating and manipulating numerous lower bounds is a sig-
nificant p erformance drawback in the p urely functional implemen-
tation of IVs. A more efficient implementation, developed next,
thus benefits FRP and other uses of IVs.

10. Improving on improving values

In exploring how to improve over the functional implementation of
improving values, let’s look at how future times are used.

• Sampling a reactive value requires comparing a sample time t
with a future time ˆtr0 .

• Choosing the earlier of two future values ((⊕) from Section 4),
uCsheoso msining a thned e(a6rli) orno ffu ttwuroef tuitmueres.v

Imagine that we can efficiently compare an improving value
with an arbitrary k nown (exact) value:8

compareI :: Ord a ⇒ Improving a → a → Ordering

tcHeoosmwtinpa gmrtˆiegah i6ttw wˆtitbe?hu W tˆsb,eeo cc oormue lxpdtarea ricethtIte hrtoe eex c txormaaccttpt t ahirmeeee t xwf arooctmf t uitˆtmubreeaf nrt oidmmc eostˆma,e pa.angrd.e,
it with ˆta. T hese two methods produce the same information but
usually not at the same time, so let’s choose the one that can answer
most p romptly. If indeed tˆa 6 ˆtb, t hen the first m ethod will likely
succeed more promptly and otherwise the second method. The
dilemma in choosing is that we have to k now the answer b efore
we can choose the best method for extracting that answer.

Like many dilemmas, this one results from either/or thinking.

A third alternative is to try both methods in parallel and j ust use

8 The Haskell Ordering type contains LT, EQ, and GT to represent less-
than, equal-to, and greater-than.

whichever r esult arrives first. A ssume for now the existence of an
“unambiguous choice” operator, unamb, that will try two methods
to solve a problem and r eturn whichever one succeeds first. The two
methods are required to agree when they both succeed, for semantic
determinacy. Then

tˆa 6 tˆb = ((ˆta ‘compareI‘ exact ˆtb) ≡ GT) ‘unamb‘
((ˆtb ‘ compareI‘ exact ˆta)) ≡ LT)

Next consider tˆa ‘min‘tˆb. The exact value can b e extracted from
the exact values of tˆa and ˆtb, or from (6) on IVs:

exact (tˆa ‘min‘ ˆtb) = exact tˆa ‘min‘ exact tˆb
= exact (if (tˆa 6 ˆtb) then tˆa else ˆtb)

How can we compute (tˆa ‘min‘ ˆtb) ‘ compareI‘ t for an arbitrary
exact value t? The answer is tˆa ‘ compareI‘ t if tˆa 6 ˆtb, and
tˆb ‘ compareI‘ t otherwise. However, this method, by itself, misses
an important opportunity. Suppose both of these tests can yield
answers b efore it’s possible to know whether tˆa 6 ˆtb. If the

awnasitwienrgst ao g lreeaer,n tw hehnetw heer ctˆaan6u stˆeb. thata nsweri mmediately,w ithout
With these considerations, a new representation for IVs suggests

itself. Since the only two operations we n eed on IVs are exact
and compareI, use those two operations a s the IV r epresentation.
Figure 3 shows the details, with unamb and asAgree defined in
Section 11. Combining (6) and min into minLE allows for a
simple optimization of future (⊕) from Section 4.5.

11. Unambiguous choice

The r epresentation of improving values in Section 10 r elies on an
“unambiguous choice” operator with determinate semantics and an

underlying concurrent implementation.

-- precondition: compatible arguments
unamb :: a → a → a

In order to preserve simple, determinate semantics, unamb may
only be applied to arguments that agree where defined.

compatible a b = (a ≡ ⊥ ∨ b ≡ ⊥ ∨ a ≡ b)

unamb yields the more-defined of the two arguments.

∀a b. compatible a b ⇒ unamb a b = a t b

Operationally, unamb forks two threads and evaluates one argu-
ment in each. When one thread finishes its computed value is re-
turned.

Figure 4 shows one way to implement unamb, in terms of an
ambiguous choice operator, amb. The latter, h aving indeterminate
(ambiguous) semantics, is in the IO type, using race to run two
concurrent threads. For inter-thread communication, the race func-
tion uses a Concurrent Haskell MVar (Peyton J ones et al. 1996) to
hold the computed value. Each thread tries to execute an action and
write the r esulting value into the shared MVar. The takeMVar op-
eration blocks until one of the threads succeeds, after which both
threads are killed (one perhaps redundantly).9 This unamb imple-
mentation fails to address an important efficiency concern. When
one thread succeeds, there is no need to continue running its com-
petitor. Moreover, the competitor may h ave spawned many other
threads (due to nested unamb), all of which are contributing to-
ward work that is no longer relevant.

The assuming function makes a conditional strategy for com-
puting a value. If the assumption is false, the conditional strat-
egy yields ⊥ via hang, which blocks a thread indefinitely, while

9 My thanks to Spencer Janssen for help with this implementation.
-- An improving value. Invariant:
-- compareI iv w compare (exact iv)

data Improving a =
Imp { exact :: a, compareI :: a → Ordering }

exactly :: Ord a ⇒ a → Improving a
exactly a = Imp a (compare a)

instance Eq a ⇒ Eq (Improving a) where
Imp a ≡ Imp bE = a ≡ bv

instance Ord a ⇒ Ord (Improving a) w here
s 6 tO = s and ⇒ (s ‘rmdi n(LImEp‘ t)
s ‘min‘ t = fst (s ‘minLE‘ t)
s ‘max‘ t = fst (s ‘maxLE‘ t)

-- Efficient combination of min and (6)
minLE :: Ord a ⇒ Improving a → Improving a

→ (Improving a, Bool)
Imp u uComp p‘mroinviLnEga‘ Imp v vComp =

(Imp uMinV V wComp, uLeqV)
where

uMinV V = if uLeqV V then u else v
-- u 6 v: Try u ‘ compare‘ v and v ‘ compare‘ u.

uLeqV V = (uComp v ≡ GT) ‘unamb‘ (vComp u ≡ LT)
minComp = iofm uLeqV V≡6 Gt hTen) uComp e(vlsCeo vComp

-- (u ‘min‘ v) ‘ compare‘ t: Try comparing according to
-- whether u 6 v, or use either answer if they agree.

wComp t = minComp t ‘unamb‘
(uComp t ‘ asAgree‘ vComp t)

-- Efficient combination of max and (>)
maxLE :: Ord a ⇒ Improving a → Improving a

→ (Improving a, Bool)
-- ... similarly ...

Figure 3. Improved improving values

consuming neglible resources and generating no error. One use of
assuming is to define asAgree, which was used in Figure 3.

12. Additional f unctionality

All of the usual FRP functionality can b e supported, including the
following.

Integration Numeric integration requires incremental sampling
for efficiency, r eplacing the apply interface from Section 5.3 by
applyK from Section 8. The residual time function returned by
applyK remembers the previous sample time and value, so the next
sampling can do a (usually) small number of integration steps. (For
accuracy, it is often desirable to take more integration steps than
samples.) Integration of reactive behaviors can work simply by in-
tegrating each non-reactive p hase (a time function) and accumu-

ilantteinggrat thieon re (Rsaucltf,t ≡ haRnkabsft h+ ei Rnbctefrv).al-additivityp ropertyo fd efinite
AccumulatioRn InteRgration Ris continuous accumulation on b ehav-
iors. The combinators accumE and accumR discretely accumulate
the results of event occurrences.

accumR :: a → Event (a → a) → Reactive a
accumE :::: aa →→ EEvveenntt ((aa →→ aa)) →→ ERveaenctti vae

-- Unambiguous choice on compatible arguments.
unamb :: a → a → a
a n‘uamnabm: b:a‘ b→ = unsafePerformIO (a ‘ amb‘ b)

-- Ambiguous choice, no p recondition.
amb :: a → a → IO a
a m‘ abm: b:a‘ b→ = ae v→aluI aOte a a ‘race‘ evaluate b

-- Race two actions in separate threads.
race :: IO a → IO a → IO a
race :: IIOO a → IIOO a → IIOO a
a ‘crea c:e:I‘ Ob =

do v ← newEmptyMVar
ta ← f orkIO (a >> = putMVar v)
tb ← f orkIO (b >> = putMVar v)
x ← ftaokrekMIOV (abr v
xret← urnt x

-- Yield a value if a condition is true.
assuming :: Bool → a → a
assuming c a = li→f c ath→ ena a else bottom

-- The value of agreeing values (or bottom)
asAgree :: Eq a ⇒ a → a → a
a ‘A asAgree‘ bq = assuming (a ≡ b) a

-- Never yield an answer. Identity for unamb.
bottom :: a
bottom = unsafePerformIO hangIO

-- Block forever, cheaply
hangIO :: IO a
hangIO = do forever (threadDelay maxBound)

return ⊥

Figure 4 . Reference (inefficient) unamb implementation

Each occurrence of the event argument yields a function to be
applied to the accumulated value.

a ‘ accumR‘ e = a ‘stepper‘ (a ‘ accumE ‘ e)
a ‘ accumE‘ Ev ur = Ev (h <$ > ur)

where
h (f ‘Stepper‘ e0) = f a ‘ accumR‘ e0

Filtering It’s often useful to filter event occurrences, keeping
some occurrences and dropping others. The Event monad instance
allows a new, simple and very general definition that includes
event filtering as a special case. One general filtering tool con-

esaumchesJ uM sta.1y0be values, droppinge ach Nothing andu nwrapping
joinMaybes :: MonadPlus m ⇒ m (Maybe a) → m a
jjooiinnMMaayybbeess :=: M(>o> n =amdPaylbues mmz⇒ erom mret (uMrany)b

The MonadPlus instance for Event uses mzero = ∅ and
mplus = (⊕). The more common FRP event filter has th∅e fanold-
lmopwliungs s =im p(⊕le)g.e Tnherea lmizoatrieonc :o

filterMP :: MonadPlus m ⇒ (a → Bool) → m a → m a
filterMP p Mmo n=a jdoPinluMsam ybe⇒ s ((laift →M B fo mol))
where
f a | p a = Just a

|| optah erwise = Nothing

10 My thanks to Cale Gibbard for this succinct formulation.

13. Related work

The most closely related FRP implementation is the one underlying
the Lula system for design and control of lighting, by Mike Sper-
ber (2001). Like the work described above, Lula-FRP eliminated
the overhead of creating and processing the large numbers of event
non-occurrences that have been present, in various guises, in al-
most all other FRP implementations. Mike noted that the pull-based
event interface that motivates these non-occurrences also imposes a
reaction latency bounded by the polling frequency, which detracts
noticeably from the user experience. To eliminate non-occurrences
and the r esulting overhead and latency, h e examined and addressed
subtle i ssues of events and thread blocking, corresponding to the
those discussed in Section 4.5. M ike’s solution, like the one de-
scribed in Section 10 above, involved a multi-threaded implemen-
tation. However, it did not guarantee semantic determinism, in case
of simultaneous or nearly-simultaneous event occurrences. The im-
plementation of event operations was r ather complex, especially for
event merging. The supporting abstractions used above (future val-
ues, improving values, and unambiguous choice) seem to be helpful
in taming that complexity. Lula-FRP’s b ehaviors still used a pure
pull interface, so the latency solution was limited to direct use of
events r ather than reactive b ehaviors. The reactive value abstrac-
tion used above allows behavior reactions at much lower latency
than the sampling period. Unlike most p ublished FRP implemen-
tations, Lula-FRP was implemented in a strict language (Scheme).
For that reason, it explicitly managed details oflaziness left implicit
in Haskell-based implementations.

“Event-Driven FRP” (E-FRP) (Wan et al. 2002) also has similar

goals. It focused on event-driven systems, i.e., ones in which lim-
ited work is done in reaction to an event, while most FRP imple-
mentations repeatedly re-evaluate the whole system, whether or not
there are relevant changes. Like RT-FRP (Wan et al. 2001), expres-
siveness is restricted in order to make guarantees about resource-
bounded execution. The original FRP model of continuous time is
replaced b y a discrete model. Another restriction compared with
the semantics of the original FRP (preserved in this paper) is that
events are not allowed to occur simultaneously.

Peterson et al. (2000) explored opportunities for parallelism in
implementing a variation of F RP. While the u nderlying semantic
model was not spelled out, it seems that semantic determinacy was
not p reserved, in contrast to the semantically determinate concur-
rency used in this paper (Section 11).

Nilsson (2005) p resented another approach to FRP optimiza-
tion. The key idea was to r ecognize and efficiently handle several
FRP combinator patterns. In some cases, the standard Haskell type
system was inadequate to capture and exploit t hese patterns, but
generalized algebraic data types (GADTs) were sufficient. These
optimizations proved worthwhile, though they did introduce signif-
icant overhead in run-time (pattern matching) and code complexity.
In contrast, the approach described in the present p aper u ses very
simple representations and unadventurous, Hindley-Milner types.
Another considerable difference is that (Nilsson 2005) uses an
arrow-based formulation of FRP, as in Fruit (Courtney and Elliott
2001) and Yampa (Nilsson et al. 2002). The nature of the Arrow
interface is problematic for the goal of minimal re-evaluation. I nput
events and b ehaviors get combined into a single input, which then
changes whenever any component changes. Moreover, because the
implementation style was demand-driven, event latency was still
tied to sampling r ate.

FranTk is a GUI library containing FRP concepts but mixing in

some imperative semantics (Sage 2000). Its implementation was
based on an experimental data-driven FRP implementation (El-
liott 1998b), which was itself inspired by Pidgets++ (Scholz and
Bokowski 1996). Pidgets++ used functional values interactively re-
computed in a data-driven manner via one-way constraints. None

of these three systems supported continuous time, nor implemented
a p ure FRP semantics.

At first b lush, one might think t hat an imperative implementa-
tion could accomplish what we set out to do in t his paper. For in-
stance, there could b e imperative call-backs associated with meth-
ods that side-effect some sort of dependency graph. As far as I
know, n o such implementation has achieved (nor probably could
achieve) FRP’s (determinate) merge semantics for ordered receipt
of simultaneous occurrences (which happens easily with composi-
tional events) or even nearly-simultaneous occurrences. Imperative
implementations are quite distant from semantics, hence h ard to
verify or trust. In contrast, the functional implementation in this
paper evolves from the semantics.

In some formulations of F RP, simultaneous occurrences are
eliminated or merged (Nilsson et al. 2002; Wan and Hudak 2000;
Wan et al. 2001), while this p aper retains such occurrences as dis-
tinct. In some cases, the elimination or merging was motivated b y
a desire to r educe b ehaviors and events to a single notion. This
desire is p articularly compelling in the arrow-based FRP formu-
lations, which replace b ehaviors (or “signals”) and events with a
higher level abstraction of “signal transformers”. Although simul-
taneity is very unlikely for (distinct) p urely physical events, it can
easily happen with F RP’s compositional events.

14. Future work

• Much more testing, measurement, and tuning is needed i n order
to p ragmatically and quantitatively evaluate the implementation
techniques described in t his paper, especially the new imple-
mentation of improving values described in Section 10. How
well do the techniques work i n a complex application?

• Can t hese ideas be transplanted to arrow-based formulations

of FRP? How can changes from separately-changing inputs be
kept from triggering unnecessary computation, when the arrow
formulations seem to require combining all inputs into a single
varying value?

• Explore other uses of the unambiguous choice operator defined
in Section 11, and study its p erformance, including the kinds
of parallel search algorithms for which improving values were
invented (Burton 1989, 1991).

• Experiment with relaxing the assumption of temporal mono-
tonicity exploited in Section 8. For instance, a zipper represen-
tation for bidirectional sampling could allow e fficient access to
nearby p ast event occurrences as well as future ones. Such a
representation may b e efficient in time though leaky in space.

• Type class morphisms are u sed to define the the semantics
of every key type in this paper except for events. Can this
exception b e eliminated?

• Since reactive values are purely d ata, they cache “for free”.
In contrast, time functions (Section 5.3) have a partly function
representation. Is there an efficiently caching r epresentation?

15. Acknowledgments

I’m grateful to Mike Sperber for the conversation that inspired the
work described in this paper, as well as his help understanding
Lula-FRP. My thanks also t o the many reviewers and readers of
previous drafts for their helpful comments.

References

F. Warren Burton. Indeterminate behavior with determinate se-
mantics in parallel p rograms. In I nternational conference on

Functional p rogramming languages and computer architecture,
pages 340–346. ACM, 1989.

F. Warren Burton. E ncapsulating nondeterminacy in an abstract
data type with deterministic semantics. Journal of Functional
Programming, 1(1):3–20, January 1991.

Antony Courtney and Conal Elliott. Genuinely functional user
interfaces. In Haskell Workshop, September 2001.

Conal Elliott. A b rief introduction to ActiveVRML. Technical
Report MSR-TR-96-05, Microsoft Research, 1996. URL h ttp :
//conal .net/papers/ActiveVRML/.

Conal Elliott. Functional implementations of continuous modeled
animation. In P roceedings of PLILP/ALP, 1998a.

Conal Elliott. An imperative implementation of functional reactive
animation. Unpublished draft, 1998b. URL http ://conal .
net/papers/new-fran-draft .pdf.

Conal Elliott. Denotational design with type class morphisms.
Technical Report 2009-01, LambdaPix, March 2009. URL
http ://conal .net/papers/type-class-morphisms.

Conal Elliott and Paul Hudak. Functional reactive animation. In
International Conference on Functional P rogramming, 1997.

Saunders Mac Lane. Categories for the Working M athematician.
Graduate Texts in M athematics. Springer, September 1998.

Conor McBride and Ross Paterson. Applicative p rogramming with
effects. Journal of Functional P rogramming, 18(1): 1–13, 2008.

Henrik Nilsson. Dynamic optimization for functional reactive pro-
gramming using generalized algebraic data types. In Interna-
tional conference on Functional p rogramming, pages 54–65.
ACM Press, 2005.

Henrik Nilsson, Antony Courtney, and J ohn Peterson. Functional
reactive programming, continued. In Haskell Workshop, pages
51–64. ACM Press, October 2002.

John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion:
Controlling robots with Haskell. In Practical Aspects of Declar-
ative L anguages, 1999.

John Peterson, Valery Trifonov, and Andrei Serjantov. Parallel
functional reactive p rogramming. Lecture N otes in Computer
Science, 1753, 2000.

Simon Peyton J ones, Andrew Gordon, and Sigbjorn Finne. Con-
current Haskell. In Symposium on P rinciples of Programming
Languages, January 1996.

Meurig Sage. FranTk – a declarative GUI language for Haskell.
In I nternational Conference on F unctional P rogramming, pages
106–1 18. ACM, ACM Press, September 2000.

Enno Scholz and Boris Bokowski. PIDGETS++ - a C++ framework
unifying postscript p ictures, GUI objects, and lazy one-way con-
straints. In Conference on the Technology of Object-Oriented
Languages and Systems. Prentice-Hall, 1996.

Michael Sperber. Computer-Assisted Lighting Design and Control.
PhD thesis, U niversity of T ¨ubingen, June 2001.

Philip Wadler. Comprehending monads. In Conference on L ISP
and Functional P rogramming, p ages 61–78. ACM, 1990.

Zhanyong Wan and Paul Hudak. Functional Reactive Programming
from first p rinciples. In Conference on Programming Language
Design and I mplementation, 2000.

Zhanyong Wan, W alid Taha, and Paul Hudak. Real-time FRP. In
International Conference on Functional P rogramming, 2001.

Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP.
In Practical Aspects of Declarative Languages, January 2002.

	Introduction
	Functional reactive programming
	Behaviors
	Functor
	Applicative functor
	Monad

	Events
	Monoid
	Functor
	Monad
	Applicative functor

	Combining behaviors and events

	From semantics to implementation
	Future values
	Functor
	Applicative functor
	Monad
	Monoid
	Implementing futures
	Future times

	Reactive normal form
	Decoupling discrete and continuous change
	Reactive values
	Time functions
	Composing

	Another angle on events
	Implementing operations on reactive values and events
	Reactive values
	Functor
	Applicative
	Monad
	Reactivity

	Events
	Functor
	Monad
	Monoid

	Monotonic sampling
	Improving values
	Improving on improving values
	Unambiguous choice
	Additional functionality
	Related work
	Future work
	Acknowledgments

