
Compiling by transformation:
efficient implementation of overloading in Haskell

Jeroen Fokker S. Doaitse Swierstra
Utrecht University

{jeroen,doaitse}@cs.uu.nl

Abstract
The Utrecht Haskell Compiler (UHC) is designed as the composi-
tion of many small transformations. We illustrate the transforma-
tional approach by showing how overloading is implemented and
optimized in UHC. Overloaded functions take additional ‘dictio-
nary’ arguments, which are automatically inserted during code gen-
eration, based on the inferred types.
For each instance declaration, a dictionary is generated containing
the functions defined in that instance. The dictionary also contains
the default definitions from the corresponding class declaration,
thus requiring a mechanism for combining them.
When modules are compiled separately, this combining is done dy-
namically, during program startup or at the first use of the dictio-
nary. When performing whole-program analysis, however, infor-
mation from the class and instance declarations can be combined
statically using symbolic computation. Further transformations, no-
tably specialization of functions for constant arguments, can com-
pletely eliminate the run-time overhead normally associated with
dictionary passing.

1. Introduction
Compiling a program is the oldest and most widely used example of
generative programming. They are so common, that programmers
are hardly conscious any more that compiling, say, a C pogram
alleviates them of the tedious task of writing machine code. With
compilers for higher level languages, it is more manifest that a
compiler generates code, which in turn can be regarded as source
code for another compiler. For example, Haskell compilers often
target the C language, and domain specific languages in turn may
target Haskell.
Compilers are complex programs. The translating process consists
of many subtasks, such as parsing, type checking, modelling mem-
ory structure, code generation, and optimization. These tasks ide-
ally are dealt with in separate components, and by selecting and
arranging these components one can tune a compiler for different
requirements, such as various levels of optimization, or targeting
various back ends.
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We decided to build a compiler for Haskell (the Utrecht Haskell
Compiler, or UHC) that radically takes a component based ap-
proach: it translates a program by transforming it in small steps
[Dijkstra 2005, Dijkstra, Fokker and Swierstra 2009, website UHC].
Each of the many transformations is relatively simple, and can
be understood and tested separately. Along the route from source
(Haskell) to target (C) language, the program is transformed
through quite a few intermediate languages: some of them exist-
ing, some of them especially defined for the purpose. Therefore
some transformations (5 of them) are actually translations between
languages, and many others (about 60) are source-to-source trans-
lations, staying within one of the intermediate languages.
In this paper we present a case study that illustrates the approach:
the implementation of function overloading in Haskell. This case
touches many aspects: modelling a high-level concept (overload-
ing) by lower level datastructures (dictionaries), dealing with two
compiler modes (separate compilation versus whole-program opti-
mization), and the composition of 6 transformations that together
accomplish the task.
Moreover, the Haskell feature under scrutiny (type classes and their
instances) happens to be a mechanism that is often used by Haskell
programmers for achieving modularity, and thus is interesting in its
own right from a component engineering perspective.
To make the paper self-contained, we start in section 2 with a short
description of overloading in Haskell. In section 3 we sketch the
structure of UHC, and introduce the intermediate language central
to the case study in this paper. Next we describe the implementa-
tions of overloading for two different compiler modes: in separate
compilation mode (section 4) we see generative programming at
work, wheras in whole-program analysis mode (section 5) many
components cooperate to optimize the code. We conclude with re-
marks on the methodology and pointers to related work.

2. Overloading in Haskell
In this section we briefly summarize how function overloading is
modeled in Haskell [Peyton Jones 2003]. Overloaded functions can
be applied to values of various types. For example, the addition
function (+) can be applied to both Int values and Float values
(but not to Bool values). An equality test function (==) is avail-
able for many basic types, such as Int , Float , Char , Bool . Fur-
thermore, it can even be applied to values of list type [a ], provided
that it is also defined for the element type a . Note however that
equality testing is not possible for values of a function type.
A closely related concept is polymorphism. Polymorphic functions
can be applied to values of various types. For example, concatena-
tion can be applied to lists of type [Int ] and to lists of type [Char ],
and in fact, to lists of type [a ] for any type a .
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The difference is that polymorphic functions have a uniform def-
inition, regardless of the type of the arguments, whereas an over-
loaded function usually has a different definition for each type of
argument for which it is defined. The type of arguments of poly-
morphic functions can be any instantiation of the type variables in
its type, whereas the type of arguments of overloaded functions can
only be those types for which a version of the function has been de-
fined. Therefore, function overloading is sometimes referred to as
ad hoc polymorphism.

2.1 Class and instance declarations

The group of types to which an overloaded function can be applied
is known as its class. A class declaration introduces a name for
such a group of types, together the signatures of functions. These
signatures can involve type variables, which may be instantiated to
types belonging to the group. For example, we can define a class Eq
to group the types for which equality and non-equaltiy are defined:

class Eq a where
eq :: a → a → Bool
ne :: a → a → Bool

This Eq class is actually part of the Haskell standard library. There,
operators == and /= are defined rather than functions eq and ne , but
in this paper we avoid operators, as the notational conventions for
writing them may obscure the explanation.
Individual types can be made an instance of a class by an instance
declaration. For example, Int can be made instance of Eq by pro-
viding definitions for the functions specified in the class declara-
tion:

instance Eq Int where
eq x y = eqPrimInt x y
ne x y = not (eqPrimInt x y)

The definitions rely on the existence of a function eqPrimInt that
gives a primitive implementation for equality on integers. The way
eqPrimInt is defined is not relevant for the present discussion.
As another example, we give an instance declaration for Eq Bool .
It shows that we can define the function eq from scratch if we wish,
without relying on other functions. The function ne can be defined
in a similar way (and that would probably be more efficient), but
we show here the possibility to have ne rely on the existence of the
other overloaded function eq .

instance Eq Bool where
eq False False = True
eq True True = True
eq = False
ne x y = not (eq x y)

The terminology of the notions ‘class’ and ‘instance’ is borrowed
from the object-oriented paradigm [Bernardy et al 2009]. There are
similarities, in that a class declaration specifies functions that are
implemented by instance declaration. But note that there are differ-
ences as well: in the object-oriented paradigm, class member func-
tions take an object of the class as an implicit argument, whereas in
the functional paradigm all parameters are declared explicitly; thus
we can have two arguments that are constrained to the type of this
instance declaration.
Not all overloaded functions need to be defined in a class. Every
function that uses an overloaded function, becomes automatically
overloaded itself. For example, the function elem that checks ele-
ment membership of a list uses the overloaded equality function eq
on the list elements:

elem e [ ] = False
elem e (x : xs) = eq e x ∨ elem e xs

Therefore, although the elem function has a uniform definition and
thus seems to be a polymorphic function, it can actually only be
used on lists of which the elements are in the Eq class. This fact is
expressed in the signature of the elem function by:

elem :: Eq a ⇒ a → [a ]→ Bool

Note the double-shafted arrow which is to be read as ‘constrains’,
as opposed to the single-shafted arrow which is to be read as
‘function from/to’. We may read this signature as: for each type
a which is an instance of Eq , elem has the type a → [a ]→ Bool .

2.2 Default definitions

One could question the need for declaring ne to be part of the Eq
class. After all, non-equality is (in any sound implementation) the
negation of equality. So it would have been possible to only specify
eq in the class, and to define ne with a uniform definition, as we
did with elem:

class Eq a where
eq :: a → a → Bool
-- and outside the class:

ne :: Eq a ⇒ a → a → Bool
ne x y = not (eq x y)

Using this approach, instance programmers are freed from the
burden to give an explicit, but straightforward, definition of ne . But
the downside is that it is now impossible for instance programmers
to define their own, probably more efficient, version of ne . The
programmer of Eq Bool might regret not being able to define a
version of ne that uses pattern matching directly, instead of relying
on the uniform definition based on eq and not .
To overcome this dilemma, Haskell allows a class definition to be
augmented with default definitions for some or all of the member
functions. Now, instance programmers have the choice either to
rely on a default definition of ne as it appears in the class, or to
give a more efficient version for a particular type.
A default definition by nature is a uniform definition, as it cannot
assume the type variables in the signature to be instantiated to a
particular type. But the definition can refer to the other functions
from the class. In fact, the Haskell standard library implementation
of Eq has default definitions for both ne and eq , defined in terms
of each other:

class Eq a where
eq :: a → a → Bool
ne :: a → a → Bool
ne x y = not (eq x y)
eq x y = not (ne x y)

An instance programmer now has the choice to define either eq or
ne (and rely on the default definition for the other), or define both
(thus ignoring/erasing/overriding both default definitions). Defin-
ing neither of the two is allowed as well, but would result in inherit-
ing the circular definitions without breaking the circle by redefining
at least one of the two.

2.3 Superclasses

Using the terminology of object-oriented paradigm even further,
Haskell has the notion of a ‘superclass’ as well. It is exemplified
by the class Ord of types that have an ordering, by providing
comparison operators like <, 6, >, and >. Default definitions
specify these in terms of each other. Instance programmers can
choose to implement only one of the four (and rely on the default
definitions for the others), or more if they wish. But the default
definitions not only call each other, but also the eq function from
class Eq . This is possible because Ord is specified to be a subclass
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of Eq ; that is, a type is only allowed to be an instance of Ord if it
is an instance of Eq as well.
A possible class definition of Ord is:

class Eq a ⇒ Ord a where
lt :: a → a → Bool
le :: a → a → Bool
gt :: a → a → Bool
ge :: a → a → Bool
lt x y = not (ge x y)
gt x y = not (le x y)
le x y = lt x y ∨ eq x y
ge x y = gt x y ∨ eq x y

The superclass is mentioned in the class header, featuring another
meaning of the double-shafted arrow. There can be more than one
superclass, separated by commas and enclosed in parentheses. The
actual definition in the standard library also specifies functions
compare , min , and max , and an even more intricate web of mutu-
ally recursive default definitions.

2.4 Context for instances

Finally, Haskell provides a mechanism to declare an instance in
the context of another instance. An example is the definition of Eq
for lists, where the equality for lists of elements is expressed using
the equality function for the elements. This only makes sense in a
context where the element type is assumed to be instance of Eq as
well.

instance Eq a ⇒ Eq [a ] where
eq [ ] [ ] = True
eq [ ] (y : ys) = False
eq (x : xs) (y : ys) = eq x y ∧ eq xs ys

The defining expression line contains two calls to eq . The second
is a recursive call on the tails of the list. The first however is not
a recursive call, but a call to eq for a different instance type: the
list element type, guaranteed to be an instance of Eq by the context
mentioned in the header. Type analysis by the compiler makes sure
that the right version of eq is called.

3. UHC compiler structure
3.1 Transformational programming

The main structure of the Utrecht Haskell Compiler is shown in
Figure 1. Haskell source text is translated to an executable program
by stepwise transformation. Some transformations translate the
program to a lower level language, many others are transformations
within one language, establishing an invariant or performing an
optimization. A more detailed account is given in a separate paper
[Dijkstra, Fokker and Swierstra 2009].
All transformations, both within a language and between lan-
guages, are expressed as an algebra giving a semantics to the lan-
guage. The algebras are described with the aid of an attribute gram-
mar, which makes it possible to write multi-pass tree-traversals
without even knowing the exact number of passes. Although the
compiler driver is set up to pass data structures between transfor-
mations, for all intermediate languages we have a concrete syntax
with a parser and a pretty printer. This facilitates debugging the
compiler, by inspecting code between transformations. Here is a
short characterization of the intermediate languages:
• Haskell (HS): a general-purpose, higher-order, polymorphically

typed, lazy functional language.

…

HS

EH

Grin

Core

Silly

C

exe

HS

EH

C C

C

exe

C

Jvm Jvm

Core Core

bytecode
tables

bytecode
interpreter

runtime
system

jar

Java

graph
interpreter

module1 module2

llvm
cil

Grin Grin

BC BC

Figure 1. Intermediate languages and transformations in the UHC
pipeline, in each of the three operation modes: whole-program
analysis (left), bytecode interpreter (middle), and Java (right).

• Essential Haskell (EH): a higher-order, polymorphically typed,
lazy functional language close to lambda-calculus, without syn-
tactic sugar.
• Core: an untyped, lazy functional language close to lambda-

calculus, augmented with let-bindings and case distinction with
simple pattern matching.
• Grin: ‘Graph reduction intermediate notation’, the instruction

set of a virtual machine of a small functional language with
strict semantics, with features that enable implementation of
laziness [Boquist 1999].
• Silly: ‘Simple imperative little language’, an abstraction of fea-

tures found in every imperative language (if-statements, assign-
ments, explicit memory allocation) augmented with primitives
for manipulating a stack, easily translatable to e.g. C (not all
features of C are provided, only those that are needed for our
purpose).
• BC: A bytecode language for a low-level machine intended

to interpret Grin which is not whole-program analyzed nor
transformed. We do not discuss this language in this paper.

The compiler targets different back ends, based on a choice of the
user. In all cases, the compiler starts compilation on a per module
basis, desugaring the Haskell source text to Essential Haskell, type
checking it and translating it to Core. Then there is a choice from
three modes of operation:
• In whole-program analysis mode, the Core modules of the pro-

gram and required libraries are assembled together and pro-
cessed further as a whole. At the Grin level, elaborate inter-
module optimization takes place. Ultimately, all functions are
translated to low level C, which can be compiled by a standard
compiler. As alternative back ends, we are experimenting with
other target languages, among which are the Common Interme-
diate Language (CIL) from the Common language infrastruc-
ture used by .NET, and the Low-Level Virtual Machine (LLVM)
compiler infrastructure.
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Program ::= Bind∗

Bind ::= Name Var∗ = Annot {Expr }
| Var ← store Node

Expr ::= unit Var
| unit Node
| Expr ; λVar → Expr
| store Node
| call Name Var∗

| apply Var Var∗

| eval Var
| case Var of Alt∗

Alt ::= Pat → Expr
Pat ::= (Tag Var∗)
Node ::= (Tag Var∗)

| (Tag Lit)
Tag ::= C/Constr

| PN /Name
| F/Name
| A

N ::= 0 | 1 | 2 | . . .
Annot ::= ε

| dictclass (Name∗)
| dictinst (Constr Name (Name∗))
| overloaded ((N ∗)∗)
| specialized (Name (Var∗))

Figure 2. Syntax of the Grin language. An ∗ denotes 0 or more
occurrences. Var , Name , and Constr are identifiers referring to
values, functions, or constructors. Underlining denotes a defining
position. Lit is an integer or character literal.

• In bytecode interpreter mode, the Core modules are translated
to Grin separately. Each Grin module is translated into instruc-
tions for a custom bytecode machine. The bytecode is emitted
in the form of C arrays, which are interpreted by a handwritten
bytecode interpreter in C.
• In Java mode, the Core modules are translated to Java byte-

code, to be interpreted by the Java virtual machine (JVM). Each
function is translated to a separate class with an eval function,
and each closure is represented by an object combining a func-
tion with its parameters. Together with a driver function in Java
which steers the interpretation, these can be stored in a Java
archive (jar) and be interpreted by a standard Java interpreter.

The bytecode interpreter mode is intended for use during program
development: it takes less time to compile, but because of the inter-
pretation overhead the resulting program runs slower. The whole-
program analysis mode is intended to be used for the final program:
it takes more time to compile, but generates code that is more effi-
cient.

3.2 The Grin intermediate language

Grin is a small language designed to be an intermediate language
between Core (a higher-order lazy functional language) and Silly
(an imperative language). Grin is a functional language (function
bodies are expressions which are evaluated when a function is
called) but it is first-order (all functions are defined at top level and
cannot be passed as arguments) and strict (arguments are evaluated
when functions are called). Nevertheless, Grin has an imperative
spirit, as the evaluation of expressions can have side effects on the
heap. The sequencing of these side effects is made explcit in the

Grin code, using a monadic notation: the only possible expression
forms are a handful of basic operations on the heap, and a monadic
bind and unit operation.
The mapping from Core to Grin makes the evaluation order ex-
plicit. Thus, it has to simulate the lazy semantics of Core by means
of primitives that are provided in Grin for that purpose. The data
that is manipulated by Grin is structured into nodes, which are
tagged lists of single-word elements. Nodes can be assigned to lo-
cal variables directly, but local variables can also hold pointers to
nodes that are stored on the heap.
Refer to figure 2 for the syntax of the Grin language. It shows that
a program consists of bindings, each of which is either a function
definition or the initialization of global variable with a pointer
to a node stored on the heap. Function definitions are optionally
annotated with an Annot , the meaning of which is described in
section 5.
The body of a function is an expression of the built-in monad: ei-
ther one of six primitive forms, a monadic binding of one expres-
sion to a variable in another expression, or a selection from alter-
natives based on the value of a variable. Sequencing is written in
monadic style as e1; λx → e2, with semantics ‘execute e1, bind
the result to x and then execute e2 in the new context. Although
the lambda symbol suggests that we can define local functions, this
is by no means general lambda-calculus, as the lambda can only
be used in this particular position. The notation involving the semi-
colon, lambda and arrow is just a triadic expression form, which
in a different concrete syntax would look more like an imperative
assignment statement x := e1; e2.
We will discuss the semantics of the various expression forms
shortly, but first we focus on nodes and tags. A node can be thought
of as a variable-sized block of memory, consisting of a tag indicat-
ing its purpose, and a payload of zero or more pointers. A special
form of node consists of a tag and a primitive literal.
Tags come in four flavors: C, P, F, and A. Nodes with C or P
tag are final: when a pointer to them is evaluated, they remain the
same. Nodes with F or A tags encode a deferred computation.
They are also known as thunks, used in the implementation of
lazy evaluation. When a pointer to such a node is evaluated, the
computation takes place, and the node is updated with a final node.
The meaning of the four tag flavors is as follows:
• C corresponds to a constructor in Haskell. For example, the

empty list has tag C/Nil and can be represented as a node
with zero-length payload (C/Nil). A non-empty list can be
constructed as (C/Cons x xs).
• P stands for a partially parametrised function. In the lambda

calculus, a function application with to few arguments to be
reduceable is in head normal form, that is, cannot be further
evaluated. The P tag encodes which function was partially
parameterized, and (written as a numeric suffix) the number
of parameters it still lacks. The payload of a node with P-tag
holds the argunents it has already received. For example, the
node (P1/plus one), where one could be globally bound by
one ← store (C/Int 1), denotes a partial parameterization of
function plus , still lacking its second argument.
• F is used to denote a deferred call to a function. For example,

the node (F/divide one zero) is an encoding of the fact that
function divide will be called, but only when this node is forced
to evaluation.
• A is used to denote the deferred application of a partially pa-

rameterized function to further arguments. Nodes with this tag
must have a payload of at least one pointer, which is sup-
posed to evaluate to a node with P tag. For example, the
node (A succ one), where variable succ is bound to node

4 2010/5/31



(P1/plus one), will be updated to (C/Int 2), but only when
forced to evaluation.

We now turn to the semantics of the various expression forms.
• unit n , where n is an explicit node, just returns that node,

without having side effects on the heap.
• unit x just returns the value of the variable x , which can be a

node or a pointer value.
• e1; λx → e2 executes e1, binds the result to variable x and

subsequently executes e2. It returns whatever e2 returns.
• store n stores the node value n on the heap, and returns a

pointer to it
• call f a1. . .an calls function f with the given arguments, and

returns the node that is its result
• apply x b1. . . bk expects variable x to evaluate to a node with

value (Pm/f a1. . .an), and calls f a1. . .an b1. . . bm if k > m.
When k > m, the result of the call is recursively applied to the
remaining arguments.
When k < m, the function can’t be called for lack of argu-
ments, and an appropriate new Pm−k-node is returned.
• eval x expects a pointer in variable x and fetches the corre-

sponding node from the heap. If the node is in head normal
form, that is, has a C or P tag, that node is just returned. If the
node has an F/f tag, function f is called. The node is updated
with the result, and that result is also returned. If the node is
(A x a1. . .an), the effect is the same as an apply.
• case x of . . .p → e . . . expects a node in variable x and

executes expression e coupled with pattern p that matches that
node.

Variables in a Grin program can in principle hold either a pointer
or a node. But all syntactic structures involving variables have
specific requirements on the value of that variable. In this sense
Grin is a (implicitly) typed language: it can be statically determined
which variables hold pointers, and which hold nodes. The type
requirements are as follows: the first Var in an apply and the
one in a case should hold a node, but the other Vars occurring in
a eval, call, apply, and node payload should hold a pointer. The
Var in a unit can hold either a pointer or a node.
Likewise, the return value of each statement form is fixed: call,
apply, eval, and unit n return a node, whereas store returns
a pointer. The remaining expression forms unit, sequencing, and
case, return whatever their sub-constructs return.
The code generator (Core to Grin transformation) takes care that
the generated Grin program is type correct in this respect. It can
generate a store expression when a node needs to be available
as a pointer, and it can generate an eval expression when the node
pointed to by a pointer is needed. For a final node, eval just fetches
the node pointed to. For a non-final (thunk) node, eval first forces
the thunk to a final node, but that is a good thing to do when a node
is needed.

4. Dynamic handling of overloading
4.1 Dictionaries

The standard technique for implementing overloading in Haskell,
as described by Augustsson [Augustsson 1993], makes use of dic-
tionaries. A dictionary basically contains the implementations for
a particular instance of the functions specified in a class. Calling an
overloaded function then amounts to selecting one of the functions
from the dictionary, and subsequently applying it to its arguments.
Function names are not storable values in Grin, but we can store
a node that represents a partially parameterized function. As an
example, consider the instance declaration in Haskell that defines
both member functions of Eq for the Int type:

instance Eq Int where
eq x y = eqPrimInt x y
ne x y = not (eqPrimInt x y)

A Grin representation of the dictionary corresponding to this dec-
laration is a node, using the dictionary name as a constructor, and
having two pointers corresponding to the two function definitions
as its payload: The two pointers point to nodes denoting partial
parameterizations of functions: they have ‘already’ received 0 ar-
guments, and are still lacking 2 arguments:

eqIntP ← store (P2/eqPrimInt)
neIntP ← store (P2/neInt)
dictEqInt ← store (C/Eq eqIntP neIntP)

As the definition of eq for Int is just a call to eqPrimInt , we can
use (P2/eqPrimInt) for the first pointer. But the definition of ne
for Int is not just a renaming of an existing function. It therefore
gives rise to a new function binding in Grin:

neInt x y =
{store (F/eqPrimInt x y); λr →
call not r
}

The second member of the dictEqInt dictionary points to the P2-
node of this function.
The class declaration in Haskell, which only contains signatures
for the member functions, nevertheless gives rise to generated Grin
code: one function binding for each member function. These func-
tions take a single dictionary argument, and select the appropriate
field from that dictionary. The selector functions for the Eq class
are polymorhpic functions that pick a specific element from a dic-
tionary:

eq d =
{eval d ; λt →
case t of

(C/Eq p q)→ {eval p}
}
ne d =
{eval d ; λt →
case t of

(C/Eq p q)→ {eval q }
}

Finally, we describe the code that is generated for the call in Haskell
of a class member function, as in the example

test1 = eq 3 4

Grin code for this example does the call to the member function
in two steps. First the selector function is called on the dictionary
corresponding to the type (Int in the example) of the arguments.
This is supposed to return a P2-tagged node, which is subsequently
applied to the arguments by apply.

test1 =
{store (C/Int 3) ; λx →
store (C/Int 4) ; λy →
call eq dictEqInt ; λp →
apply p x y
}

Overloaded function that are not declared in the class, such as the
Haskell function

elem :: Eq a ⇒ a → [a ]→ Bool

are implemented as a Grin function that takes an additional dictio-
nary argument. In essence, the overloaded function is made poly-
morphic again.
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4.2 Default definitions

Now suppose that we are compiling a class with a default definition,
for example the Eq class with a default definition for ne:

class Eq a where
eq :: a → a → Bool
ne :: a → a → Bool
ne x y = not (eq x y)

Clearly, the compiler needs to generate code for the default func-
tion. It can’t be named ne , as that name is already used for the
selector function, so let’s name it neDef . In the body of neDef we
need to call eq . This process, as in the test1 example above, takes
two steps: first select the function from the dictionary, then apply it
to its arguments.
The dictionary where the member functions can be found needs to
be passed as an additional argument to neDef . Essentially, default
functions are implemented just as overloaded functions outside a
class, such as elem . So, although the Haskell default definition for
ne has 2 parameters, its Grin implementation has 3:

neDef d x y =
{store (F/eq d) ; λf →
store (A f x y); λr →
call not r
}

Note that the 2-stage calling process is disguised here in its lazy
form. Instead of a call and an apply as in the test1 example, we
store a deferred call to the selector by means of an F-node, and
a deferred apply by means of an A-node. Whether or not these
thunk-nodes are ever evaluated is decided inside the not function.
Actually, not indeed does evaluate its argument, but without a
strictness analysis we can’t predict that when compiling neDef .
Inside a dictionary for class Eq , we need two P2-nodes, as eq and
ne in Haskell have 2 arguments. We would get something like:

eqIntP ← store (P2/eqPrimInt)
neIntP ← store (P2/neDef dictEqInt)
dictEqInt ← store (C/Eq eqIntP neIntP)

The dictionary is to be populated with pointers to P-nodes, that re-
fer to functions which are a mixture from the instance declaration
(eqIntP in the example) and default definitions from the class dec-
laration (neIntP ). Note that neIntP and dictEqInt are referring
to each other, which is allowed in Grin.
In a setting where compilation is done for separate modules, it
is not possible to generate without extra tricks the dictionary at
compile time. Class and instance declarations can reside in separate
modules, and normally the code generated for the class declaration
is not available for inspection by the compiler at the moment that
the dictEqInt binding is generated.
Instead of having the compiler emit the binding

dictEqInt ← store (C/Eq eqIntP neIntP)

directly, the compiler generates code that can construct the dictio-
nary at run time, at the first occasion that it is used.

4.3 Dynamic generation of dictionaries – first attempt

Instead of the explicit construction of the dictionary by the com-
piler, the compiler generates a nullary function that can construct
it on demand. The dictionary variable is bound to a thunk for that
function, thus triggering the construction when the dictionary is
first used.

makeEqInt =
{ -- construct P2-nodes for both dictionary fields

}
dictEqInt ← store (F/makeEqInt)

By the nature of the evaluation/updating mechanism, from the
moment that dictEqInt has been evaluated for the first time, it will
be bound to the final C/Eq-node.
For construction the dictionary, we need information from the class
declaration. The only way of communication with another mdule is
to call functions or to evaluate global bindings. We arrange that
the class module, for this purpose, defines a global binding to
a dictionary that contains fields for the default functions, and ⊥
elsewhere.

neDefP ← store (P3/neDef )
dictEqDef ← store (C/Eq ⊥ neDefP)

Note that this ‘default dictionary’ stores P3-nodes, not P2-nodes
as we need in the instance dictionaries.
Now the dictionary for the instance is constructed by fetching
the default dictionary, and applying the P3-node found there to
the dictionary it needs. That is: the dictionary that we are about
to build; lazy evaluation allows this seemingly circular definition.
Applying a P3-node to one further argument results in a P2-node,
which is stored in the dictionary, along with a P2-node for the other
function:

makeEqInt =
{eval dictEqDef ; λd ′

case d ′ of
(C/Eq q)→
{eval q ; λq ′

apply q ′ dictEqInt ; λq ′′

store (P2/eqPrimInt); λp
unit (C/Eq p q ′′)
}

}

4.4 Dynamic generation of dictionaries

Although the idea in the previous subsection works in simple situa-
tions, such as the Eq example, it does not work in general. The flaw
is that default definitions not always take the additional dictionary
parameter as suggested in the first attempt. Situations where that
assumption doesn’t hold are:
• the default definition does not use the other members. The Core

code generator only introduces additional parameters when they
are really necessary, so here we get a default definition without
dictionary parameter.
• the default definition does use other fields, but only from su-

perclasses. The Core code generator optimizes for this situation
by having the function take the dictionary for the superclass di-
rectly.

In both situations the expression apply q ′ dictEqInt in the first
attempt applies q ′ wrongly.
To solve this problem, we take an approach inspired by Faxén
[Faxén 2002]. His endeavour was to give a formal definition of the
semantics of Haskell, but actually the construction used there works
quite well in a practical setting.
The idea is that the responsibility for applying the default dictionary
to the (thunk for the) final result is shifted from the instance module
to the class module. In this way the class module, that knows about
the expectations of the default definitions, can decide to apply the
default definition to the final result, not to do that if it is not needed,
or rather use the superclass when needed.
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For this purpose, the creation of the default dictionary is now made
dynamic as well, and parameterized by the instance that it is needed
in:

makeEqDef d =
{store (P2/neDef d); λq →
unit (C/Eq ⊥ q)
}

In this example, in the first line it was decided to apply the def-
inition to the final dictionary after all, but here the compiler has
freedom to act differently if the desires of neDef would have been
different.
In this new arrangement, we revise the definition of makeEqInt
such that, instead of fetching eqDef , it calls our new dynamic
generator makeEqDef :

makeEqInt =
{call makeEqDef dictEqInt ; λd ′

case d ′ of
(C/Eq q)→
{store (P2/eqPrimInt); λp
unit (C/Eq p q)
}

}

5. Static handling of overloading
When it is possible to inspect and transform the program as
a whole, we can fully eliminate the run-time overhead of ma-
nipulating dictionaries. The idea was first described by Jones
[Jones 1995]. We take a radical transformational approach, describ-
ing the necessary steps as separate program transformation steps.
Thus we adhere to our philosophy of preferring a large number of
easy transformations, over a small number of complicated ones.
The most important transformations are:
• MergeInstance: for each instance declarations, merge the defi-

nitions found there with the default definitions in the class dec-
laration.
• SelectMember: statically rather than dynamically select mem-

bers from a dictionary
• SpecConst: specialize functions that are called with a constant

argument. This is a general technique that can also transform an
expression like plus x 1 to succ x , where succ is a specialized
version of plus with constant argument 1. Here we use it to
specialize overloaded functions that are called with a constant
dictionary.

The opportunities for applying these transformations are prepared
by some more transformations:
• EvalKnown: simplify uses of eval x in a situation where the

value of x happens to be statically known
• ApplyKnown: simplify uses of apply p x in a situation where

the value of p happens to be statically known
• DropUnused: remove bindings to (local and global) variables

that are never used
• DropUnreachable: remove bindings to global variables and

functions that are not reachable from main

5.1 The MergeInstance transformation

In a whole-program analysis setting, it is possible to statically
merge the functions defined in an instance with the default defi-
nitions from the class. However, the (EH to Core) code generator
generates Core code without having a particular back end in mind,
and thus we are confronted with the code as described in the previ-

ous section for dynamic dictionary construction. Our first task is to
turn that in a static construction. The goal is to replace

dictEqInt ← store (F/makeEqInt)

back to
dictEqInt ← store (C/Eq eqIntP neIntP)

and to generate the appropriate member fields:
eqIntP ← store (P2/eqPrimInt)
neIntP ← store (P2/neDef dictEqInt)

This is hard for two reasons: it is hard to see that dictEqInt is
indeed a dictionary: it would involve deconstructing the thunk,
inspecting the code of makeEqInt recognize that it has the form
of generated code for instance declarations, extract the names of
function definitions from it, as well as the reference to makeEqDef
which is to be deconstructed as well.
Although this approach is possible in principle, it feels like re-
versely engineering the outcome of all the transformations that
were responsible of generating this Grin definitions. Apart from
being tricky, the procedure is deemed to break whenever we would
make changes in the Core to Grin transformation pipeline.
Instead, we take a different approach, by making the intention of
some of the generated function definitions manifest, by means of
annotations. The price is that we need to extend both the Core and
the Grin language to facilitate such annotations.
• the definition of makeEqInt is annotated with a marker dictinst:

‘this constructs a dictionary corresponding to a instance decla-
ration’;
• the definition of makeEqDef is annotated with a marker

dictclass: ‘this is a dictionary generator corresponding to a
the default definitions in a class declaration’;
• the definition of neDef is annotated with a marker overloaded:

‘this is an overloaded default definition with specific additional
argument desiderata’.

Apart from the marker we embed in the annotation all information
relevant for the dictionaries:
• for dictinst, we need the name of the tag of the dictionary, the

name of the dictionary constructor for the default definitions,
and all the names of the members defined.
• for dictclass, we need the names of all default definitions.
• for overloaded, we need a description of the dictionaries it

needs (and whether it needs one at all).
In our example, the relevant annotations are:

makeEqInt =
dictinst (Eq makeEqDef (eqPrimInt )) { . . . }

makeEqDef d =
dictclass ( neDef ) { . . . }

neDef d x y =
overloaded (()) { . . . }

There are underscores in the dictinst and dictclass annotations
for members that are not defined. The annotation of the overloaded
function is a list of lists of numbers. Each element corresponds to
a dictionary argument. An empty element (as in the example) in-
dicates that this function simply needs the dictionary for the whole
class. A singleton list element (n) indicates that a dictionary for the
nth superclass is needed. Longer lists specify super-superclasses;
for example (3 1) specifies the third superclass of the first super-
class.
The annotations can be easily inserted when generating Core, be-
cause all this information is available anyway when generating
the Core definitions. The annotations are propagated unchanged
through all Core and Grin transformations, so that we have them
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available when we need them: in the MergeInstance transforma-
tion.

5.2 The SelectMember transformation

Dictionaries are passed as additional arguments to overloaded func-
tions. In the function bodies, they can be passed to other overloaded
functions, but in the end dictionaries are only used for a single pur-
pose: to select a member function from them. An example is test1
which we introduced earlier:

test1 =
{store (C/Int 3) ; λx →
store (C/Int 4) ; λy →
call eq dictEqInt ; λp →
apply p x y
}

The third line selects a field from the dictionary by calling the
eq selector; the resulting function is subsequently applied to its
arguments.
Now that the previous transformation has made all dictionaries
statically available, we can proceed by selecting the member fields
statically. This is what the SelectMember transformation does: it
scans the Grin program for expressions of the form call s d where
s is a selector function and d is a dictionary. In the example, the
selector is eq , which is a Grin function defined by

eq d =
{eval d ; λt →
case t of

(C/Eq p q)→ {eval p}
}

It is recognized as a selector, because its definition is a two-line
function where the second line evaluates one of the members of a
dictionary. We actually hunt the program for selectors, that is func-
tions that have this very structure. (Again this is a form of reverse
engineering; another approach would be to explicitly annotate se-
lector functions as such at the moment they are generated, in a simi-
lar fashion as we use dictinst and dictclass annotations to avoid
hunting for complex patterns).
In the example, the dictionary is dictEqInt , which is a global
variable that at this time (after the MergeInstance transformation)
is defined as

dictEqInt ← store (C/Eq eqEqInt neEqInt)

Now that the selector and the dictionary are identified, the call
can be performed statically: the expression call eq dictEqInt is
replaced by eval eqEqInt .
Our example ends up as transformed to:

test1 =
{store (C/Int 3); λx →
store (C/Int 4); λy →
eval eqEqInt ; λp →
apply p x y
}

5.3 The EvalKnown transformation

At this point in the pipeline of transformations it is useful to per-
form two transformations that simplify the Grin program based
on variables of which the value may be known in a particular
context. There are two such transformations: EvalKnown and
ApplyKnown.
An eval expression occurs in Grin code when it is needed to force a
variable to head normal form and to fetch its value from the heap. A

typical occurrence is in the body of a function, where the unknown
value of the argument needs to be forced and fetched in order to be
scrutinized:

f x =
{eval x ; λv →
case v of . . .

Sometimes, a Grin program evaluates a variable of which the value
is known. We can encounter expressions like:

store (C/Int 5); λn →
eval n

This is equivalent to the shorter expression:
unit (C/Int 5)

which is more efficient since it avoids storing a node on the heap,
and executing the eval operation to fetch it back.
So is the Grin code generator to blame for emitting inefficient code
like in the example above? Not really, because the value of the vari-
able could have become known only later, as a result of transforma-
tion of Grin code. For example, if the inline transformation decides
to inline the call to f in

store (C/Int 5); λn →
call f n

we end up with such inefficient store-eval combinations.
To compensate for this, we introduced a transformation EvalKnown
that hunts for occurrences of eval x where x has a known value,
either because it is a global variable or because it is the target of an
earlier store. This transformation catches situations like the exam-
ple above. Since this transformation is carried out anyway, the Grin
code generator can afford itself to generate inefficient store-eval
pairs on occasion. This makes the code generator simpler: it can be
defined compositionally, without having to bother about avoiding
store-eval pairs.
The EvalKnown transformation symbolically collects all (local and
global) stores, and for each eval x checks whether the variable x
has a known value. We distinguish two cases:
• x is a global or local variable used to store a value v in head

normal form, that is a node with a C or P tag. Then eval x can
be replaced by unit v .
• x is a local variable used to store a thunk with an F tag, that is

a node (F/f a1. . .an). When x is used only once, then eval x
can be replaced by call f a1. . .an

The reason that we bring up this whole story, is that the pre-
vious SelectMember transformation generates opportunities for
EvalKnown. Remember that it has replaced call eq dictEqInt by
eval eqEqInt . This is an opportunity for the EvalKnown transfor-
mation, since eqEqInt is a global variable bound to (P2/eqPrimInt).
Thus eval eqEqInt is transformed to unit (P2/eqPrimInt).
Our example thus now is transformed to:

test1 =
{store (C/Int 3) ; λx →
store (C/Int 4) ; λy →
unit (P2/eqPrimInt); λp →
apply p x y
}

5.4 The ApplyKnown transformation

The apply operation expects a value that represents a partially
applied function, and applies it to further arguments. Normally this
operation is generated by the code generator for values that are not
statically known, for example when emitting code for polymorphic
functions such as map.
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But similar to the previous subsection, where eval is occasionally
used on variables with a statically known value, situations can oc-
cur where apply is used on values that are statically known. In
fact, this happens in the example outcome of the previous trans-
formation: we have an apply operating on a value that obviously
is (P2/eqPrimInt), a partial application of eqPrimInt lacking 2
parameters.
Since in this example the lacking 2 parameters are provided as part
of the apply operation, the call is thereby saturated and equivalent
to call eqPrimInt x y .
This is exactly what the EvalKnown transformation performs: it
symbolically collects all units, and for each apply x b1. . . bk

checks whether the variable x holds a known node (Pm/f a1. . .an).
There are three cases:
• k < m (undersaturated call): replace the apply operation by

unit (Pm−k/f a1. . .an b1. . . bk)
• k = m (saturated call): replace the apply operation by

call f a1. . .an b1. . . bk

• k >m (oversaturated call): do nothing. (This situation does not
occur in the context discussed in this paper. If it does occur in
other situations, doing nothing is always safe.)

Our example ends up as:
test1 =
{store (C/Int 3) ; λx →
store (C/Int 4) ; λy →
unit (P2/eqPrimInt); λp →
call eqPrimInt x y
}

Note that the binding of the P2-node to p has now become ob-
solete. However, it is not removed by the ApplyKnown transfor-
mation, as it will be caught anyway by a DropUnused transfor-
mation performed further downstream the transformation pipeline.
This way, we keep the individual transformations straightforward,
while they together still do all that is needed.

5.5 The SpecConst transformation

The combined effort of all transformations so far has succeeded in
annihilating all dictionary overhead involved in the Haskell expres-
sion eq 3 4. Now let’s see what happens for the Haskell expression
ne 5 6.
Because the instance declaration Eq Int relies on the default
definition for ne , the resulting Grin code is different. The field
selection and subsequent apply is shortcut successfully, but the
default definition neDef that is now called is overloaded, and thus
needs an additional dictionary parameter itself.

test2 =
{store (C/Int 5); λx →
store (C/Int 6); λy →
call neDef dictEqInt x y
}

So we still have the overhead associated with run-time dictionary
passing here.
To overcome this, we rely on a technique that is actually more
general: statically apply partial evaluation and generate specialized
‘clones’ of a function that is called with a constant argument. Func-
tion neDef has three parameters, and in this call the first argument
is a global constant: a dictionary, that (since the SelectMember
transformation is performed) is defined as a global constant:

dictEqInt ← store (C/Eq eqEqInt neEqInt)

In this particular example the other two arguments are constants as
well, so the function may end up to be specialized for all three argu-

ments. In a typical situation however only the dictionary is constant,
and we get a specialized copy still expecting two parameters.
For the sake of argument, we assume here that the function is
only specialized for its dictionary argument (imagine an option to
be active that forbids specializing for integer arguments). Starting
from the original definition of neDef :

neDef d x y =
{store (F/eq d) ; λf →
store (A f x y); λr →
call not r
}

a clone is generated, which is specialized for the first argument:
neDef ′ x y =

specialized (neDef (dictEqInt ))
{store (F/eq dictEqInt); λf →
store (A f x y) ; λr →
call not r
}

Note that the clone is annotated in such a way that it is manifest
what was the original function, and for which arguments it was
specialized. This way, when the transformation is run again later,
we can avoid making another clone for the same argument.
The call is adapted accordingly:

test2 =
{store (C/Int 5); λx →
store (C/Int 6); λy →
call neDef ′ x y
}

5.6 . . . and repeat

After the specialization, new opportunities are exposed in the body
of the clone for transformations that we discussed earlier. Firstly,
the operation store (F/eq dictEqInt) is an opportunity for the
SelectMember transformation. In subsection 5.2 we described that
for all selectors s that select field i from a dictionary, and all
constant dictionaries d having f as it’s i th field, it replaces call s d
by eval f .
We now widen the task of SelectMember to also handle selections
from constant dictionaries that are disguised as thunk. That is:
replace store (F/s d) by unit f .
In this way, we lose the lazy behavior of the field selection. But
there is no need for laziness in this situation: field selection cannot
fail, and it is performed fast – in fact, now that we perform it
statically, it takes no time at all. Nobody will oppose not postponing
a call that takes zero time and cannot fail.
Another déja vu: the unit eqEqInt that emerges from the previous
transformation can be combined with the thunkified apply in
store (A f x y). This is done by the ApplyKnown, whose task is
also widened to handle situations where an apply is disguised as
a thunk with A tag.
Next, further opportunities for another SpecConst transforma-
tion may arise, etcetera. All in all, the following sequence of
transformations should be performed repeatedly: SelectMember,
EvalKnown, ApplyKnown, and SpecConst.
New opportunities will appear as often as overloaded functions
keep calling each other, requiring as many iterations as the static
nesting depth of overloaded functions. If we want to be sure that all
dictionary-passing is removed, we should iterate the four transfor-
mations until we reach a fixed point. In practice, a fixed number of
iterations could satisfy.
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In real-life example programs involving the complicated classes
from the numeric, IO, and read/show libraries, we observed the
transformation of a program to converge to a fixed point after about
5 iterations.

6. Concluding remarks
The UHC compiler is written in Haskell itself. The ease of defining
recursive datastructures, parsers, and tree traversals make Haskell a
useful tool for compiler writing. Still, writing a tree traversal for a
non-trivial language like the intermediate languages in UHC takes
some effort.
This is aggravated by the fact that many transformations in UHC
perform multi-pass transformations over the parse tree. The trans-
formations in the case study of this paper follow this pattern as
well: SelectMember scans the program for finding selectors, and
then scans the program again for finding calls to the selectors.
To write the tree traversals for all 60 transformations in UHC,
most of which are multi-pass, by hand would be too much work.
That is why we employ an attribute grammar based preproces-
sor for Haskell, that greatly facilitates writing tree traversals
[Fokker and Swierstra 2008, website UUAG]. Maybe it is even fair
to say that UHC is written in the language of attribute grammars,
and it is compiled into Haskell by the preprocessor. There is a vague
border between the concepts of ‘preprocessor’ and ‘compiler’, be-
tween ‘software generation’ and ‘program translation’.

6.1 Related work

The Haskell compiler that is most widely used is the Glasgow
Haskell Compiler (GHC) [website GHC]. It is of production qual-
ity, and many people contribute to its implementation or to support-
ing libraries and applications.
Like UHC, GHC is written in Haskell itself, but without the aid of
a preprocessor. GHC is structured as a sequence of transformations
[Peyton Jones and Santos 1994, Santos 1995], but it tries to do as
much as possible in a single transformation. This makes it harder to
understand how various optimization steps cooperate and interact.
On the positive side, economizing on transformations makes the
compiler fast.
GHC is designed to compile modules separately, and it is interest-
ing to see how it handles overloading. When a module is compiled,
GHC reads summaries (known as ‘hi’-files) of the modules it im-
ports. These summaries consist mainly of signatures of exported
functions. But an exception is made for default definitions in class
declarations: these definitions are stored in full in the summaries. In
this way, GHC is able to do specialization of default defintions, at
the expense of causing massive recompilation if a default definition
changes, since the hi-file then changes.
There is a vast amount of literature on the implementation of over-
loading. We mention work on using dictionaries for implementing
overloading [Augustsson 1993], dynamical merging of dictionaries
in separate modules [Faxén 2002], and statical elimination of the
overhead of dictionary passing [Jones 1995].
The philosophy of writing a Haskell compiler by means of many
small transformations, including Grin as an intermidiate language,
was proposed in the Grin project [Boquist and Johnsson 1996,
Boquist 1999]. They focused on whole-program analysis for stati-
cally approximating the values of heap pointers. Overloading is not
implemented in this project.
Computations over abstract syntax trees and tree transforma-
tion form a major part of any compiler. An alternative to our
attribute-based approach is the Stratego system [Visser 2001,

website Stratego]. Stratego is strong in expressing local rewrites,
and is able to perform transformations repeatedly. It is a large sys-
tem that employs its own language. This makes it self-contained,
but it lacks the ease of an underlying general purpose language.
An alternative system that does use attribute grammars for tree
rewriting is Jastadd [Ekman and Hedin 2007, website Jastadd]. It
uses a different underlying language (Java). Thus, it doesn’t get
lazy evaluation for free, but it is easier to maintain non-local refer-
ences in the abstract syntax tree.

References
[Augustsson 1993] Lennart Augustsson. Implementing Haskell overload-

ing. In: Functional Programming and Computer Architecture FPCA
1993, pp 65–73.

[Bernardy et al 2009] Jean-Philippe Bernardy et al. A comparison of C++
concepts and Haskell type classes. In: ACM workshop on generic
programming GP 2009, pp. 37–48.

[Boquist and Johnsson 1996] Urban Boquist and Thomas Johnsson. The
GRIN project: A highly optimising back end for lazy functional
languages. In: Workshop on Implementation of Functional Languages
IFL 1996. Springer LNCS 1268.

[Boquist 1999] Urban Boquist. Code optimisation techniques for lazy
functional languages. PhD Thesis Chalmers University, Göteborg March
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