
Combinator Parsing: A Short Tutorial

S. Doaitse Swierstra

Center for Software Technology, Utrecht University, The Netherlands,
doaitse@swierstra. . net

Abstract. There are numerous ways to implement a parser for a given
syntax; using parser combinators is a powerful approach to parsing which
derives much of its power and expressiveness from the type system and
semantics of the host programming language. This tutorial begins with
the construction of a small library of parsing combinators. This library
introduces the basics of combinator parsing and, more generally, demon-
strates how domain specific embedded languages are able t o leverage
the facilities of the host language. After having constructed our small
combinator library, we investigate some shortcomings of the na¨ı ve im-
plementation introduced in the first part, and incrementally develop an
implementation without these problems. Finally we discuss some fur-
ther extensions of the presented library and compare our approach with
similar libraries.

1 Introduction

Parser combinators [2, 4, 8, 15] occupy a unique place in the field of parsing; they
make its possible to write expressions which look like grammars, but actually
describe parsers for these grammars. Most mature parsing frameworks entail
voluminous preprocessing, which read in the syntax at hand, analyse it, and
produce target code for the input grammar. By contrast, a relatively small parser
combinator library can achieve comparable parsing power by harnessing the
facilities of the language. In this tutorial w e develop a mature parser combinator
library, which rivals the power and expressivity of other frameworks in only a
few hundred lines of code. Furthermore it is easily extended if desired to do so.
These advantages follow from the fact that we have chosen to embed context-free

grammar notation into a general purpose programming language, by t aking the
Embedded Domain Specific Language (EDSL) approach.

For many areas special purpose programming languages have been defined. The
implementation of such a language can proceed along several different lines.
On the one hand one can construct a completely new compiler, thus having
complete freedom in the choice of syntax, scope rules, type system, commenting
conventions, and code generation techniques. On the other hand one can try
to build on top of work already done by extending an existing host language.
Again, here one can pursue several routes; one may extend an existing compiler,

2

or one can build a library implementing the new concepts. In the latter case
one automatically inherits –but is also limited to– the syntax, type system and
code generation techniques from the existing language and compilers for that
language. The success of this technique thus depends critically on the properties
of the host language.

With the advent of modern functional languages like Haskell [11] this approach
has become a really feasible one. By applying the approach to build a combinator
parsing library w e show how Haskell’s type system (with the associated class sys-
tem) makes this language an ideal platform for describing EDSLs . Besides being
a kind of user manual for the constructed library this tutorial also serves as an
example of how to use Haskell concepts in developing such a library. Lazy evalua-
tion plays a very important role in the semantics of the constructed parsers; thus,
for those interested in a better understanding of lazy evaluation, the tutorial also
provides many examples. A major concern w ith respect to combinator parsing is
the ability or need to properly define and use parser combinators so that func-
tional values (trees, unconsumed tokens, continuations, etc.) are correctly and
efficiently manipulated.

In Sect. 2 we develop, starting from a set of basic combinators, a parser combina-
tor library, the expressive power of w hich extends well above what is commonly
found in EBNF-like formalisms. In Sect. 3 w e present a case study, describing a
sequence of ever more capable pocket calculators. Each subsequent version gives
us a chance to introduce some further combinators w ith an example of their use.

Sect. 4 starts with a discussion of the shortcomings of the na¨ı ve implementation
which was introduced in Sect.2, and we present solutions for all the identified

problems, w hile constructing an alternative, albeit much more complicated li-
brary. One of the remarkable points here is that the basic interface w hich was
introduced in Sect. 2 does not have to change, and that –thanks to the facilities
provided by the Haskell class system– all our derived combinators can be used
without having to be modified.

In Section 5 we investigate how we can use the progress information, which we
introduced to keep track of the progress of parsing process, introduced in Sect.
4 to control the parsing process and how to deal with ambiguous grammars. In
Sect. 6 we show how to use the Haskell type and class system to combine parsers
which use different scanner and symbol type intertwined. In Sect. 7 we extend
our combinators with error reporting properties and the possibility to continue
with the parsing process in case of erroneous input. In Sect. 8 we introduce a
class and a set of instances which enables us to make our expressions denoting
parsers resemble the corresponding grammars even more. In Sect. 9 we touch
upon some important extensions to our system which are too large to deal with
in more detail, in Sect. 10 we provide a short comparison with other similar
libraries and conclude.

3

2 A Basic Combinator Parser Library

In this section we describe how to embed grammatical descriptions into the
programming language Haskellin such a way that the expressions we write closely
resemble context- free grammars, but actually are descriptions of parsers for such
languages. This technique has a long history, which can be traced back to the use
of recursive descent parsers [2] , which became popular because of their ease of
use, their nice integration with semantic processing, and the absence of the need
to (write and) use an off-line parser generator. We assume that the reader has
a basic understanding in the concept of a context-free grammar, and probably
also has seen the use of parser generators, such as Y ACC or ANTLR.

Just like most normal programming languages, embedded domain specific lan-
guages are composed of two things:

1. a collection of primitive constructs
2. ways to compose and name constructs

and when embedding grammars things are no different. The basic grammatical
concepts are terminal and non-terminal symbols, or terminals and non-terminals
for short. They can be combined by sequential composition (multiple constructs
occurring one after another) or by alternative composition (a choice from mul-
tiple alternatives).

Note that one may argue that non-terminals are actually not primitive, but
result from the introduction of a naming scheme; we will see that in the case of
parser combinators, non-terminals are not introduced as a separate concept, but
just are Haskell names referring to values which represent parsers.

2.1 The Types

Since grammatical expressions will turn out to be normal Haskell expressions,
we start by discussing the types involved; and not j ust the types of the basic
constructs, but also the types of the composition mechanisms. For most embed-
ded languages the decisions taken here heavily influence the shape of the library
to be defined, its extendability and eventually its success.

Basically, a parser takes a list of symbols and produces a tree. Introducing type
variables to abstract from the symbol type s and the tree type t, a first approx-
imation of our Parser type is:

type Parser s t = [s] → t

Parsers do not need to consume the entire input list. Thus, apart from the tree,
they also need to return the part of the input string that was not consumed:

type Parser s t = [s] → (t, [s])

4

The symbol list [s] can be thought of as a state that is transformed by the
function while building the tree result.

Parsers can be ambiguous: there may be multiple ways t o parse a string. Instead
of a single result, we therefore have a list of possible results, each consisting of
a parser tree and unconsumed input:

type Parser s t = [s] → [(t, [s])]

This idea was dubbed by Wadler [17] as the “list of successes” method, and it
underlies many backtracking applications. An added benefit is that a parser can
return the empty list to indicate failure (no successes). If there is exactly one
solution, the parser returns a singleton list.

Wrapping the type with a constructor P in a newtype definition w e get the
actual Parser type that we will use in the following sections:

newtype Parser s t = P ([s] → [(t, [s])])
unnePw t(yPp pe) =a p

2.2 Basic Combinators: pSym, pReturn and pFail

As an example of the use of the Parser type we start by writing a function
which recognises the letter ’ a’ ’ : keeping the “list of successes” type in mind we
realise that either the input starts with an ’ a’ character, in which case we have
precisely one way to succeed, i.e. by removing this letter from the input, and
returning this character as the witness of success paired with the unused part
of the input. If the input does not start with an ’ a ’ (or is empty) we fail, and
return the empty list, as an indication that there is no way to proceed from here:

pLettera :: Parser Char Char
pLettera = P (λinp → case inp of

c(sa : essi)n |p s ≡f ’ a ’ → [(’ a’ , ss)]
(osth :es rsw)i|s es ≡→ [[](

)
Of course, we want to abstract from this as soon as possible; we want to be able
to recognise other characters than ’ a ’ , and we want to recognise symbols of
other types than Char. We introduce our first basic parser constructing function
pSym:

pSym :: Eq s ⇒ s → Parser s s
pSym a = EPq q(s λi⇒n p s→→ case sienrp sosf

c(sa : essi)n |p x ≡f a → [(s, ss)]
(osth :es rsw)i|s ex →→ [[](

)
Since we want to inspect elements from the input with terminal symbols of type
s, w e have added the Eq s constraint, which gives us access t o equality (≡) for
vs,al wueesh oafv type s. dN tohtee Ethqa ts tchoen sfutrnacitnito,nw phSicymhg bivye ist useslfa cisc esstrsict toly e qsupeaaliktying(≡ n)of to a

5

parser, but a function which returns a parser. Since the argument is a run-time
value it thus becomes possible to construct parsers at run-time.

One might wonder why we have incorporated the value of s in the result, and
not the value a? The answer lies in the use of Eq s in the type of Parser; one
should keep in mind that when ≡ returns True this does not imply t hat the
csohmoupladr kede vpali unesm are dgt uhaartan wteheedn t ≡o br ee tbuirt-nwsiT ser ueqeu tahl.i sInd doeeesd, n oitt i ism v ery common
for a scanner – which pre-processes a list of characters into a list of tokens to be
recognised– to merge different tokens into a single class with an extra attribute
indicating which original token was found. Consider e.g. the following Token
type:

data Token = Identifier -- terminal symbol used in parser
| Ident String -- token constructed by scanner
|| NIduemntbeS rt Iinntg
|| INfu Smybmerbo Iln
|| TIfhe Snym Sbyomlbol

Here, the first alternative corresponds to the terminal symbol as w e find it in
our grammar: we want to see an identifier and from the grammar point of view
we do not care which one. The second alternative is the token which is returned
by the scanner, and which contains extra information about which identifier was
actually scanned; this is the value we want to use in further semantic processing,
so this is the value we return as witness from the parser. That these symbols are
the same, as far as parsing is concerned, is expressed by the following line in the
definition of the function ≡:

instance Eq Token where
(Ident)≡ Identifier = True
...

If we now define:

pIdent = pSym Identifier

we have added a special kind of terminal symbol.

The second basic combinator we introduce in this subsection is pReturn, which
corresponds to the ?-production. The function always succeeds and as a witness
returns its parameter; as we will see the function will come in handy when

building composite witnesses out of more basic ones. The name was chosen to
resemble the monadic return function, which injects values into the monadic
computation:

pReturn :: a → Parser s a
ppRReettuurrnn a a= →P P(λairnspe r→s [a (a, inp)])

We could have chosen to let this function always return a specific value (e.g. ()) ,
but as it will turn out the given definition provides a handy way to inject values
into the result of the overall parsing process.

The final basic parser we introduce is the one which always fails:

6

pFail = P (const [])

One might wonder why one would need such a parser, but that will become clear
in the next section, when w e introduce pChoice.

2.3 Combining Parsers: <∗ > , <|> , <$> and pChoice.

A grammar production usually consists of a sequence of terminal and non-
terminal symbols, and a first choice might be t o use values of type [Parser s a] to
represent such productions. Since we usually will associate different types to dif-
ferent parsers, this does not work out. Hence we start out by restricting ourselves
to productions of length 2 and introduce a special operator <∗ > which combines
ttwoo p parsers innsto o a new one. nWd hinattr type esa hos upldec we ocpheoroasteo fro< r∗ >thi ws hoipcherac otmorb? Anens
obvious choice might be the type:

Parser s a → Parser s b → Parser s (a, b)

in which the witness type of the sequential composition is a pair of the wit-
nesses for the elements of the composition. This approach was taken in early
libraries [4] . A problem with this choice is that when combining the resulting
parser w ith further parsers, we end up with a deeply nested binary Cartesian
product. Instead of starting out with simple types for parsers, and ending up
with complicated types for the composed parsers, w e have taken the opposite
route: we start out with a complicated type and end with a simple type. This
interface was pioneered by R ¨ojemo [12] , made popular through the library de-

scribed by Swierstra and Duponcheel [15] , and has been incorporated into the
Haskell libraries by McBride and Paterson [10] . Now it is know as the applica-
tive interface. It is based on the idea that if we have a value of a complicated
type b → a, and a value of type b, we can compose them into a simpler type by
taypppleyib n g→ t ahe, f ainrsdt avav luaelu teoo tfht ey pseeco bn,dw one. nUc soinmgp tohsies tihnesimghi tn we can now rgt iyvpee etb hey
type of <∗ > , together with its definition:

(<∗ >) :: Parser s (b → a) → Parser s b → Parser s a
(P< p1 <∗ > P p2 =:: PPa (rλseinrps → (b b[→ →(v1a v2 , →ssP 2)a |r s(evr1 , ss1)→ →←P p1 inp, ((vv2, ss2)) ←← p2 ss1

]
)

The resulting function returns all possible values v1 v2 with remaining state ss2 ,
where v1 is a witness value returned by parser p1 with remaining state ss1. The
state ss1 is used as the starting state for the parser p2 , which in its turn returns
the witnesses v2 and the corresponding final states ss2 . Note how the types of
the parsers were chosen in such a way that the value of type v1 v2 matches the
witness type of the composed parser.

As a very simple example, w e give a parser which recognises the letter ’a’ twice,
and if it succeeds returns the string "aa" :

7

pStringa a = (pReturn (:) <∗ > p Lettera)
<p∗ R >e

(<p∗ R> eturn (λx → [x]) <∗ > pLettera)

Let us take a look at the types. The type of (:) is a → [a] → [a] , and hence
tLheet type aokfe epa Rel otuorkn a(:t) tihs ePta yrspeers. s (hae e→t y [p ae] o→f ([: a)] i)s . Sa in →ce t[ahe] type o]f, p aLnedtteh rean cise
tPhaerst eypr eCo hfap rR Cehtuarrn, t (h:)e type rosfe prRs e t(uar→n (:[a)<]∗ → >p L[aet]t)e.rS ai nisc ePta hrseet ry pCeh aorfp (L[Cetthearra] i→s

[P Cahrsarer])C. ShaimrilC arhalyr ,tht eh type eoof fthp eR reitguhrtn nha (:n)<d ∗ s>idpeL eoptteerraan isd Pisa PrsaerrseC r Cahra (r[C[Chahrar]→] ,
and hence the type of the complete expression is Parser Char [Char] . Having
chosen <∗ > to be left associative, the first pair of parentheses may be left out.
Tchhousse,n many oof our parsers iwatilivl est,a trhte of uirts tbyp apirroo dfu pcianreg some sfum ncatyiob ne, lfoelftlowo uetd.
by a sequence of parsers each providing an argument to this function.

Besides sequential composition we also need choice. Since we are using lists to
return all possible ways to succeed, we can directly define the operator <|> by
returning t phoes csiobnlecaw teanysatit oons uofc caelle dp,o swseibc lea w ays ictnl wy hdiecfhin eeitt hheer oopf eirtsa arguments

can succeed:

(<|>) :: Parser s a → Parser s a → Parser s a
(P< p 1)<|> P p2 :=: P PPa r(sλeirnsp a→→ p 1 inp e+ +r p2 in →p) P

Now we have seen the definition of <|> , note that p Fail is both a left and a right
uNnoiwt f wore thhavise operator:

pFail <|> p ≡ p ≡ p <|> p Fail

which will play a role in expressions like

pChoice ps = f oldr (<|>) pFail p s

One of the things left open thus far is what precedence level these newly in-
troduced operators should have. It turns out that the following minimises the
number of parentheses:

infixl 5 <∗ >
iinnffiixxrl 35 << ∗|>>

As an example to see how this all fits together, we write a function which recog-
nises all correctly nested parentheses – such as " () (() ()) "– and returns the
maximal nesting depth occurring in the sequence. The language is described by
the grammar S → ’ (’ S ’) ’ S | ?, and its transcription into parser combinators
trehaedg sr:

parens :: Parser Char Int
parens = pReturn (λ b d → (1+ b) ‘ max‘ d)

<∗ > pSym ’ (d d’ →< ∗ >(1 parens m<∗ a >x ‘p dS)ym ’) ’ <∗ > p arens
<|> p<R ∗> etu prSny m0

Since the pattern pReturn ... <∗ > will occur quite often, we introduce a third
Scoinmcebint ahteor p,a ttot bren d peRfienteudr nin. .t.e <rm ∗ >s wofi ltlh eo cccoumrbq iunaitteoro sf we ,hw avee seen daulrceeada y. t hTihrde
combinator <$> takes a function of type b → a, and a parser of type Parser s b,

8

and builds a value of type Parser s a, by applying the function to the witness
returned by the parser. Its definition is:

infix 7 <$>

(<$>) :: (b → a) → (Parser s b) → Parser s a

(f< <<$>$>) p (=b p→ Re atu)r→ n (fP P<a∗ r> s p

Using this new combinator we can rewrite the above example into:

parens = (λ b d → (1+ b) ‘max‘ d)
<$>d p→ Sy (m1 +’ (b ’) <‘ m ∗> a parens <∗ > pSym ’) ’ <∗ > parens

<|> pReturn 0m

Notice that left argument of the <$> occurrence has type a → (Int → (b →

N(Inotti c→e tIhnat)t))l e , twha ircghu ims a ftuon fctt iohne <ta$k>ingo cthcuer froenurc ereh sualstst yrpeetura ne →d b (Iyn tth→e parsers
t(Ion tth→ e riI nghtt) o)f, twhhei <h$i >s aaf nudn ccotinonstrt uacktins gtht eh eref osuulrt rseosuuglhtstr; ethtuisr naelld wb yort khse b peacrasuesres
we have defined <∗ > to associate to the left.

Although we said we w ould restrict ourselves to productions of length 2, in fact
we can j ust write productions containing an arbitrary number of elements. Each
extra occurrence of the <∗ > operator introduces an anonymous non-terminal,
ewxhtircah oisc cuusrerde nocnelyo once.

Before going into the development of our library, there is one nasty point to
be dealt with. For the grammar above, w e could have j ust as well chosen S →

bSe e’ d(e ’e lSt ’w w)i ’t |. ?, brut th eung froarmtumnaatrela yb tohvee, d wierec cto utrldan hsacvrieptj iuosnt ianst ow a parser nw Sou→ ld
nSo’t w’oS rk.’)W’| hy? nb outt? uBnefcoartuusen ttheley rt ehseuld tiinrgec parser cirsi pletifto nre icnutors iavpe :a trhseer parser
parens will start by calling itself, and this will lead to a non-terminating parsing
process. Despite the elegance of the parsers introduced thus far, this is a seri-
ous shortcoming of the approach taken. Often, one has to change the grammar
considerably to get rid of the left-recursion. Also, one might w rite left-recursive
grammars without being aware of it, and it will take time to debug the con-
structed parser. Since we do not have an off-line grammar analysis, extra care
has to be taken by the programmer since the system j ust does not work as ex-
pected, without giving a proper warning; it may j ust fail to produce a result at
all, or it may terminate prematurely with a stack-overflow.

2.4 Special Versions of Basic Combinators: <∗ , ∗> , <$ and opt.

As we see in the parens program the values w itnessing the recognition of the
parentheses themselves are not used in the computation of the result. As this
situation is v ery common we introduce specialised versions of <$> and <∗ > : in
tshiteu new operators m<$m, o<n∗ waned in ∗> , dtuhcee missing sberdacv keerts oinndsico aft e<s$ >wha icnhd w<i∗ t> n:ei sns
tvhaeluen eisw n oopte rtoa boer sin< c$lu,d< e∗ d ainnd dth∗ >e ,re tshueltm :

infixl 3 ‘ opt‘
infixl 5 <∗ , ∗>

iinnffiixxll 75 <<∗ $,

9

f <$ p = const <$> pReturn f <∗ > p
p << ∗$ q == ccoonnsstt <<$$>> p <<∗ ∗ > > q
p <∗> ∗ q == cido <$$> p <<∗ ∗ > > q

We use this opportunity to introduce two further useful functions, opt and
pParens and reformulate the parens function:

pParens :: Parser s a → Parser s a
ppPPaarreennss p P=a irdse <r$s pa S y→m P’ a(r ’s e<r ∗> s p <∗ pSym ’) ’

opt :: Parser s a → a → Parser s a
p p‘ to: p:tP‘ v =r p a<→| > p aR →etuP rnar v

parens = (max. (1+)) <$> pParens parens <∗ > parens ‘ opt‘ 0

As a final combinator, which we w ill use in the next section, we introduce a
combinator which creates the parser for a specific keyword given as its parameter:

pSyms [] = pReturn []
pSyms (x : xs) = (:) <$> p Sym x <∗ > pSyms xs

3 Case Study: Pocket Calculators

In this section, w e develop – starting from the basic combinators introduced in
the previous section– a series of pocket calculators, each being an extension of
its predecessor. In doing so w e gradually build up a small collection of useful
combinators, which extend the basic library.

To be able to run all the different versions we provide a small driver function
run : : (Show t) ⇒ Parser Char t → String → IO () in appendix A. The first
argument oowf t th)e ⇒fun Pctairosne run aisr rtt he→ →act Sutarlin pgo→ cketI Oca l(c)ui lnatoa rp ptoe nbdei xus Aed.,T Twhheerf ierasts
the second argument is a string prompting the user with the kind of expressions
that can be handled. Furthermore we perform a little bit of preprocessing by
removing all spaces occurring in the input.

3.1 Recognising a Digit

Our first calculator is extremely simple; it requires a digit as input and returns
this digit. As a generalisation of the combinator pSym we introduce the com-
binator pSatisfy: it checks whether the current input token satisfies a specific
predicate instead of comparing it with the expected symbol:

pDigit = pSatisfy (λx → ’ 0 ’ 6 x ∧ x 6 ’ 9 ’)
ppDSaitgiistfy = :: S(sa →tis yBo(oλlx) →→ ’P0a’rs6e r s s
ppSSaattiissffyy p (=s P→ (Bλoinopl) →→ case einrp s o sf

c(xa : exsi)n p| p x → [(x, xs)]
(oxth :ex rsw)is| ep →→ [[](

)
pSym a = pSatisfy (≡ a)

10

A demo run now reads:

*Calcs> run pDigit "5 "
Give an expression like : 5 or (q) to quit
3
Result is : ’ 3 ’
Give an expression like : 5 or (q) to quit
a
Incorrect input
Give an expression like : 5 or (q) to quit

q
*Calcs>

In the next version we slightly change the type of the parser such that it returns
an Int instead of a Char, using the combinator <$>:

pDigitAsInt :: Parser Char Int
pDigitAsInt = (λc → fromEnum c − fromEnum ’ 0 ’) <$> pDigit

3.2 Integers: pMany and pMany1

Since single digits are very boring, let’s change our parser into one which recog-
nises a natural number, i.e. a (non-empty) sequence of digits. For this purpose
we introduce two new combinators, both converting a parser for an element to
a parser for a sequence of such elements. The first one also accepts the empty
sequence, whereas the second one requires at least one element to be present:

pMany, pMany1 :: Parser s a → Parser s [a]
ppMMaannyy p =an (y:)1 <: :$P >a p <e r∗> s spa M→ anPy p ‘s oeprt s‘ [[]a
pMany1 p == ((::)) <<$$>> p <<∗ ∗ > > pMany p

The second combinator forms the basis for our natural number recognition pro-
cess, in which w e store the recognised digits in a list, before converting this list
into the Int value:

pNatural :: Parser Char Int
pNatural = f oldl (λa b → a ∗ 10 + b) 0 <$> pMany1 pDigitAsInt

From here it is only a small step to recognising signed numbers. A − sign in
fFrroonmt o hfe trhee dti igsito s nilsy yma aps pmeadll los ntetop t thoe rfeucnocgtinoinsi negate, dann du imf ibt irss .abA se− nt we use
the function id:

pInteger :: Parser Char Int
pInteger = (negate <$ (pSyms " -") ‘ opt‘ id) <∗ > pNatural

3.3 More Sequencing: pChainL

In our next version, we w ill show how to parse expressions with infix operators of
various precedence levels and various association directions. We start by parsing

11

an expression containing a single + operator, e.g. "2+55 " . Note again that the
result of recognising the + token is discarded, and the operator (+) is only
applied to the two recognised integers:

pPlus = (+) <$> pInteger <∗ pSyms "+" <∗ > pInteger

We extend this parser to a parser which handles any number of operands sepa-
rated by +-tokens. It demonstrates how we can make the result of a parser to
differ completely from its “natural” abstract syntax tree.

pPlus0 = applyAll <$> pInteger <∗ > pMany ((+) <$ pSyms "+" <∗ > pInteger)

applyAl=l :: a →lyA A[a <→$ >a]p →In a
aappppllyyAAllll x a(f→ : f [s)a →=]a→ ppla yAll (f x) f s
applyAll x [] = x

Unfortunately, this approach is a bit too simple, since we are relying on the
commutativity of + for this approach to work, as each integer recognized in the
call to p Many becomes the first argument of the (+) operator. If we want to do
the same for expressions with − operators, we have to make sure that we f lip
tthhee operator aexspsorcesiastieodn sww itihth t h−e recognised operator otom keank,e i snu roerd tehra ttow em aflikpe
the value which is recognised as second operand to become the right hand side
operand:

pMinus0 = applyAll <$> pInteger <∗ > pMany (flip (−) <$ pSyms "-"
$< p ∗> Sy ypmIsnte" g-e"r

)
flip f x y = f y x

From here it is only a small step to the recognition of expressions which contain
both + and − operators:

pPlusMinus = applyAll <$> pInteger
<∗ > pMany ((flip (−) <$ pSyms "- "

<|>
flip (+) <$ pSyms "+ "

)) <∗ > p Integer
Since we will use this pattern often we abstract from it and introduce a parser
combinator pChainL, which takes two arguments:

1. the parser for the separator, which returns a v alue of type a → a → a
12.. tthhee parser ffoorr tthhee oseppeararantdosr,, w whhiicchh r reettuurrnnss aa v vaalluuee o off tt yyppee aa

Using this operator, we redefine the function pPlusMinus:

pChainL :: Parser s (a → a → a) → Parser s a → Parser s a
ppCChhaaiinnLL op p =se arp spl(yaA →ll < a$ →> p <)∗ → > pMany (sfa lip→ →<$P >a op r<s ∗ > a p)
ppPChluasiMnLino ups0p p== ((a−p)p <yA$ lplS <y$m>s p" <-∗ "> ><p |>M (a+n)y < (f$l ppS< ym$>s o"p+" <)∗

(‘(p−C)ha< i$nL pS‘
pInteger

12

3.4 Left Factoring: pChainR, <∗ ∗> and <??>

As a natural companion to pChainL, we would expect a pChainR combinator,
which treats the recognised operators right-associatively. Before giving its code,
we first introduce two other operators, which play an important role in fighting
common sources of inefficiency. When w e have the parser p:

p = f <$> q <∗ > r
<|> g <<$$>> q <<∗ ∗ > > s

then we see that our backtracking implementation may first recognise the q from
the first alternative, subsequently can fail when trying t o recognise r, and will
then continue with recognising q again before trying to recognise an s. Parser
generators recognise such situations and perform a grammar transformation (or
equivalent action) in order to share the recognition of q between the two alterna-
tives. Unfortunately, we do not have an explicit representation of the underlying
grammar at hand which we can inspect and transform [16] , and without further
help from the programmer there is no way we can identify such a common left-
factor. Hence, we have to do the left-factoring by hand. Since this situation is
quite common, w e introduce two operators which assist us in this process. The
first one is a modification of <∗ > , which w e have named < ∗∗> ; it differs from <∗ >
ifinr ttho ant i its a ap pmlioedsi tihcaet iorensuo lft o ∗ f> i,tws hriicghhtw -heanh dav esin dea mopeder< a∗ n∗> d ;ti ot dt hieff rress ufrlot mof< ∗i>t s
left-hand side operand:

(< ∗∗>) :: Parser s b → Parser s (b → a) → Parser s a
p < ∗∗∗ > ∗>) q P=a (rλsear rf s →b →f a P) a<rs$>er p <(b∗ > → q

With help of this new operator we can now transcribe the above example, intro-
ducing calls to f lip because the functions f and g now get their second arguments
first, into:

p = q <∗ ∗> (flip f <$> r <|> f lip g <$> s)

In some cases, the element s is missing from the second alternative, and for such
situations we have the combinator <??>:

(<??>) :: Parser s a → Parser s (a → a) → Parser s a
p <???>?>) q P=a p <e r∗∗ > s a(q→ →‘ o Ppta‘ isde)r

Let us now return to the code for pChainR. Our first attempt reads:

pChainR op p = id <$> p
<|> flip ($) <$> p <∗ > (flip <$> op <∗ > pChainR op p)

which can, using the refactoring method, be expressed more elegantly by:

pChainR op p = r where r = p <??> (flip <$> op <∗ > r)

3.5 Two Precedence Levels

Looking back at the definition of pPlusMinus, w e see still a recurring pattern,
i.e. the recognition of an operator symbol and associating it with its semantics.

13

This is the next thing we are going to abstract from. We start out by defining a
function that associates an operator terminal symbol w ith its semantics:

pOp (sem, symbol) = sem <$ pSyms symbol

Our next library combinator pChoice takes a list of parsers and combines them
into a single parser:

pChoice = f oldr (<|>) p Fail

Using these two combinators, w e now can define the collective additive operator
recognition by:

anyOp = pChoice.map pOp
addops = anyOp [((+) , "+") , ((−) , "-")]

Since multiplication has precedence over addition, we can now define a new non-
terminal pT Times, which can only recognise operands containing multiplicative
operators:

pPlusMinusTimes = pChainL addops p Times
pTimes = pChainL mulops pInteger
mulops = anyOp [((∗) , " * ")]

3.6 Any Number of Precedence Levels: pPack

Of course, we do not want to restrict ourselves to j ust two priority levels. On
the other hand, we are not looking forward to explicitly introduce a new non-
terminal for each precedence level, so we take a look at the code, and try t o
see a pattern. We start out by substituting the expression for pTimes into the

definition of pPlusMinusTimes:

pPlusMinusTimes = pChainL addops (pChainL mulops p Integer)

in which we recognise a f oldr:

pPlusMinusTimes = f oldr pChainL pInteger [addops, mulops]

Now it has become straightforward to add new operators: j ust add the new
operator, with its semantics, to the corresponding level of precedence. If its
precedence lies between two already existing precedences, then j ust add a new
list between these two levels. To complete the parsing of expressions we add the
recognition of parentheses:

pPack :: Eq s ⇒ [s] → Parser s a → [s] → Parser s a
pPack o p c :=: EpqS sym⇒ s o ∗>] → p P< ∗a rpsSeyrms s a c

pExpr = f oldr pChainL pFactor [addops, mulops]
pFactor = pInteger <|> pPack " (" pExpr ") "

As a final extension w e add recognition of conditional expressions. In order to
do so we will need to recognise keywords like if, then, and else. This invites us
to add the companion to the pChoice combinator:

14

pSeq :: [Parser s a] → Parser s [a]

pSeq (p : pp) = (:) <$> p <∗ > p Seq pp
ppSSeeqq [(]p = : p pReturn <[<]$

Extending our parser with conditional expressions is now straightforward:

pExpr = f oldr pChainL pFactor [addops, mulops] <|> pIfThenElse

pIfThenElse = choose <$ pSyms " if "
<∗ > pBoolExpr

< ∗ ∗> pSyms "then"
<<∗ ∗ > pExpr

< ∗ ∗> pSyms "else "
<<∗ ∗ > pExpr

choose c t e = if c then t else e

pBoolExpr = f oldr pChainR pRelExpr [orops, andops]
pRelExpr = True <$ pSyms "True "

<|> False <$ pSyms "False "
<<||>> pFaElxsper< <$ ∗p∗ > S ypmRselO" Fpa l<∗ s >e "pExpr

andops = anyOp [((∧) , "&&")]
orops == aannyyOOpp [[((((∧∨)) , "" |& |& ""))]]
pRelOp == aannyyOOpp [[((((∨6)) , "" <||="")) , ((>) , " >="),

((≡) , "=="), ((6≡) , " /="),
((((≡<)),, ""<==")",) (,((>(≡6) , "">/=")"])

3.7 Monadic Interface: Monad and pTimes

The parsers described thus far have the expressive power of context-free gram-
mars. W e have introduced extra combinators to capture frequently occurring
grammatical patterns such as in the EBNF extensions. Because parsers are nor-
mal Haskell values, which are computed at run-time, we can however go beyond
the conventional context-free grammar expressiveness by using the result of one
parser to construct the next one. An example of this can be found in the recog-
nition of XML-based input. We assume the input be a tree-like structure with
tagged nodes, and we want to map our input onto the data type XML. To handle
situations like this we make our parser type an instance of the class Monad:

instance Monad (Parser s) where
return = pReturn
P pa >> = a2pb = P (λinput → [bi nput00 | (a, input0) ← pa input

) |,(ba ,ininpuptu0t0 ←←u p anPi n p(au2tpba)i nput0]
data XML = Tag String [XML] | Leaf String

pXML = do t ← pOpenTag
Tag tp O<$pe>n TpaMgany pXML <∗ pCloseTag t

<|> LeafT a<g$ >t <pL$>eap fM

15

pTagged p = pPack "< " p " > "
pOpenTag = pTagged pIdent
pClose Tag t = pTagged (pSym ’ / ’ ∗> pSyms t)
ppLCelaofse == . . .
pIdent = pMany1 (pSatisfy (λc → ’ a’ 6 c ∧ c 6 ’ z ’))

A second example of the use of monads is in the recognition of the language
{anbncn |n >= 0}, which is w ell known not to be context-free. Here, we use the
{nuamber |onf ’> a’ =’ ’0s }r,ecw ohgincihsei sd wtoe lbuk inldo parsers tohb ate recognise reexea.cH tleyr et ,h awte nu usmetb here
of ’ b ’ ’s and ’ c ’ ’s. For the result, we return the original input, which has now
been checked to be an element of the language:

pABC = do as ← pMany (pSym ’ a’ ’)
alest n p =M leanngyth(as
bs ← pn T imes n (pSym ’ b ’)
cs ←← ppn n TT iimmeess n ((ppSSyymm ’’ c ’’))
crset u←rnp p(as T++ im bess s++ n c(ps)S

pn T imes :: Int → Parser s a → Parser s [a]
ppn n TT iimmeess :0: p =t →pRP etaurrsner r[]s
pn T imes n p = (:) <$> p <∗ > pn T imes (n −1) p

3.8 Conclusions

We have now come to the end of our introductory section, in w hich w e have
introduced the idea of a combinator language and have constructed a small
library of basic and non-basic combinators. It should be clear by now that there
is no end to the number of new combinators that can be defined, each capturing
a pattern recurring in some input to be recognised. We finish this section by
summing up the advantages of using an EDSL.

full abstraction Most special purpose programming languages have –unlike
our host language Haskell– poorly defined abstraction mechanisms, often
not going far beyond a simple macro-processing system. Although –with a
substantial effort– amazing things can be achieved in this way as w e can see
from the use of TEX, we do not t hink this is the right way to go; programs
become harder to get correct, and often long detours – which have little to
do w ith the actual problem at hand– have to be taken in order to get things
into acceptable shape. Because our embedded language inherits from Haskell
–by virtue of being an embedded language– all the abstraction mechanisms
and the advanced type system, it takes a head start with respect to all the
individual implementation efforts.

type checking Many special purpose programming languages, and especially
the so-called scripting languages, only have a weak concept of a type system;
simply because the type system was not considered to be important w hen the

design took off and compilers should remain small. Many scripting languages
are completely dynamically typed, and some see this even as an advantage

16

since the type system does not get into their way when implementing new
abstractions. We feel that this perceived shortcoming is due to the v ery basic
type systems found in most general purpose programming languages. Haskell
however has a very powerful type system, which is not easy to surpass, unless
one is prepared to enter completely new grounds, as with dependently typed
languages such as Agda (see paper in this volume by Bove and Dybjer). One
of the huge benefits of working with a strongly typed language is furthermore
that the types of the library functions already give a very good insight in
the role of the parameters and w hat a function is computing.

clean semantics One of the ways in which the meaning of a language construct
is t raditionally defined is by its denotational semantics, i.e. by mapping
the language construct onto a mathematical object, usually being a func-
tion. This fits very well with the embedding of domain specific languages in
Haskell, since functions are the primary class of values in Haskell. As a result,
implementing a DSL in Haskell almost boils down to giving its denotational
semantics in the conventional way and getting a compiler for free.

lazy evaluation One of the formalisms of choice in implementing the context
sensitive aspects of a language is by using attribute grammars. Fortunately,
the equivalent of attribute grammars can be implemented straightforwardly
in a lazily evaluated functional language; inherited attributes become param-
eters and synthesized attributes become part of the result of the functions
giving the semantics of a construct [14, 13] .

Of course there are also downsides to the embedding approach. Although the
programmer is thinking he writes a program in the embedded language, he is
still programming in the host language. As a result of this, error messages from
the type system, which can already be quite challenging in Haskell, are phrased
in terms of the host language constructs too, and without further measures
the underlying implementation shines through. In the case of our parser com-
binators, this has as a consequence that the user is not addressed in terms of
terminals, non-terminals, keywords, and productions, but in terms of the types
implementing these constructs.

There are several ways in which this problem can be alleviated. In the first place,

we can try to hide the internal structure as much as possible by using a lot of
newtype constructors, and thus defining the parser type by:

newtype Parser0 s a = Parser0 ([s] → [(a, [s])])

A second approach is to extend the type checker of Haskell such that the gen-
erated error messages can be tailored by the programmer. Now, the library de-
signer not only designs his library, but also the domain specific error messages
that come with the library. In the Helium compiler [5] , which handles a subset
of Haskell, this approach has been implemented with good results. As an exam-
ple, one might want to compare the two error messages given for the incorrect
program in Fig. 1. In Fig. 2 we see the error message generated by a version of
Hugs, which does not even point near the location of the error, and in which the
internal representation of the parsers shines through. In Fig. 3, taken from [6] ,

17

we see that Helium, by using a specialised version of the type rules w hich are
provided by the programmer of the library, manages to address the application
programmer in terms of the embedded language; it uses the word parser and ex-
plains that the types do not match, i.e. that a component is missing in one of the
alternatives. A final option in the Helium compiler is the possibility to program
the search for possible corrections, e.g. by listing functions which are likely to be
confused by the programmer (such as <∗ > and <∗ in programming parsers, or :
acnondf u++ se bdyb ybet ghiennp inrogg Hramaskmelelr p(sruogchra masm< e∗ > rs) . nAds we can see ainm Fmigin. g4 we can now
pinpoint the location of the mistake even better and suggest corrective actions.

data Expr = Lambda Patterns Expr -- can contain m ore alternatives
type Patterns = [Pattern]
type Pattern = String

pExpr : : Parser Token Expr
pExpr

= pAndPrioExpr
< |> Lambda <$ pSyms "\\ "

<*> m any pVarid
<* pSyms "-> "
<* pExpr -- <* should b e <*>

Fig. 1. Type incorrect program

ERROR "Example .hs " :7 - Type error in application
*** Expression : p AndPrioExpr < |> Lambda <$ p Syms "\\ "

<*> m any p Varid <* p Syms "-> " <* pExpr
*** Term : p AndPrioExpr
*** Type : Parser Token Expr
*** Does not m atch : [Token] -> [(Expr -> Expr , [Token])]

Fig. 2. Hugs, version November 2002

4 Improved Implementations

Since the simple implementation which was used in section 2 has quite a number

of shortcomings we develop in this section a couple of alternative implementa-

tions of the basic interface. Before doing so we investigate the problems t o be

solved, and then deal with them one by one.

18

Compiling Example . hs
(7 ,6) : The result types of the parsers in the operands of < |> don ’ t m atch

left parser : p AndPrioExpr
result type : Expr

right parser : Lambda <$ pSyms "\\" <*> m any p Varid <* p Syms "-> "
<* p Expr

result type : Expr -> Expr

Fig. 3. Helium, version 1.1(type rules extension)

Compiling Example . hs
(11,13) : Type error in the operator <*

probable fix : use <*> instead

Fig. 4. Helium, version 1.1(type rules extension and sibling functions)

4.1 Shortcomings

Error reporting One of the first things someone notices when starting to use
the library is that when erroneous input is given to the parser the result is [] ,
indicating that it is not possible to get a correct parse. This might be acceptable
in situations where the input was generated by another program and is expected
to be correct, but for a library to be used by many in many different situations
this is unacceptable. At least one should be informed about the position in the
input where the parser got stuck, and what symbols were expected.

Online Results A further issue to be investigated is at what moment the
result of the parser w ill become available for further processing. When reading
a long list of records – such as a BiBTeX file–, one is likely to want to process
the records one by one and to emit the result of processing it as soon as it has
been recognised, instead of first recognising the complete list, storing that list
in memory, and finally – after we know that the input does not contain errors–

process all the elements.

When we inspect the code for the sequential composition closely however, and
investigate when the first element of the resulting list will be produced, we see
that this is only the case after the right-hand side parser of <∗ > returns its first
trhesautltt .h Fiso ris sto hen yrot oht esyc masbeo al fttheirs tihmepr liiegsh tt-hhaatn we get ponarlyse tro see ∗t >her reetusurlnts ai tftserf i we
have found our first complete parse. So, taking the observation of the previous
subsection into account, at the end of the first complete parse we have stored
the complete input and the complete result in memory. For long inputs this may
become prohibitively costly, especially since garbage collection will take a lot of
time without actually collecting a lot of garbage.

To illustrate the difference consider the parser:

19

parse (pMany (pSym ’ a ’)) (listToStr (’ a ’ : ⊥)

The parsers we have seen thus far will produce ⊥ here. An online parser will
Trehteurnp a ’r ase’r : ⊥w einhs taevaed ,s eseinnct eh tuhse fianritiw aill l’ a ’r cdouucled ⊥be hseurcec.eA sfunllo yn lreinceogp naisresder irw riel-l
spective ao’f :w ⊥hai nt sitse badeh,is nidnc iet tihne eti hnei input.

Error Correction Although this is nowadays less common, it would be nice
if the parser could apply (mostly small) error repairing steps, such as inserting
a missing closing parenthesis or end symbol. Also spurious tokens in the input
stream might be deleted. Of course the user should be properly informed about
the steps w hich were taken in order to be able to proceed parsing.

Space Consumption The backtracking implementation may lead to unex-
pected space consumption. After the parser p in a sequential composition p <∗ > q
hpeasc efodu nspda cites foirnsstu cmomptpiolent.eA parse, parsing b py q commences. Soimnpceo tsihtiiso may f>aiql
further alternatives for p may have to be tried, even when it is obvious from
the grammar that these w ill all fail. In order to be able to continue with the
backtracking process (i.e. go back to a previous choice point) the implementa-
tion keeps a reference in the input which was passed to the composite parser.
Unfortunately this is also the case for the root symbol, and thus the complete
input is kept in memory at least until the first complete parse has been found,
and its witness has been selected as the one to use for further processing

This problem is well known from many systems based on backtracking imple-
mentations. In Prolog we have the cut clause to explicitly indicate points beyond
which no backtracking should take place, and also some parser combinator li-
braries [9] have similar mechanisms.

Conclusions Although the problems at first seem rather unrelated they are not.
If we want to have an online result this implies that we want to start processing
a result without knowing whether a complete parse can be found. If we add
error correction we actually change our parsers from parsers which may fail to
parsers which will always succeed (i.e. return a result) , but probably with an
error message. In solving the problems mentioned we will start with the space
consumption problem, and next we change the implementation to produce online

results. As we will see special measures have to be t aken to make the described
parsers instances of the class Monad.

We will provide the full code in this tutorial. Unfortunately when we add error
reporting and error correction our way of presenting code in an incremental way
leads to code duplication. So we will deal with the last two issues separately in
Sect. 7.

20

4.2 Parsing Classes

Since we will be giving many different implementations and our aim is to con-
struct a library which is generally usable, we start out by defining some classes.

Applicative Since the basic interface is useable beyond the basic parser com-
binators from Sect. 3 we introduce a class for it: Applicative. 1

class Applicative p where
(<∗ >) :: p (b → a) → p b → p a
((<< ∗|> >)) :: p a →→ p a →→ p a
((<<|$>>)) :: (b → a) →→ p ba →→ p a
pReturn :: a →→ p a
pFail :: p a
f <$> p = pReturn f <∗ > p

instance Applicative p ⇒ Functor p where
sfmtaanpc =e A(<pp$>lic)a

The class Describes Although for parsing the input is j ust a sequence of
terminal symbols, in practice the situation is somewhat different. We assume
our grammars are defined in terms of terminal symbols, whereas we can split our
input state into the next token and a a new state. A token may contain extra
position information or more detailed information which is not relevant for the
parsing process. We have seen an example already of the latter; when parsing
we may want to see an identifier, but it is completely irrelevant which identifier
is actually recognised. Hence we want check whether the current token matches
with an expected symbol. Of course t hese values do not have to be of the same

type. We capture the relation between input tokens and terminal symbols by the
class Describes:

class symbol ‘Describes‘ token where
eqSymTok :: symbol → token → Bool

Recognising a single symbol: Symbol The function pSym takes as param-
eter a terminal symbol, but returns a parser which has as its witness an input
token. Because we again will have many different implementations we make
pSym a member of a class too.

class Symbol p symbol token where
pSym :: symbol → p token

1 We do not use the class Applicative from the module Control.Applicative, since it
provides standard implementations for some operations for which we want to give
optimized implementations, as the possibility arises.

21

Generalising the Input: Provides In the previous section we have taken the
input to be a list of tokens. In reality this may also be a too simple approach.
We may e.g. want to maintain position information, or extra state which can be
manipulated by special combinators. From the parsing point of view the thing
that matters is that the input state can provide a token on demand if possible:

class Provides state symbol token | state symbol → token where
aspsslitP Srtoatveid :: ssy smtatbeol y→m sbtoaltt eo →ke nM |as ytabet e(t soykmenbo, lst→ atet)o

We have decided to pass the expected symbol to the function splitState. Since
we will also be able to switch state type we have decided to add a functional de-
pendecy state symbol → token, stating that the state together with the expected
psyemndboelc type dee styemrmboinle→ s ht oowke a ,to sktaetnin isg ttho abte t phreos dtautceedt o. Wgeteh can tihthust hswei etxchp efcrtoemd
one scanning stategy to another by passing a symbol of a different type to pSym!

Calling a parser: Parser We will often have to check whether we have read
the complete input, and thus we introduce a class containing the function eof
(end-of-file) which tells us whether more tokens have to be recognised:

class Eof state where
eof :: state → Bool

Because our parsers will all have different interfaces we introduce a function
parse w hich knows how to call a specific parser and how t o retrieve the result:

class Parser p where
parse :: p state a → state → a

The instances of this class will serve as a typical example of how to use a parser
of type p from within a Haskell program. For specific implementations of p, and
in specific circumstances one may want to v ary on the given standard implemen-
tations.

4.3 From Depth-first to Breadth-first

In this section we will define four instances of the Parser class:

1. the type R (‘recognisers’) in subsection 4.4
2. the type Ph (‘history parsers’) in subsection 4.5,
3. the type Pf (‘future parsers’) in subsection 4.6, and
4. the type Pm (‘monad parsers’) in subsection 4.7.

All four types will be polymorphic, having two type parameters: the type of the
state, and the type of the witness of the correct parse. This is a digression from
the parser type in Sect. 2, which was polymorphic in the symbol type and the
witness type.

22

All four types will be functions, which operate on a state rather t han a list
of symbols. The state type must be an instance of Provides together with a
symbol and a token type, and the symbol and the token must be an instance of
Describes.

A further digression from section 2 is that the parsers in this section are not
ambiguous. Instead of a list of successes, they return a single result.

As a final digression, the result type of the parsers is not a pair of a witness

and a final state, but a witness only wrapped in a Steps datatype. The Steps
datatype will be introduced below. It is an encoding of whether there is failure
or success, and in the case of success, how much input was consumed.

As we explained before, the list-of-successes method basically is a depth-first
search technique. If w e manage to change this depth-first approach into a breath-
first approach, then there is no need to hang onto the complete input until we
are finished parsing. If we manage to run all alternative parsers in parallel we can
discard the current input token once it has been inspected by all active parsers,
since it will never be inspected again.

Haskell’s lazy evaluation provides a nice way to drive all the active alternatives
in a step by step fashion. The main ingredient for this process is the data type
Steps, which plays a crucial role in all our implementations, and describes the
type of values constructed by all parsers to come. It can be seen as a lazily
constructed trace representing the progress of the parsing process.

data Steps a where
Step :: Steps a → Steps a
FSateilp :: SStteeppss a
Done :: a → Steps a

Instead of returning j ust a witness from the parsing process we will return a
nested application of Step’s, which has eventually a Fail constructor indicating
a failed branch in our breadth-first search, or a Done constructor which indicates
that parsing completed successfully and presents the witness of that parse. For
each successfully recognised symbol we get a Step constructor in the resulting
Steps sequence; thus the number of Step constructors in the result of a parser
tells us up to which point in the input we have successfully proceeded, and more
specifically if the sequence ends in a Fail the number of Step-constructors tell
us where this alternative failed to proceed.

The function driving our breadth-first behaviour is the function best, which
compares two Steps sequences and returns the “best” one:

best :: Steps a → Steps a → Steps a
bFeasitl ‘e bpesst a‘ r =a r
l ‘ best‘ Fail = l
(Step l) ‘ best‘ (Step r) = Step (l ‘ best‘ r)

‘ best‘ = error "incorrect parser"

23

The last alternative covers all the situations, where either one parser completes
and another is still active (Step ‘ best‘ Done,Done ‘ best‘ Step), or where two active
parsers complete at the same time (Done / Done) as a result of an ambiguity in
the grammar. For the time being we assume that such situations will not occur.

The alternative w hich takes care of the conversion from depth-first to breadth-
first is the one in which both arguments of the best function start with a Step
constructor. In t his case we discover that both alternatives can make progress,
so the combined parser can make progress by immediately returning a Step
constructor; we do however not decide nor reveal yet which alternative eventually
will be chosen. The expression l‘ best‘ r in the right hand side is lazily evaluated,
and only unrolled further when needed, i.e. when further pattern matching takes
place on this value, and that is when all Step constructors corresponding to
the current input position have been merged into a single Step. The sequence
associated with this Step constructor is internally an expression, consisting of
further calls to the function best. Later we will introduce more elaborate versions
of this type Steps, but the idea will remain the same, and they w ill all exhibit
the breadth-first behaviour.

In order to retrieve a value from a Steps value we write a function eval which
retrieves the value remembered by the Done at the end of the sequence, provided
it exists:∗

eval :: Steps a → a
eevvaall (::S Stetepp ls) =→ e aval l
eval (Done v) = v
eval Fail = error "should not happen"

4.4 Recognisers

After the preparatory work introducing the Steps data type, we introduce our
first ‘parser’ type, which we will dubb recogniser since it will not present a
witness; we concentrate on the recognition process only. The type of R is poly-
morphic in two type parameters: st for the state, and a for the witness of the
correct parse. Basically a recogniser is a function taking a state and returning
Steps. This Steps value starts with the steps produced by the recogniser itself,
but ends with the steps produced by a continuation which is passed as the first

argument to the recogniser:

newtype R st a = R (∀ r.(st → Steps r) → st → Steps r)
unneRw t(yRp pe) R=s p

Note that the type a is not used in the right hand side of the definition. To
make sure that the recognisers and the parsers have the same kind we have
included this type parameter here too; besides making it possible to to make
use of all the calsses we introduce for parsers it also introduces extra check on
the wellformedness of recognisers. Furthermore we can now, by provinding a top

24

level type specification use the same expression to j ust recognise something or
to parse with building a result.

We can now make R an instance of Applicative, that is implement the five
classic parser combinators for it. Note that the parameter f of the operator <$>
is irnored, since it does not play a role in the reognition process, and the same
holds for the parameter a of pReturn.

instance Applicative (R st) where
R p <∗ > R q = R (λk st → p (q k) st)
RR p << ∗|>> RR q == RR ((λλkk sstt →→ p (kq skt)‘ bs ets)t‘ q k st)
fR <p $ ><| RR p == RR p
pReturn a = R (λk st → k st)
pFail == RR ((λλkk sstt →→ kFas itl))

We have abstained from giving point-free definitions, but one can easily see that
sequential composition is essentially function composition, and that pReturn is
the identity function wrapped in a constructor.

Next we provide the implementation of pSym, which resembles the definition
in the basic library. Note that when a symbol is succesfully recognised this is
reflected by prefixing the result of the call to the continuation with a Step:

instance (symbol ‘Describe‘ s token, Provides state symbol token)
⇒ Symbol (R state) symbol token where

p⇒SySm y a =o lR(R(λs kta hte s)t →ym case skpelnitSw tahtee a st of
Jcuasste (stp, sitsS) →ate eiaf a t‘ eo qfSymTok‘ t

tifh ean‘ e SqtSeypm (Tko sks‘) t
else Fail

Nothing → Fail)

4.5 History Based Parsers

After the preparatory work introducing the Steps data type and the recognisers,
we now introduce our first parser type, which we will call history parsers. The
type Ph takes the same type parameters as the recogniser: st for the state, and
a for the witness of the correct parse. The actual parsing function takes, besides
the continuation and the state an extra parameter in its second position..

The second parameter is the ‘history’: a stack containing all the values recognised
as the left hand side of a <∗ > combinator which have thus far not been paired
awsit thh ethl ee treh sualnt dofs itdhee ocfor are< s ∗p> onc odminbg rniagthotr hw ahndic hsih dea parser. fTahren foirts tb parameter
is again the ‘continuation’, a function which is responsible, being passed the
history extended with the newly recognised witness, t o produce the final result
from the rest of the input.

In the type Ph , we have local type variables for the type of the history h, and
the type of the witness of the final result r:

25

newtype Ph st a = Ph (∀ r h . ((h, a) → st → Steps r)
→. hh →→ sstt →→ SStteeppss rr))

unPh (Ph p) = p

We can now make Ph an instance of Applicative, that is, implement the five
classic parser combinators for it.

In the definition of pReturn, we encode that the history parameter is indeed a
stack, growing to the right and implemented as nested pairs. The new witness
is pushed on the history stack, and passed on to the continuation k.

In the definition off < $>, the continuation is modified to sneak in the application
of the function f .

In the definition of alternative composition <|> , we call both parsers and exploit
tIhne t hfaec dt tfihnaitt tohne yof ba lottehr nreattuivren c oStmeppso,s iotifo wnh< ic|h> we can tb aoketh t phea bseersst. nOdf course,
best only lazily unwraps both Steps up to the point w here one of them fails.

In the definition of sequential composition <∗ > , the continuation-passing style
Iisn again eexfinplitoiitoendo: we cqualel p, passing oisti q as c< ∗o> n,ti ntuhaetc ioonnt, wnuhaicthio nin- p tausrsnin tgaks etsy a
modification of the original continuation k. The modification is that two values
are popped from the history stack: the witness b from parser q, and the witness
b2a from parser p ; and a new value b2a b is pushed onto the history stack which
is passed to the orginal continuation k:

instance Applicative (Ph state) where
Ph p <∗ > Ph q = Ph (λk → p (q applyh)

wk→ herp e applyh = λ((h, b2a), b) → k (h, b2a b))
Ph p <|> Ph q = Ph (λk h st → p k h =st λ‘ b(e(hst,‘ q ak) ,hb s)t→)
f < <$|>> PPh p = Ph ((λλkk →→ p k$ λ h(hst, a‘b)e →st‘ kq (khh , hfs ta)))
pFail = Ph (λk → Fpa$ ilλ)
pReturn a = Ph (λk h →→ kF a(ihl, a))

Note that w e have given a new definition for <$>, which is slightly more efficient
than the default one; instead of pushing the function f on the stack w ith a
pReturn and popping it off later, we j ust apply it directly to recognised result of
the parser p. In Fig. 5 we have given a pictorial representation of the flow of data
associated with this parser type. The top arrows, flowing right, correspond to the
accumulated history, and the arrows directly below them to the state which is
passed on. The bottom arrows, flowing left, correspond to the final result w hich
is returned through all the continuation calls.

hb2a(h,b2a)b((((hh,,bb22aa)),,bb))(h,b2ab)
Stepsr pqStepsr applyStepsr

Fig. 5. Sequential composition of history parsers

26

In a slightly different formulation the stack may be respresented implicitly us-
ing extra continuation functions. From now on we w ill use a somewhat simpler
type for P − h and thus we also provide a new instance definition for the class
Atypppeli fcoartivP e.− −Iht ias nhdow tehvuser wuese afulsol tpo koeveipd etea p nicewtori niaslt representation of of rtht eh eea crllaiesrs

type in mind.:

Ph st a = Ph (∀ r.(a → st → Steps r) → st → Steps r

instance Applicative (Ph state) where
(Ph p) <∗ > (Ph q) = Ph (λk → p (λf → q (λa → k (f a))))
(Ph pp)) << ∗|> > ((PPh q) = Ph ((λλkk inp → (λ p k→ inp ‘λ λbeas →t‘ q kk(fina p)))
f <$p>) (<P|h> p(P) = Ph ((λλkk →inp p →(λp a k→i nkp (‘fb east)‘))q
pFail = Ph ((λλkk →→ pco(nλsta n →oA klt(sf)
pReturn a = Ph ((λλkk →→ cko na)s

The definition of pSym is straightforward; the recognised token is passed on to
the continuation:

instance (symbol‘Describes0 token, Provides state symbol token)
⇒ Symbol (Ph state) symbol token where

p⇒SySm y a b=o lP(hP (λk st → case splitState a st of
Jcuasste (stp, sitsS) →ate eiaf a t‘ eo qfSymTok‘ t

tifh ean‘ e SqtSeypm (Tko tk ‘sts)
else Fail

Nothing → Fail)

Finally we make Ph an instance of Parser by providing a function parse that
checks whether all input was consumed; if so we initialise the return sequence
with a Donewith the final conctructed witness.

instance Eof state ⇒ Parser (Ph state) where
parse e(PE ho pf)s

= eval.p (λr rest → if eof rest then Done r else Fail)

Since w e will later be adding error recovery to the parsers constructed in this
chapter, which will turn every illegal input into a legal one, we will assume in
this section that there exists always precisely one way of parsing the input. If
there is more than one way then we have to deal with ambiguities, which we will
also show how to deal with in section 5.

4.6 Producing Results Online

The next problem we are attacking is producting the result online. The history
parser accumulates its result in an extra argument, only to be inserted at the end

of the parsing process with the Done constructor. In this section we introduce
the counterpart of the history parser, the f uture parser, which is named this way
because the “stack” we are maintaining contains elements which still have to
come into existence. The type of future parsers is:

27

newtype Pf st a = Pf (∀ r.(st → Steps r) → st → Steps (a, r))
unPf (Pf p) = p

We see that the history parameter has disappeared and that the parameter of
the Steps type now changes; instead of j ust passing the result constructed by
the call to the continuation unmodified to the caller, the constructed witness a
is pushed onto the stack of results constructed by the continuation; this stack is
made an integral part of the data type Steps by not only representing progress
information but also constructed values in this sequence.

In our programs w e will make the stack grow from the right to the left; this
maintains the suggestion introduced by the history parsers that the values to
the right correspond to input parts which are located further towards the end
of the input stream (assuming we read the stream from left to right) . One way
of pushing such a value on the stack would be to traverse the whole future
sequence until we reach the Done constructor and then adding the value there,
but that makes no sense since then the result again will not be available online.
Instead we extend our Steps data type w ith an extra constructor. We remove
the Done constructor, since it can be simulated with the new Apply constructor.
The Apply constructor makes it possible to store function values in the progress
sequence:

data Steps a where
Step :: Steps a → Steps a
Fail :: SStteeppss a
Apply :: (b → a) → Steps b → Steps a

eval :: Steps a → a
eevvaall (::S Stetepp l →) =a eval l
eval (Fail ls) = error "no result "
eval (Apply f l) = f (eval l)

As we have seen in the case of the history parsers there are two operations we
perform on the stack: pushing a value, and popping two values, applying the

one to the other and pushing the result back. For this we define two auxiliary
functions:

push :: v → Steps r → Steps (v, r)
push v =:: Avp→ plyS (eλpss →r →(vS, ste))p

applyf :: Steps (b → a, (b, r)) → Steps (a, r)
applyf = Apply (λ(b2a, ˜b (b, r)) → (b2a b, r))

One should not confuse the Apply constructor with the applyf function. Keep in
mind that the Apply constructor is a very generally applicable construct chang-
ing the value (and possibly the type) represented by the sequence by prefixing
the sequence with a function value, whereas the applyf function takes care of
combining the values of two sequentially composed parsers by applying the result
of the first one to the result of the second one. An important r oˆle is played by
the ˜-symbol. Normally, Haskell evaluates arguments to functions far enough

28

to check that it indeed matches the pattern. The tilde prevents this by making
Haskell assume that the pattern always matches. Evaluation of the argument
is thus slightly more lazy, which is critically needed here: the function b2a can
already return that part of the result for which evaluation of its argument is not
needed!

The code for the the function best now is a bit more involved, since there are
extra cases to be taken care of: a Steps sequence may start with an Apply step. So
before calling the actual function best we make sure that the head of the stream
is one of the constructors that indicates progress, i.e. a Step or Fail constructor.
This is taken care of by the function norm which pushes Apply steps forward
into the progress stream until a progress step is encountered:

norm :: Steps a → Steps a
norm :(:A Sptepplys a f (→Ste Spt elp)) = Step (Apply f l)
norm (Apply f Fail) = Fail
norm (Apply f (Apply g l)) = norm (Apply (f .g) l)
norm steps = steps

Our new version of best now reads:

l ‘ best‘ r = norm l ‘ best0‘ norm r
where Fail ‘ best0‘ r = r

l ‘best0‘ Fail = l
(Step l) ‘ best0‘ (Step r) = Step (l ‘ best‘ r)

‘ best0‘ = Fail

We as well make Pf an instance of Applicative:

instance Applicative (Pf st) where
Pf p <∗ > Pf q = Pf (λk st → applyf (p (q k) st))
Pf p <|> Pf q = Pf (λk st → p k st ‘ best‘ q k st)
pReptu< rn|> a = Pf ((λλkk sstt →→ ppuk shs a b(eks tst‘)q))
pFail = Pf ((λλk → Fpausilh)

Just as we did for the history parsers we again provide a pictorial representation
of the data flow in case of a sequential composition <∗ > in Fig. 6:

(b2a b,f)apply(b2a,(b,f))pb2a(b,f) qbf
Fig. 6. Sequential composition of future parsers

Also the definitions of pSym and parse pose no problems. The only question is
what to take as the initial value of the Steps sequence. We j ust take ⊥, since

29

the types guarantee that it will never be evaluated. Notice that if the parser
constructs the value b, then the result of the call to the parser in the function
parse will be (b, ⊥) of which we select the first component after converting the
praetrusrenw edil sequence)too fthw eh vicahluew ere spelreecsetnt theed fbirys titc .

instance (symbol ‘Describes‘ token, state ‘Provides‘ token)
⇒ Symbol (Pf state) symbol token where

pSym a =⇒ Pf (mλbko ls(t P→ case splitState a st of
Jcuasste (stp, sitsS) →ate eiaf a t‘ eo qfSymTok‘ t

tifh ean‘ e SqtSeypm (Tpouksh‘t t (k ss))
else Fail

Nothing → Fail

)
instance Eof state ⇒ Parser (Pf state)
winhstearne

parse (Pf p) = f st. eval.p (λinp → if eof inp then ⊥ else error "end")

4.7 The Monadic Interface

As with the parsers from the introduction we want to make our new parsers
instances of the class Monad too, so we can again write functions like p ABC
(see page 15) . Making history parsers an instance of the class Monad is straight-
forward:

instance Applicative (Ph state) ⇒ Monad (Ph state) where
Ph p >> = a2q = Ph (λk →st p ()λ⇒a →M uonnaPdh (Pa2q a) k))
return = pReturn

At first sight this does not seem to be a problem to proceed similarly for future
parsers. Following the pattern of sequential composition, w e call p with the
continuation unPh (a2q a) k; the only change is that instead of applying the
result of p to the result of q we use the result of p to build the continuation in
a2q a. And indeed the following code type-checks perfectly:

instance Applicative (Pf state) ⇒ Monad (Pf state) where
Pf p >> = pv2q = Pf (λk sstta →te)

λlekt steps = p (q k) st
q = unPf (pv2q pv)
pv = fst (eval steps)

in Apply snd steps

)
return = pReturn

Unfortunately execution of the above code may lead to a black hole, i.e. a non-
terminating computation, as we will explain with the help of Fig. 7. Problems
occur when inside p w e have a call to the function best which starts to compare
two result sequences. Now suppose that in order to make a choice the parser p
does not provide enough information. In that case the continuation q is called

30

pv

(qv,f)ppv(qv,f) qqv
Fig. 7. Erroneous implementation of monadic future parsers

once for each branch of the choice process, in order to provide further steps of
which we hope they will lead us to a decision. If we are lucky the value of pv is
not needed by q pv in order to provide the extra needed progress information.
But if we are unlucky the value is needed; however the Apply steps contributing
to pv will have been propagated into the sequence returned by q. Now we have
constructed a loop in our computation: pv depends on the outcome of best, best
depends on the outcome of q pv, and q pv depends on the value of pv.

The problem is caused by the fact that each branch taken in p has its own call
to the continuation q, and that each branch may lead to a different value for
pv, but we get only one in our hands: the one which belongs to the successful
alternative. So we are stuck.

Fortunately we remember j ust in time that we have introduced a different kind
of parser, the history based ones, which have the property that they pass the
value produced along the path taken inside them to the continuation. Each path
splitting somewhere in p can thus call the continuation with the value which will
be produced if this alternative wins eventually. That is why their implementation
of Monad’s operations is perfectly fine. This brings us to the following insight:
the reason we moved on from history based parsers to future based parsers was
that we wanted to have an online result. But the result of the left-hand side of
a monadic bind is not used at all in the construction of the result. Instead it is
removed from the result stack in order to be used as a parameter to the right
hand side operand of the monadic bind. So the solution to our problem lies in
using a history based p arser as the left hand side of a monadic bind, and a future

based parser at the right hand side. Of course we have to make sure that they
share the Steps data type used for storing the result. In Fig. 8 we have given a
pictorial representation of the associated data flow.

Unfortunately this does not work out as expected, since the type of the >> =
operator is Monad m ⇒ m b → (b → m a) → m a, and hence requires the left
aonpedr raitgohrt shaM ndon saidde m mop⇒ eram ndb s →to (bbe →bam seda upon mtha e same hfuennccteor re m. rAes so thleutil eofnt
is to introduce a class GenMod, which takes two functor parameters instead of
one:

31

a1

Fig. 8. Combining future based and history based parsers

infixr 1>> > =
class GenMonad m1 m2 where

(>> > =) :: m1 b → (b → m2 a) → m2 a

Now we can create two instances of GenMonad. In both cases the left hand side
operand is the history parser, and the right hand side operand is either a history
or a future based parser:

instance Monad (Ph state)
⇒ GenMonad (Ph state) (Ph state) where

(⇒>> > =) = (>> =) -- the monadic bind defined before
instance GenMonad (Ph state) (Pf state) where

(Ph p) >> > = pv2q = Pf (λk → p (λpv → unPh (pv2q pv) k))

Unfortunately we are now no longer able to use the do notation because that
is designed for Monad expressions rather than for GenMonad expressions which
was introduced for monadic expressions, and thus we still cannot replace the
implementation in the basic library by the more advanced one we are developing.
Fortunately there is a trick which makes this still possible: we pair the two
implementations, and select the one which we need:

data Pm state a = Pm (Ph state a) (Pf state a)
unPmh (Pm (Ph h)) = h
unPmf (Pm (Pf f)) = f

32

Our first step is to make this new type again instance of Applicative:

instance (Applicative (Ph st), Applicative (Pf st))
⇒ Applicative (Pm st) where

(Pm hp fp)⇒ A<∗ p >p c˜a a(Ptimve h(Pq fq) = Pm (hp <∗ > hq) (fp <∗ > fq)
(Pm hp fp) << ∗|> > (˜P(mP hq fq) = Pm ((hhpp << ∗|> > hhqq)) ((ffpp << ∗|> > ff qq))
pReturn a = Pm ((hpRpe< tu|>rnh qa)) ((pfpR< et|>urnf q a))
pFail = Pm pFail pFail

instance (symbol ‘Describes‘ token, state ‘Provides‘ token)
⇒ Symbol (Pm state) symbol token where

p⇒Sym a = Pm (pSym a) (pSym a)

instance Eof state ⇒ Parser (Pm state) where
parse e(PE mo (Pf ef⇒p))

= f st. eval.fp (λrest → if eof rest then ⊥
etlhseen error "parse ")

This new type can now be made into a monad by:

instance Applicative (Pm st) ⇒ Monad (Pm st) where
(Pm (Ph p))>> = a2q =s

Pm (Ph (λk → p (λa → unPmh (a2q a) k)))
(Pf ((λλkk →→ p ((λλaa →→ unPmf (a2q a) k)))

return = pRe(tuλkrn→

Special attention has to be paid to the occurrence of the ˜ symbol in the left
hand side pattern for the <∗ > combinator. The need for it comes from recursive
dheafnindis tiiodnes liaktte:e

pMany p = (:) <$> p <∗ > pMany p ‘ opt‘ []

If we match the second operand of the <∗ > occurrence strictly this will force the
eIvf awleuam tiaotnc hotf hthee s eccaolln pdM opanerya p, o thfut sh ele< ad∗ >inog tcou an nicnfeins itrteic trelycut hrsiisown !i

5 Exploiting Progress Information

Before continuing discussing the mentioned shortcomings such as the absence of
error reporting and error correction which will make the data types describing
the result more complicated, we take some time to show how the introduced
Steps data type has many unconventional applications, which go beyond the
expressive power of context-free grammars. Because both our history and future
parsers now operate on the same Steps data type we will focus on extensions to
that data type only.

33

5.1 Greedy Parsing

For many programming languages the context-free grammars which are provided
in the standards are actually ambiguous. A common case is the dangling else.
If we have a production like:

stat ::= "if" expr "then" stat ["else" stat]

then a text of the form if . . . then . . . if . . . then . . . else . . . has two
parses: one in which the else part is associated with the first if and one in
which it is associated with the second. Such ambiguities are often handled by
accompanying text in the standard stating that the second alternative is the
interpretation to be chosen. A straightforward way of implementing this, and
this is how it is done in quite a few parser generators, is to apply a greedy
parsing strategy: if we have to choose between two alternatives and the first one
can make progress than take that one. If the greedy strategy fails we fall back
to the normal strategy.

In our approach we can easily achieve this effect by introducing a biased choice
operator << |>, which for all purposes acts like <|>, but chooses its left alterna-
toipveer aift oitr s< t<ar|>ts, ww ihthic hthf eo rs uacllcp esusfrpuol recognition o <f a ,to bkuetnc:

class Greedy p where
(< < |>) :: p a → p a → p a

bestg r : : Steps a → Steps a → Steps a
lbe@s(tStg erp: te)p p‘s bsea st→ grS ‘ p=s la
l ‘ bestg r‘ r = l ‘ best‘ r

instance Bestg r (Ph st) where
Ph p << |> Ph q = Ph (λk st → p k st ‘ bestg r‘ q k st)

The instance declarations for the other parser types are similar.

This common solution usually solves the problem adequately. It may however
be the case that we only want to take a specific alternative if we can be sure
that some initial part can completely be recognised. As a preparation for the
discussion on error correction we show how to handle this. We extend the data
type Steps with one further alternative:

data Steps a = ...
| Success (Steps a)

and introduce yet another operator << < |> which performs its work in cooper-
aatnidoni nwtritohd a efuy necttia onno try. I onp tehraist case we on wlhyi cphro pveidrfeo rtmhes iitmspw leomrkeni tnatc iooonp feorr-
the Pf case:

class Try p where
(< << |>) :: p a → p a → p a
try :: p a →→ p a

instance Try (Pf state) where
Pf p << < |> Pf q = Pf (λk st → let l= p k st

34

in maybe (l ‘ best‘ q k st) id (hasSuccess id l)

)
where hasSuccess f (Step l) = hasSuccess (f .Step) l

hasSuccess f (Apply g l) = hasSuccess (f .Apply g) l
hasSuccess f (Success l) = Just (f l)
hasSuccess f (Fail) = Nothing

try (Pf p) = Pf (p.(Success.))

The function try does little more than inserting a Success marker in the result
sequence, once its argument parser has completed successfully. The function
hasSuccess tries to find such a marker. If found then the marker is removed and
success (Just) reported, otherwise failure (Nothing) is returned. In the latter case
our good old friend best takes its turn to compare both sequences in parallel
as before. One might be inclined to think that in case of failure of the first
alternative we should j ust take the second, but that is a bit too optimistic; the
right hand side alternative might fail even earlier.

Unfortunately this simple approach has its drawback: what happens if the pro-
grammer forgets to mark an initial part of the left hand side alternative with try?
In that case the function will never find a Success constructor, and our parsing
process fails. We can solve this problem by introducing yet another parser type
which guarantees that try has been used and thus that such a Success construc-
tor may occur. We will not pursue this alternative here any further, since it w ill
make our code even more involved.

5.2 Ambiguous Grammars

One of the big shortcomings of the combinator based approach to parsing, w hich
is aggravated by the absence of global grammar analysis, is that we do not get
a warning beforehand if our underlying grammar is ambiguous. It is only when
we try to choose between two result sequences in the function best and discover
that both end successfully, that we find out that our grammar allows more
than one parse. Worse however is that parse times also may grow exponentially.

For each successful parse for a given non-terminal the remaining part of the
input is completely parsed. If we were only able to memoise the calls to the
continuations, i.e. we can see that the same function is called more than once
with the same argument, w e could get rid of the superfluous work. Unfortunately
continuations are anonymous functions w hich are not easily compared. If the
programmer is however prepared to do some extra w ork by indicating that a
specific non-terminal may lead to more than a single parse, w e can provide a
solution.

The first question to be answered is what to choose for the result of an ambiguous
parser. We decide to return a list of all produced witnesses, and introduce a
function amb which is used to label ambiguous non-terminals; the type of the
parser that is returned by amb reflects that more than one result can be expected.

35

class Ambiguous p where
amb ::p a → p [a]

For its implementation we take inspiration from the parse functions we have
seen thus far. For history parsers we discovered that a grammar was ambiguous
by simultaneously encountering a Done marker in the left and right operand
of a call to best. So we model our amb implementation in the same way, and
introduce a new marker Endh which becomes yet an extra alternative in our
result type:

data Steps a where
...
| Endh :: ([a] , [a] → Steps r) → Steps (a, r) → Steps (a, r)
...

To recognise the end of a potentially ambiguous parse we insert an Endh mark
in the result sequence, which indicates that at this position a parse for the
ambiguous non-terminal was completed and we should continue with the call to
the continuation. Since w e want to evaluate the call to the common continuation
only once we bind the current continuation k and the current state in the v alue of
type [a] → Steps r; the argument of this function will be the list of all witnesses
rtyecpoeg[nais]e→ d a St tephes rp;oti nhte c aorrgruesmpeonntdio nfgt htios t fuhen occurrence eoft thhee l Estn dofha lcol nwsittnruecstseosr
in the sequence:

instance Ambiguous (Ph state) where

amb (Ph p) =
Ph (λk → removeEndh.p (λa st0 → Endh ([a] ,λas → k as st0) noAlts))

noAlts = Fail

We thus postpone the call to the continuation itself. The second parameter of the
Endh constructor represents the other parsing alternatives that branch within
the ambiguous parser, but have not yet completed and thus contain and Endh
marker further down the sequence.

All parses which reach their Endh constructor at the same point are collected
in a common Endh constructor. We only provide the interesting alternatives in
the new function best:

Endh (as, k st) l ‘ best0‘ Endh (bs, ,) r = Endh (as ++ bs, ks t)
(l ‘ best‘ r)

Endh as l ‘ best0‘ r = Endh as (l ‘ best‘ r)
l ‘best0‘ Endh bs r = Endh bs (l ‘ best‘ r)

If an ambiguous parser succeeds at least once it w ill return a sequence of Step’s
which has the length of input consumed, followed by an Endh constructor which
holds all the results and continuations of the parses that completed successfully
at this point, and a sequence representing the best result for all other parses
which were successful up-to this point. Note that all the continuations which are
stored are the same by construction.

36

The expression kas st0 binds the ingredients of the continuation; it can imme-
diately be called once we have constructed the complete list containing the wit-
nesses of all successful parses. The tricky work is done by the function removeEnd,
which hunts down the result sequence in order to locate the Endh constructors,
and to resume the best computation which was temporarily postponed until we
had collected all successful parses with their common continuations.

removeEndh :: Steps (a, r) → Steps r
removeEndh (::F Satielp)t p=s F rail
removeEndh (Step l) = Step (removeEndh l)
removeEndh (Apply f l) = error "not in history parsers "
removeEndh (Endh (as, ks t) r) = ks t as ‘ best‘ removeEndh r

In the last alternative the function removeEndh has forced the evaluation of

all alternatives which are active up to this point. The result of the completed
parsers here have been collected in the value as, which can now be passed to
the function, thus resuming the parsing process at this point. Other parsers for
the ambiguous non-terminal which have not completed yet are all represented
by the second component. So the function removeEndh still has to force further
evaluation of these sequences, and remove the Endh constructor. The parsers
terminating at this point of course still have to compete wih the still active
parsers to finally reach a decision.

Without making this explicit we have gradually moved from a situation were the
calls to the function best immediately construct a single sequence, to a situation
where w e have markers in the sequence which may be used to stop and start
evaluation.

The situation for the online parsers is a bit different, since we want to keep as
much of the online behaviour as possible. As an example w e look at the following
set of definitions, where the parser r is marked as an ambiguous parser:

p <+ + > q = (+ +) <$> p <∗ > q
a <=+ + (>: >[q] q) =<($>++)pS< y$m> ’p pa< ’
a2 = a <+ + > a
a3 = a <+ + > a <+ + > a
r = amb (a <+ + > (a2 <+ + > a3 <|> a3 <+ + > a2)

In section 7 we will introduce error repair, which will guarantee that each parser
always constructs a result sequence when forced to do so. This has as a conse-
quence that if we access the value computed by an ambiguous parser we can be
sure that this value has a length of at least 1, and thus we should be able to
match, in the case of the parser r above, the resulting value successfully against
the pattern ((a : :) ::) as soon as parsing has seen the first ’ a’ in the input. As
before we add yet another marker type to the type Steps:

data Steps a where
...

37

Endf :: [Steps a] → Steps a → Steps a
...

We now give the code for the Pf case:

instance Ambiguous (Pf state) where
amb (Pf p) = Pf (λk inp → combineV Values.removeEndf $

p c(oλmstb →ine Endf s[.kr esmt]o nvoeEAlntsd) inp)
removeEndf : : Steps r → Stepps ([λ λrs]
removeEndf :(:F Satielp) =s Fra]il
removeEndf (Step l) = Step (removeEndf l)
removeEndf (Apply f l) = Apply (map0 f) (removeEndf l)
removeEndf (Endf (s : ss) r) = Apply (:(map eval ss)) s

‘ best‘
removeEndf r

combineV Values : : Steps [(a, r)] → Steps ([a] , r)
ccoommbbiinneeVV VVaalluueess l:a: rS e=p sA p[(paly,r ()λ]l →ar0 →te (sm(a[ap]f ,srt lar0, snd (head lar0))) lar
map0 f ˜ (x : xs) = f x : map f xs

The hard work is again done in the last alternative of removeEndf , where w e
apply the function eval to all the sequences. Fortunately this eval is again lazily
evaluated, so not much work is done yet. The case of Apply is also interesting,
since it covers the case of the first a in the example; the map0 f adds this value
to all successful parses. We cannot use the normal map since this function is
strict in the list constructor of its second argument, and we may already want to
expose the call to f (e.g. to produce the value ’ a ’ :) without proceeding with the
match. The function map0 exploits the fact that its list argument is guaranteed
to be non-empty, as a result of the error correction to be introduced.

Finally we use the function combineV Values to collect the values recognised by
the ambiguous parser, and combine the result of this with the sequence produced
by the continuation. It looks all very expensive, but lazy evaluation makes that
a lot of work is actually not performed; especially the continuation w ill be eval-
uated only once, since the function fst does not force evaluation of the second
component of its argument tuple.

5.3 Micro-steps

Besides the greedy parsing strategy w hich j ust looks at the next symbol in order
to decide which alternative to choose, we sometimes want to give precedence to
one parse over the other. An example of this is when we use the combinators
to construct a scanner. The string "name " should be recognised as an identifier,
whereas the string " if " should be recognised as a keyword, and this alternative

thus has precedence over the interpretation as an identifier. We can easily get
the desired effect by introducing an extra kind of step, which looses from Step
but wins from Fail. The occurrence of such a step can be seen as an indication
that a small penalty has to be paid for taking t his alternative, but that we are

38

happy to pay this price if no other alternatives are available. We extend the type
Steps with a step Micro and add the alternatives:

(Micro l) ‘ best0‘ r@(Step)= r
l@(Step) ‘ best0‘ (Micro) = l
(Micro l) ‘ best0‘ (Micro r) = Micro (l ‘ best0‘ r)
...

The only thing still to be done is to add a combinator which inserts this small
step into a progress sequence:

class Micro p where
micro :: p a → p a

instance Micro (Pf state) where
micro (Pf p) = Pf (p.(Micro.))

The other instances follow a similar pattern. Of course there are endless vari-
ations possible here. One might add a small integer cost to the micro step, in
order to describe even finer grained disambiguation strategies.

6 Embedding Parsers

With the introduction of the function splitState we have moved the responsibility
for the scanning process, which converts the input into a stream of tokens, to the
state type. Usually one is satisfied to have j ust a single way of scanning the input,
but sometimes one may want to use a parser for one language as sub-parser in
the parser for another language. An example of this is when one has a Haskell
parser and wants to recognise a String value. Of course one could offload the
recognition of string values to the tokeniser, but wouldn’t it be nice if we could
just call the parser for strings as a sub-parser, w hich uses single characters as its
token type? A second example arises when one extend a language like Java w ith
a sub-language like AspectJ, which again has Java as a sub-language. Normally

this creates all kind of problems with the scanning process, but if we are able to
switch from scanner type, many problems disappear.

In order to enable such an embedding we introduce the following class:

class Switch p where
pSwitch :: (st1 → (st2, st2 → st1)) → p st2 a → p st1 a

It provides a new parser combinator pSwitch that can temporarily parse w ith
a different state type st2 by providing it with a splitting function w hich splits
the original state of type st1 into a state of type st2 and a function which w ill
convert the final value of type st2 back into a value of type st1:

instance Switch Ph where
pSwitch split (Ph p) = Ph (λk st1 → let (st2 , b) = split st1

ilent p s(tλ2s,t2b)0 →= kp (i bt sstt210)) st2)

instance Switch Pf where

39

pSwitch split (Pf p) = Pf (λk st1 → let (st2 , b) = split st1
ilent p s(tλ2s,t2b)0 →= kp (i bt sstt210)) st2)

instance Switch Pm where
pSwitch split (Pm (p, q)) = Pm (pSwitch split p , pSwitch split q)

Using the function pSwitch we can map the state to a different state and back;
by providing different instances w e can thus use different versions of splitState.

A subtle point to be addressed concerns the breadth-first strategy; if we have
two alternatives working on the same piece of input, but are using different
scanning strategies, the two alternatives may get out of sync by accepting a
different number of tokens for the same piece of input. Although this may not
be critical for the breadth-first process, it may spoil our recognition process
for ambiguous parsers, which depend on the fact that when End markers meet
the corresponding input positions are the same. We thus adapt the function
splitState such that it not only returns the next token, but also an Int value
indicating how much input was consumed. We also adapt the Step alternative
to record the progress made:

type Progress = Int
data Steps a where

...

Step :: Progress → Steps a

Of course also the function best0 needs to be adapted too. We again only show
the relevant changes:

Step n l‘ best0‘ Step m r
| n ≡ m = Step n (l ‘ best0‘ r)
|| n <≡ m == SStteepp n ((ll ‘‘ bbeesstt0‘ Step (m − n) r)
|| n >< m == SStteepp m (lS‘ bteeps (n‘S −te pm() ml m‘ −ben st)0‘ rr))

The changes to all other functions, such as eval, are straightforward.

7 Error Reporting and Correcting

In this section we will address two issues: the reporting of errors and the auto-
matic repair of errors, such that parsing can continue.

7.1 Error Reporting

An important feature of proper error reporting is an indication of the longest
valid prefix of the input, and which symbols were expected at that point. We
have seen already that the number of Step constructors provides the former. So
we will focus on the latter. For this w e change the Fail alternative of the Steps
data type, in order to record symbols that were expected at the point of failure:

40

data Steps a where
...

Fail :: [String] → Steps a
...

In the functions pSym we replace the occurrences of Fail with the expression
Fail [show a] , where a is the symbol we were looking for, i.e. the argument
of pSym. The reason that we have chosen to represent the information as a
collection of String’s makes it possible to combine Fail steps from parsers with
different symbol types, which arises if we embed one parser into another.

In the function best we have to change the lines accordingly; the most interesting
line is one where two failing alternatives are merged, which in the new situation
becomes:

Fail ls ‘best‘ Fail rs = Fail (ls ++ rs)

An important question to be answered is how to deal with erroneous situations.
The simplest approach is to have the function eval emit an error message, re-
porting the number of accepted tokens and the list of expected symbols. One
might be tempted to change the function eval to return an Either a [String] ,
returning either the evaluated result or the list of expected symbols. Keep in
mind however that this would completely defeat all the work we did in order to
get online results. If one is happy to use the history parsers this is however a
perfect solution.

7.2 Error Repair

The situation becomes more interesting if we want to perform some form of error
repair. We distinguish two actions we can perform on the input [18] , inserting
an expected symbol and deleting the current token. Ideally one would like to
try all possible combinations of such actions, and continue parsing to see w hich
combination leads to the least number of error messages. Unfortunately this
soon becomes infeasible. If we encounter e.g. the expression "2 4" then it can
be repaired by inserting a binary operator between both integers, and from the
parser’s point of view these are all equivalent, leading us to the situation we
encountered in the case of the ambiguous non-terminals: a non-terminal may
not be ambiguous, but its corrections may turn it into one which behaves like an
ambiguous one. The approach we will take is to generate a collection of possible
repairs, each with an associated cost, and then select the best one out of these,
using a limited look-ahead.

To get an impression of the kind of repairs w e will be implementing consider the
following program:

test p inp = parse ((,) <$> p <∗ > p End) (listToStr inp)

The function test calls its parameter parser followed by a call to pEnd which
returns the list of constructed errors and deleted possibly unconsumed input. The

41

constructor (,) pairs the error messages with the result of the parser and the
function listToStr convert a list of characters into an appropriate input stream
type.

We define the following small parsers to be tested, including an ambiguous parser
and a monadic parser to show the effects of the error correction:

a = (λa → [a]) <$> pSym ’ a ’
b == ((λλaa →→ [[aa]])) <<$$>> ppSSyymm ’’ ba ’’
p <+ + > q == ((λ+ +a) →<$[>a p <<∗ >$> q
ap2< == a < $+ +>> a
a3 = a <+ + > a2

pMany p = (λa b → b + 1) <$> p <∗ > pMany p << |> pReturn 0
ppCMoaunnyt p0 p (=λ apR be→ turb n +[+]
pCount n p = p <+ + > p Count (n − 1) p

Now we have three calls to the function test, all with erroneous inputs:

main = do print (test a2 "bbab")
print (test (do {l← pMany a;pCount lb }) " aaacabbb")
print ((tteesstt ((admob{ ←((M+ +a)n <y$a >; paC2o <u∗ n >t a l3 b

<|> ((++ ++)) <<$$>> aa32 <<∗ ∗ > > aa23)) " aaabaa")

Running the program will generate the following outputs, in w hich each result
tuple contains the constructed witness and a list of error messages, each reporting
the correcting action, the position in the input w here it was performed, and the
set of expected symbols:

("aa" , [Deleted ’ b ’ 0 [" ’ a’ "] ,
Deleted ’b’ 1 [" ’a’ "] ,
Deleted ’ b ’ 3 [" ’ a’ "] ,
Inserted ’ a’ 4 [" ’ a ’ "]])

["bbbb"] , [Deleted ’ c ’ 3 [" ’ a’ " ," ’ b ’ "] ,
Inserted ’ b ’ 8 [" ’b ’ "]])

(["aaaaa"] , [Deleted ’b’ 3 [" ’a’ " ," ’ a’ "]])

Before showing the new parser code we have to answer the question how w e
are going to communicate the repair steps. To allow for maximal flexibility we
have decided to let the state keep track of the accumulated error messages,
which can be retrieved (and reset) by the special parser pErrors. We also add

an extra parser pEnd which is to be called as the last parser, and w hich deletes
superfluous tokens at the end of the input:

class p ‘AsksFor‘ errors where
pErrors : : p errors
pEnd ::p errors

class Eof state where
eof : : state → Bool
deleteAtEnd : : ssttaattee →→ BMoaoylbe (Cost, state)

42

In order to cater for the most common case we introduce a new class Stores,
which represents the retreival of errors, and extend the class Provides with two
more functions which report the corrective actions t ken to the state:

class state ‘Stores‘ errors where
getErrors :: state → (errors, state)

class Provides state symbol token where
where
splitState :: symbol → state → Maybe (token, state)
sinpslietrSttSaytem :: ssyymmbbooll →→ ssttaattee →→ Strings → Maybe (Cost, token, state)
idnesleetretSToykm :: stoymkenbo →→ ssttaattee →→ state → SSttrriinnggss →→ MMaayybbee ((CCoosstt,, ssttaattee))

The function getErrors returns the accumulated error messages and resets the
maintained set. The function insertSym takes as argument the symbol to be
inserted, the current state and a set of strings describing what was expected at
this location. If the state decides that the symbol is acceptable for insertion, it
returns the costs associated with the insertion, a token which should be used
as the witness for the successful insertion action, and a new state. The function
deleteTok takes as argument the token to be deleted, the old state which was
passed to splitState – which may e.g. contain the position at which the token
to be deleted is located–, and the new state that was returned from splitState.
It returns the cost of the deletion, and the new state w ith the associated error
message included.

In Fig. 9 we give a reference implementation which lifts, using listToStr, a list
of tokens to a state which has the required interface and provides a stream of
tokens. One fine point remains to be discussed, which is the commutativity of
insert and delete actions. Inserting a symbol and then deleting the current token
has the same effect as first deleting the token and t hen inserting a symbol. This

is why the function deleteTok returns a Maybe; if it is called on a state into w hich
just a symbol has been inserted it should return Nothing. The data type Error
represents the error messages which are stored in the state, and pos maintains
the current input position. Note also that the function splitState returns the
extra integer, which represents how far the input state was “advanced” ; here the
value is always 1.

Given the defined interfaces we can now define the proper instances for the
parser classes we have introduced. Since the code is quite similar we only give
the version for Pf . The occurrence of the Fail constructor is a bit more involved
than expected, and will be explained soon. The function pErrors uses getErrors
to retrieve the error messages, which are inserted into the result sequence using a
push. The function p End uses the recursive function del to remove any remaining
tokens from the input, and to produce error messages for these deletions. Having
reached the end of the input it retrieves all pending error messages and hands
them over to the result:

instance (Eof state, Stores state errors) ⇒ AsksFor (Pf state) errors where
psEtarnrocers =E Pf (tλatke inp →res sls etta t(eer resrr, oirnsp)0)⇒ ⇒= getErrors inp

43

instance Eq a ⇒ Describes a a where
eqSymTok = (≡)

data Error t s pos = Inserted s pos Strings
| Deleted t pos Strings
| DeletedAtEnd t

deriving Show

data Str t = Str {input :: [t]
, msgs :: [Error t t Int]
, pos :: !Int
, deleteOk :: !Bool }

listToStr ls = Str ls [] 0 True

instance Provides (Str a) a where
splitState (Str []) = Nothing
splitState (Str (t : ts) msgs pos ok) = Just (t, Str ts msgs (pos + 1) True, 1)

instance Eof (Str a) where
eof (Str i) = null i
deleteAtEnd (Str (i : ii) msgs pos ok)

= Just (5, Str ii (msgs ++ [DeletedAtEnd i]) pos ok)
deleteAtEnd

= Nothing

instance Corrects (Str a) a a where
insertSym s (Str i msgs pos ok) exp

= Just (5, s, Str i(msgs ++ [Inserted s pos exp]) pos False)
deleteTok i(Str ii pos True)

(Str msgs pos0 True) exp
= (Just (5, Str ii (msgs ++ [Deleted ipos0 exp]) pos True))

deleteTok
= Nothing

instance Stores (Str a) [Error a a Int] where
getErrors (Str inp msgs pos ok) = (msgs, Str inp [] pos ok)

Fig. 9. A reference implementation of state.

44

in push errs (k inp0))
pEnd = Pf (λk inp →

let d(λelk inp p=→ case deleteAtEnd inp of
Nothing → let (errors, state) = getErrors inp

ilent tp (uesrhro errors (ek) s =ta tgee)t
Just (i, inp0) → Fail [] [const (Just (i, del inp0))]

in del inp

)
Of course, if we want to base any decision about how to proceed with parsing on
what errors have been produced thus far, the Ph version of pErrors should be
used. If we j ust want to decide whether to proceed or not, the fact that results
are produced online can be used too. If we find a non-empty error message
embedded in the resulting value, we may decide not to inspect the rest of the

returned value at all; and since we do not inpect it, parsing will not produce it
either.

7.3 Repair strategies

As we have seen we have associated a cost with each repair step. In order to
decide how to proceed we change the type Step once more. Since this will be the
final version we present its complete definition here:

data Steps a where
Step :: Progress → Steps a → Steps a
Fail :: [P PSrtorginregs]s →→ [S S[t tSeptrsina g] → Maybe (Int, Steps a)] →→ SStteeppss a
Apply ::∀ b. [(bS →rin ga)] →→ S[[tSeptrsi bg →→ SStteeppss a
AEnppdhly :: [((b a, →[a a])→→ StS etpesp srb)] → Steps (a, r) →→ SStteeppss a(a, r)
Endf :: [[(Sat,ep[sa]a→] →S eStpespsr a →→ SStteeppss a

In the first component of the f ail alternative the String’s describing the expected
symbols are collected. The interesting part is the second component of the Fail
alternative, which is a list of functions, each taking the list of expected symbols,
and possibly returning a repair step containing an Int cost for this step and the
result sequence corresponding to this path. The interesting alternative of best0,
where all this information is collected, is:

Fail sl f l ‘best0‘ Fail sr f r = Fail (sl ++ sr) (fl ++ fr)

In figure Fig. 10 we give the final definition of pSym for the Pf case. The local
functions del and ins take care of the deletion of the current token and the inser-
tion of the expected symbol, and are returned where appropriate if recognition
of the expected symbol a fails.

In the best0 alternative j ust given we see that the function stops working and
just collects information about how to proceed. Now it becomes the task of the
function eval to start the suspended parsing process:

eval (Fail ss fs) = eval (getCheapest 3 [c | f ← fs, let Just c = f ss])

45

instance (Show symbol, Describes symbol token, Corrects state symbol token)
⇒ Symbol (Pf state) symbol token where

pSym a = Pf (

let p = λk inp →

tlep t =inλs ex = case insertSym a inp ex of
Just (c i, v, st i) → Just (ci , push v (k st i))
Nothing → Nothing

del s ss ex
= case deleteTok s ss inp ex of

Just (cd , st d) → Just (cd , p k st d)
Nothing → Nothing

in case splitState a inp otfh
Just (s, ss, pr) → if a ‘ eqSymTok‘ s

tifh ean‘ e Step pr (push s (k ss))
else Fail [show a] [ins, del s ss]

Nothing → Fail [show a] [ins]
in p)

Fig. 10. The definition of pSym for the Pf case.

Once eval is called w e know that all expected symbols and all information how
to proceed has been merged into a single Fail constructor. So we can construct
all possible ways how to proceed by applying the elements from ls to the set
of expected symbols ss, and selecting those cases w here actually something can
be repaired. The returned progress sequences themselves of course can contain
further Fail constructors, and thus each alternative actually represents a tree of
ways of how to proceed; the branches of such a tree are either Step’s with which
we associate cost 0, or further repair steps each with its own costs. For each
tree we compute the cheapest path up-to n steps away from the root using the
function traverse, and use the result to select the progress sequence containing
the path with the lowest accumulated cost. The first parameter of traverse is
the number of tree levels still to be inspected, the second argument the tree, the
third parameter the accumulated costs from the root up-to the current node,
and the last parameter the best value found for a tree thus far, which is used to
prune the search process.

getCheapest :: Int → [(Int, Steps a)] → Steps a
ggeettCChheeaappeesstt I[n] t=→ error t",nSot correcting paslt aernative found"
getCheapest n l= snd $ f oldr (λ(w, ll) btf@ (c, l)

→ if w < c
tifh wen< <lec t new = (traverse n ll w c)

in if new < c then (new, ll) else btf

else btf
) (maxBound, error "getCheapest ") l

traverse :: Int → Steps a → Int → Int → Int
ttrraavveerrssee :0: =→ nλvt c → In v
traverse n (Step ps l) = λtrvav ce→r se (n − 1) l

46

traverse n (Apply l) = traverse n l
traverse n (Fail m m2ls) =

λv c → f oldr (λ(w, l) c0 → if v + w < c0
then traverse (n − 1) l(v + w) c0
etlhseen nct0

) c (catMaybes $ map ($m) m2ls)
traverse n (Endh ((a, lf) : :) r) = traverse n (lf [a] ‘ best‘ removeEndh r)
traverse n (Endf (l : :) r) = traverse n (l ‘ best‘ r)

8 An Idiomatic Interface

McBride and Paterson [10] investigate the Applicative interface we have been
using t hroughout this tutorial. Since this extension of the pattern of sequential
composition is so common they propose an intriguing use of functional depen-
dencies to enable a very elegant way of writing applicative expressions. Here we
shortly re-introduce the idea, and give a specialised version for the type Parser
we introduced for the basic library.

Looking at the examples of parsers written w ith the applicative interface we see
that if we want to inject a function into the result then we will always do this
with a pReturn, and if w e recognise a keyword then w e always t hrow away the
result. Hence the question arises whether we can use the types of the components
of the right hand side of a parser to decide how to incorporate it into the result.
The overall aim of this exercise is that we will be able to replace an expression
like:

choose < $ pSyms " if " <∗ > p Expr <∗ pSyms "then" <∗ > pExpr
<<∗ ∗ ppSSyymmss "" telhesen"" <<∗ ∗ > > ppEExxpprr

by the much shorter expression:

start choose "if " pExpr "then" pExpr "else " pExpr stop

or by nicely formatting the start and stop tokens as a pair of brackets by:

[: choose " if " pExpr "then" pExpr "else " pExpr :]

The core idea of the trick lies in the function idiomatic which takes two argu-
ments: an accumulating argument in which it constructs a parser, and the next
element from the expression. Based on the type of this next element we decide
what to do with it: if it is a parser too t hen we combine it with the parser
constructed thus far by using sequential composition, and if it is a String then
we build a keyword parser out of it which we combine in such a way w ith the
thus far constructed parser that the witness is thrown away. We implement the
choice based on the type by defining a collection of suitable instances for the
class Idiomatic:

class Idiomatic f g | g → f where
aisdisomI daiotmic :: Pcaf rsg e|r gC→ harf f w →he g

47

We start by discussing the standard case:

instance Idiomatic f r ⇒ Idiomatic (a → f) (Parser Char a → r) where
sidtiaonmcaet iIcd iiosfm aist =c fidr io⇒ maI tdicio (misaft <c ∗(>a i s→)

which is to be read as follows: if the next element in the sequence is a parser
returning a witness of type a, and the parser we have constructed thus far expects
a value of that type a to build a parser of type f , and we know how to combine
the rest of g with this parser of type f , then we combine the accumulated parser
recognising a value of type a → f and the argument parser recognising an a,
raencdo gcnailsl nthge a afuv naclutieoon itd yiopmeaa tic→ avf a ailanbdle t hfreo amrg uthme cnotn tpeaxrts tro consume gfua rtnhea r,
elements from the expression.

If w e encounter the stop marker, we return the accumulated parser. For this
marker we introduce a special type Stop, and declare an instance which recog-
nises this Stop and returns the accumulated parser.

data Stop = Stop
stop = Stop

instance Idiomatic x (Stop → Parser Char x) where
sidtiaonmcaet iIcd iioxm Satotipc =x (iSxt

Now let us assume that the next element in the input is a function instead of
a parser. In this case the Parser Char a in the previous instance declaration
is replaced by a function of some type a → b, and we expect our thus far
cisonr setprluaccetedd parser utnoc accept fss uocmh a tvyapluee.a aH→ enceb we get:

instance Idiomatic f g ⇒ Idiomatic ((a → b) → f) ((a → b) → g) where
sidtiaonmcaet iIcd iiosfm aa2tibc =f gid ⇒iomI daitoicm a(istifc <((∗> a p→R bet)u→r n fa 2)(b ()

Once we have this instance it is now easy to define the function start. Since
we can prefix every parser with a id<$> fragment, we can define start as the
initialisation of the accumulated parser by the parser which always succeeds with
an id:

start ::∀ a g.(Idiomatic (a → a) g) ⇒ g
ssttaarrtt :=: ∀ ∀id aiog m.(aItdiico m(paRteictu(ran→ →ida)

Finally we can provide extra instances at will, as long as we do not give more
than one for a specific type. Otherwise we would get an overloading ambiguity.
As an example we define two further cases, one for recognising a keyword and
once for recognising a single character:

instance Idiomatic f g ⇒ Idiomatic f (String → g) where
sidtiaonmcaet iIcd iiosfm sattirc c=f ig di⇒ omI adtiiocm (iastfic c<f ∗ (pSKteryin sgtr →)

insidtiaonmcaet iIcdi iosfm asttric= =f g i⇒om Iadtiiocm(iastfic< ∗ f (p CKheayrs r→) g) where
sidtiaonmcaet iIcd iiosfm c c=f ig di⇒ omI adtiiocm (iastfic c<f ∗ p(CShymar c)→

48

9 Further Extensions

In the previous sections we have developed a library which provides a lot of basic
functionality. Unfortunately space restrictions prevent us from describing many
more extensions to the library in detail, so we will sketch t hem here. Most of
them are efficiency improvements, but we will also show an example of how to
use the library to dynamically generate large grammars, thus providing solutions
to problems which are infeasible when done by traditional means, such as parser
generators.

9.1 Recognisers

In the basic library w e had operators w hich discarded part of the recognised
result since it was not needed for constructing the final witness; typical examples
of this are e.g. recognised keywords, separating symbols such as commas and
semicolons, and bracketing symbols. The only reason for their presence in the
input is to make the program readable and unambiguously parseable.

Of course it is not such a great idea to first perform a lot of w ork in constructing
the result, only having to even more work to get rid of it again. Fortunately we
have already introduced the recognisers which can be combined with the other
types of parsers Ph, Pf and Pm . We introduce yet another class:

class Applicative p ⇒ ExtApplicative p st where
a(s<s ∗)A :: p a e→p R⇒ ⇒stE bx →Ap p a
((∗< > ∗)) :: Rp ast b →→ p a →→ p a
((∗< >$)) :: a →→ Rp ast b →→ p a

The instances of this class again follow the common pattern. We only give the
implementation for Ph:

instance ExtApplicative (Ph st) st where
Ph p <∗ R r = Ph (p.(r.))
R r p∗> < ∗PR h p == PPh (r.p)
fR < r$ ∗ >R r = Ph (r.($f))

9.2 Parsing Permutation Phrases

A nice example of the power of parser combinators is when we want to recognise
a sequence of elements of different type, in which the order in which they appear
in the input does not matter; examples of such a situation are in the recognition
of a BibTeX entry or the attribute declarations allowed at a specific node in an
XML-tree. In [1] we show how to proceed in such a case, so here we only sketch
the idea which heavily depends on lazy evaluation.

We start out by building a data structure w hich represents all possible permuta-
tions of the parsers for the individual elements to be recognised. This structure

49

is a tree, in which each path from the root to a leaf represents one of the possible

permutations. From this tree we generate a parser, which initially is prepared to
accept any of the elements; after having recognised the first element it continues
to recognise a permutation of the remaining elements, as described by the ap-
propriate subtree. Since the tree describing all the permutations and the parser
corresponding to it are constructed lazily, only the parsers corresponding to a
permutation actually occurring in the input will be generated. All the chosen
alternative has to do in the end is to put the elements in some canonical order.

9.3 Look-ahead computations

Conventional parser generators analyse the grammar, and based on the results
of this analysis try to build efficient recognisers. In an earlier paper [15] we have
shown how the computation of f irst sets, as known from the theory about LL(1)
grammar analysis, can be performed for grammars described by combinator
parsers. We plan to add such an analysis to our parsers too, thus speeding up
the parsing process considerably in cases where we have to deal with a larger
number of alternatives.

A subtle point here is the question how to deal with monadic parsers. As we
described in [15] the static analysis does not go well w ith monadic computations,
since in that case we dynamically build new parses based on the input produced
thus far: the whole idea of a static analysis is that it is static. This observation
has lead John Hughes to propose arrows for dealing with such situations [7] . It is
only recently that w e realised that, although our arguments still hold in general,
they do not apply to the case of the LL(1) analysis. If we want to compute the
symbols which can be recognised as the first symbol by a parser of the form
p >> = q then we are only interested in the starting symbols of the right hand
side if the left hand side can recognise the empty string; the good news is that
in that case we statically know what value will be returned as a witness, and
can pass this value on to q, and analyse the result of this call statically too.
Unfortunately we will have to take special precautions in case the left hand side
operator contains a call to pErrors in one of the empty derivations, since then it
is no longer true that the witness of this alternative can be determined statically.

10 Conclusions

We have come to end of a fairly long tutorial, which we hope to extend in the

future with sections describing the yet missing abstract interpretations. We hope
nevertheless that the reader has gained a good insight in the possibilities of using
Haskell as a tool for embedding domain specific languages. There are a few final
remarks we should like to make.

In the first place we claim that the library we have developed can be used outside
the context of parsing. Basically w e have set up a very general infrastructure for

50

describing search algorithms, in which a a tree is generated representing possible
solutions. Our combinators can be used for building such trees and searching such
trees for possible solutions in a breadth-first way.

In the second place the library we have described is by far not the only one ex-
isting. Many different (Haskell) libraries are floating around, some more mature
than others, some more dangerous to use than others, some resulting in faster
parsers, etc. One of the most used libraries is Parsec, originally constructed by
Daan Leijen, which gained its popularity by packaged with the distribution of
the GHC compiler. The library distinguishes itself from our approach in that
the underlying technique is the more conventional back-tracking technique, as
described in the first part of our tutorial. In order to alleviate some of the men-
tioned disadvantages of that approach, the programmer has the possibility t o
commit the search process at specific points, thus cutting away branches from
the search tree. Although this technique can be very effective it is also more
dangerous: unintentionally branches which should remain alive may be pruned
away. The programmer really has to be aware of how his grammar is parsed in
order to know where to safely put the annotations. But if he knows what he is
doing, fast parsers can be constructed. Another simplifying aspect is that Parsec
just stops if it cannot make further progress; a single error message is produced,
describing what was expected at the farthest point reached.

A relatively new library was constructed by Malcolm Wallace [19] , which contains
many of the aspects we are dealing with: building results online, and combing
a monadic interface with an applicative one. It does however not perform error
correction.

Another library which implements a breadth-first strategy are Koen Claessen’s
parallel parsers [3] , w hich are currently being used in the implementation of the
GHC read functions. They are based on a rewriting process, and as a result do
not lend themselves well to an optimising implementation.

Concluding we may say that parser combinators are providing an ever lasting
source of inspiration for research into Haskell programming patterns which has
given us a lot of insight in how to implement Embedded Domain Specific Lan-
guages in Haskell.

Acknowledgements Ithank current and past members of the Software Tech-
nology group at Utrecht University for commenting on earlier versions of this
paper, and for trying out the library described here. Iwant to thank Alesya
Sheremet for working out some details of the monadic implementation, and the
anonymous referee for his/her comments, and Magnus Carlsson for many sug-
gestions for improving the code.

A Driver function for pocket calculators

The driver function for the pocket calculators:

51

run :: (Show t) ⇒ Parser Char t → String → IO ()
run p c h=o

do putStrLn ("Give an expression like : "
++ c ++ " or (q) to quit ")

inp ← getLine
case inp toLfi

"q" → return ()
→→ rdeotu upruntS()trLn (case unP p (filter (≡6 ’ ’) inp) of

(c(avs,e e" u")n : P:p) → (fi t"eRres(u6≡l’t ’is) : "p)++ o show v
→→ "" RIencsoulrrte cits input s"h h)

run p c

References

1. Arthur I. Baars, Andres L o¨h, and S. Doaitse Swierstra. Parsing permutation
phrases. J. Funct. Program., 14(6) :635–646, 2004.

2. W.H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.
3. Koen Claessen. Parallel parsing processes. Journal of Functional Programming,

14(6):741–757, 2004.
4. J. Fokker. Functional parsers. In J.T. Jeuring and H.J.M. Meijer, editors, Advanced

Functional Programming, First International Spring School, number 925 in LNCS,
pages 1–23, 1995.

5. Bastiaan Heeren. Top Quality Type Error Messages. PhD thesis, Utrecht Univer-
sity, 2005.

6. Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type
inference process. In Eighth A CM Sigplan International Conference on Functional
Programming, pages 3 – 13, New Y ork, 2003. ACM Press.

7. John Hughes. Generalising monads to arrows. Science of Computer Programming,
37(1–3):67–111, 2000.

8. Graham Hutton and Erik Meijer. Monadic parsing in haskell. J. Funct. Program. ,
8(4):437–444, 1998.

9. Daan Leijen. Parsec, a fast combinator parser. Technical Report UU-CS-2001-26,
Institute of Information and Computing Sciences, Utrecht University, 2001.

10. Conor Mcbride and R. O. S. S. Paterson. Applicative programming with effects.
Journal of Functional Programming, 18(01) :1–13, 2007.

11. Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University
Press, April 2003. http://www.haskell.org/report.

12. Niklas R ¨ojemo. Garbage collection and memory efficiency in lazy f unctional lan-
guages. PhD thesis, Chalmers University of Technology, 1995.

13. S. Doaitse Swierstra, Arthur Baars, Andres L o¨h, and Arie Middelkoop. uuag -
utrecht university attribute grammar system.

14. S.D. Swierstra, P.R. Azero Alocer, and J. Saraiava. Designing and implementing
combinator languages. In S. D. Swierstra, Pedro Henriques, and Jose ´ Oliveira,
editors, Advanced Functional Programming, Third International School, AFP’98,
volume 1608 of LNCS, pages 150–206. Springer-Verlag, 1999.

15. S.D. Swierstra and L. Duponcheel. Deterministic, error-correcting combinator
parsers. In John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced
Functional Programming, volume 1129 of LNCS- Tutorial, pages 184–207. Springer-
Verlag, 1996.

52

16. Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. Haskell, do you read
me?: constructing and composing efficient top-down parsers at runtime. In Haskell
’08: Proceedings of the f irst A CM SIGPLAN symposium on Haskell, pages 63–74,
New York, NY, USA, 2008. ACM.

17. Philip Wadler. How to replace failure with a list of successes. In Functional
Programming Languages and Computer Architecture, volume 201 of LNCS, pages
113–128. Springer-Verlag, 1985.

18. Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.

J. ACM, 21(1):168–173, 1974.
19. Malcolm Wallace. Partial parsing: Combining choice with commitment. In Imple-

mentation and Application of Functional Languages: 19th International Workshop,
IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers,
pages 93–110, Berlin, Heidelberg, 2008. Springer-Verlag.

