
Compiling by transformation:

efficient implementation of overloading in Haskell

Jeroen F okker S. Doaitse Swierstra

Utrecht University

{jeroen,doaitse}@cs.uu.nl

Abstract

The Utrecht Haskell Compiler (UHC) is designed as the composi-
tion of many small transformations. We illustrate the transforma-
tional approach b y showing how overloading is implemented and
optimized in UHC. Overloaded functions take additional ‘dictio-
nary’ arguments, which are automatically inserted during code gen-
eration, b ased on the inferred types.

For each instance declaration, a dictionary is generated containing
the functions defined in that instance. The dictionary also contains
the default definitions from the corresponding class declaration,
thus requiring a mechanism for combining them.

When modules are compiled separately, this combining is done dy-
namically, during program startup or at the first use of the dictio-
nary. When performing whole-program analysis, however, infor-
mation f rom the class and instance declarations can b e combined
statically using symbolic computation. Further transformations, no-
tably specialization of functions for constant arguments, can com-
pletely eliminate the run-time overhead normally associated with
dictionary passing.

1. Introduction

Compiling a program is the oldest and most widely used example of
generative programming. They are so common, that p rogrammers
are hardly conscious any more that compiling, say, a C p ogram
alleviates them of the tedious task of writing machine code. W ith
compilers for higher level languages, it is more manifest that a
compiler generates code, which in turn can be regarded as source
code for another compiler. For example, Haskell c ompilers often
target the C language, and domain specific languages in turn may
target Haskell.

Compilers are complex programs. The translating process consists
of many subtasks, such as parsing, type checking, modelling mem-
ory structure, code generation, and optimization. These tasks ide-
ally are dealt with in separate components, and by selecting and
arranging these components one can tune a compiler for different
requirements, such as various l evels of optimization, or targeting
various back ends.

[Copyright notice will appear h ere once ’preprint’ option is r emoved.]

1
We decided to build a compiler for Haskell (the Utrecht Haskell
Compiler, or UHC) that r adically takes a component b ased ap-
proach: it translates a program by transforming it in small steps
[Dijkstra 2005, Dijkstra, F okker and Swierstra 2009, website UHC].
Each of the many transformations is r elatively simple, and can
be understood and tested separately. Along the route from source
(Haskell) to target (C) language, the program is t ransformed
through quite a few intermediate languages: some of them exist-
ing, some of them especially defined for the purpose. T herefore
some t ransformations (5 of them) are actually translations between
languages, and many others (about 60) are source-to-source trans-
lations, staying within one of the intermediate languages.

In this paper we present a case study that illustrates the approach:
the implementation of function overloading in Haskell. This case
touches many aspects: modelling a high-level concept (overload-
ing) by lower level datastructures (dictionaries), dealing with two
compiler modes (separate compilation versus whole-program opti-
mization), and the composition of 6 transformations that together
accomplish the task.

Moreover, the Haskell feature under scrutiny (type classes and their
instances) happens to b e a mechanism that is often used by Haskell
programmers for achieving modularity, and thus is interesting in its
own right from a component engineering p erspective.

To make the p aper self-contained, we start in section 2 with a short
description of overloading in Haskell. In section 3 we sketch the
structure of UHC, and introduce the intermediate language central
to the case study in this paper. Next we describe the implementa-
tions of overloading for two different compiler modes: in separate
compilation mode (section 4) we see generative programming at

work, wheras in whole-program analysis mode (section 5) many
components cooperate to optimize the code. W e conclude with re-
marks on the methodology and pointers to related work.

2. Overloading in Haskell

In this section we briefly summarize how function overloading is
modeled in Haskell [Peyton Jones 2003]. Overloaded functions can
be applied to values of various t ypes. For example, the addition
function (+) can b e applied to both Int values and Float values
(but not to Bool values). An equality test function (==) is avail-
able for many basic types, such as Int, Float, Char, Bool. F ur-
thermore, it can even be applied to values of list type [a], provided
that it is also defined for the element type a. Note however that
equality testing is not possible for values of a function type.

A closely related concept is p olymorphism. Polymorphic functions
can b e applied to values of various types. For example, concatena-
tion can be applied to lists of type [Int] and to lists of type [Char],
and in fact, to lists of t ype [a] for any type a.

2010/5/31
The difference is that p olymorphic functions h ave a uniform def-
inition, r egardless of the type of the arguments, whereas an over-
loaded function usually has a different definition for each type of
argument for which it is defined. The type of arguments of poly-
morphic functions can b e any instantiation of the type variables in
its type, whereas the type of arguments of overloaded functions can
only b e t hose types for which a version of the function has been de-
fined. T herefore, function overloading is sometimes referred to as

ad hoc p olymorphism.

2.1 Class and instance declarations

The group of types to which an overloaded function can b e applied
is k nown as its class. A class d eclaration i ntroduces a name for
such a group of types, together the signatures of functions. These
signatures can involve type variables, which may be instantiated to
types belonging to the group. For example, we can define a class Eq
to group the types for which equality and non-equaltiy are defined:

class Eq a where
eq :: a → a → Bool
enqe :: :: aa →→ aa →→ BBooooll

This Eq class is actually part of the Haskell standard library. There,
operators == and / = are defined rather than functions eq and ne, but
in this p aper we avoid operators, as the notational conventions for
writing them may obscure the explanation.

Individual types can be made an instance of a class b y an instance
declaration. For example, Int can b e made instance of Eq by pro-
viding definitions for the functions specified in the class declara-
tion:

instance Eq Int where
eq x y = eqPrimInt x y
ne x y = not (eqPrimInt x y)

The definitions rely on the existence of a function eqPrimInt that
gives a p rimitive implementation for equality on integers. The way
eqPrimInt is defined is not relevant for the present discussion.

As another example, we give an instance declaration for Eq Bool.
It shows that we can define the function eq from scratch if we wish,

without relying on other functions. The function ne can be defined
in a similar way (and that would probably be more efficient), but
we show h ere the possibility to have ne rely on the existence of the
other overloaded function eq.

instance Eq Bool where
eq False False = True
eq True True = True
eq = False
ne x y = not (eq x y)

The terminology of the notions ‘class’ and ‘instance’ is borrowed
from the object-oriented paradigm [Bernardy et al 2009]. There are
similarities, in t hat a class declaration specifies functions that are
implemented by instance declaration. But note that there are differ-
ences as well: in the object-oriented paradigm, class member func-
tions take an object of the class as an implicit argument, whereas in
the functional paradigm all parameters are declared explicitly; thus
we can have two arguments that are constrained to the type of this
instance declaration.

Not all overloaded functions need to b e defined in a class. Every
function that uses an overloaded function, becomes automatically
overloaded itself. For example, the function elem that checks ele-
ment membership of a list uses the overloaded equality function eq
on the list elements:

elem e [] = False
elem e (x : xs) = eq e x ∨ elem e xs

2

Therefore, although the elem function has a uniform definition and
thus seems to b e a polymorphic function, it can actually only be

used on lists of which the elements are in the Eq class. T his fact is
expressed in the signature of the elem function by:

elem :: Eq a ⇒ a → [a] → Bool

Note the double-shafted arrow which is to be read as ‘constrains’,
as opposed to the single-shafted arrow which i s to b e read as
‘function from/to’. W e may r ead t his signature as: for each type
a which is an instance of Eq, elem has the type a → [a] → Bool.

2.2 Default definitions

One could question the need for declaring ne to be part of the Eq
class. After all, non-equality is (in any sound implementation) the
negation of equality. So i t would h ave b een possible to only specify
eq in the class, and to define ne with a uniform definition, as we
did with elem:

class Eq a where
eq :: a → a → Bool

e--q a :n:da o →uts iade→ →thB e coolalss:
ne :: Eq a ⇒ a → a → Bool
ne x y E=q n ao t⇒ (e aq →x y a)

Using this approach, instance programmers are freed from the
burden to give an explicit, but straightforward, definition of ne. But
the downside is that it is now impossible for instance p rogrammers
to define their own, probably more efficient, version of ne. The
programmer of Eq Bool might regret not b eing able to define a
version of ne that uses pattern matching directly, instead of relying
on the uniform definition based on eq and not.

To overcome this dilemma, Haskell allows a class definition to be
augmented with default definitions for some or all of the member
functions. Now, instance programmers h ave the choice either to

rely on a default definition of ne as i t appears in the class, or to
give a more efficient version for a p articular type.

A default definition by nature is a uniform definition, as it cannot
assume the type variables in the signature to be instantiated to a
particular type. But the definition can r efer to the other functions
from the class. In fact, the Haskell standard library implementation
of Eq has default definitions for b oth ne and eq, defined in terms
of each other:

class Eq a where
eq :: a → a → Bool
enqe :: :: aa →→ aa →→ BBooooll
nnee :x: y →= nao t→ →(eq xo y)
eq x y = not (ne x y)

An instance programmer now has the choice to define either eq or
ne (and r ely on the default definition for the other), or define b oth
(thus ignoring/erasing/overriding both default definitions). D efin-
ing neither of the two is allowed as well, but would result in inherit-
ing the circular definitions without breaking the circle by r edefining
at least one of the two.

2.3 Superclasses

Using the terminology of object-oriented paradigm even further,
Haskell has the notion of a ‘superclass’ as well. I t is exemplified
by the class Ord of types that have an ordering, by providing
comparison operators like <, 6, >, and > . Default definitions
specify these in t erms of each other. Instance programmers can
choose to implement only one of the four (and r ely on the default
definitions for the others), or more if they wish. But the default
definitions not only call each other, but also the eq function from

class Eq. This is possible because Ord is specified to b e a subclass

2010/5/31
of Eq; that is, a type is only allowed to be an instance of Ord i f it
is an instance of Eq as well.

A possible class definition of Ord is:

class Eq a ⇒ Ord a where
alts s: :E aq →a ⇒a →O Bdoa olw
llet :: :: aa →→ aa →→ BBooooll
gt :: :: aa →→ aa →→ BBooooll
ge :: :: aa →→ aa →→ BBooooll
glte :x: y →= nao t→ (Bgeo oxl y)
gt x y = not (le x y)
le x y = lt x y ∨ eq x y
ge xx y == lgtt xx y ∨∨ eq xx y

The superclass is mentioned in the class header, f eaturing another
meaning of the double-shafted arrow. There can b e more than one
superclass, separated by commas and enclosed in parentheses. The
actual definition in the standard library also specifies functions
compare, min, and max, and an even more intricate web of mutu-
ally recursive default definitions.

2.4 Context for i nstances

Finally, Haskell provides a mechanism to declare an instance in
the context of another instance. An example is the definition of Eq
for lists, where the equality for lists of elements is e xpressed u sing
the equality function for the elements. This only makes sense i n a

context where the element type is assumed to be instance of Eq as
well.

instance Eq a ⇒ Eq [a] where
eq [n] q[a] q=[Tar]u we
eq [] (y : ys) = False
eq (x : xs) (y : ys) = eq x y ∧ eq xs ys

The defining expression line contains two calls t o eq. The second
is a recursive call on the tails of the list. The first however is not
a r ecursive call, but a call to eq for a different instance type: the
list element type, guaranteed to b e an instance of Eq by the context
mentioned in the header. Type analysis by the compiler makes sure
that the right version of eq is called.

3. UHC compiler structure

3.1 Transformational programming

The main structure of the Utrecht Haskell Compiler is shown in
Figure 1. Haskell source text is translated to an executable program
by stepwise transformation. Some transformations translate the
program to a lower level language, many others are t ransformations
within one language, establishing an invariant or performing an
optimization. A more detailed account is given in a separate paper
[Dijkstra, F okker and Swierstra 2009].

All transformations, b oth within a language and between lan-
guages, are expressed as an algebra giving a semantics to the lan-
guage. The algebras are described with the aid of an attribute g ram-
mar, which makes it possible to write multi-pass tree-traversals
without even knowing the e xact number of passes. Although the

compiler driver is set up to pass data structures between transfor-
mations, for all intermediate languages we have a concrete syntax
with a p arser and a p retty printer. This facilitates debugging the
compiler, by inspecting code between transformations. Here is a
short characterization of the intermediate languages:

• Haskell (HS): a general-purpose, higher-order, p olymorphically
tHyapsekde, lla(zHyS f)u:na cg tieonnearla lla-npguurpaogsee.

3
module1 module2

Figure 1. Intermediate languages and transformations in the UHC
pipeline, in each of the three operation m odes: whole-program
analysis (left), bytecode interpreter (middle), and J ava (right).

• Essential Haskell (EH): a higher-order, p olymorphically typed,

Elazssye nfutniacltH ioansakl elalln(gEuHag):ea ach loisgeh teor- loarmdberd,a p-ocalylcmuolurps,h iwciathlloyu tyt syn-
tactic sugar.

• Core: an untyped, lazy functional language close to lambda-
cCaolrcue:lua sn, au ungtympeendte,dl a awzyithf ulentc-tbioinndainlgl asn agnuda cgaes ec odissetit noct iloanm bwdiath-
simple pattern matching.

• Grin: ‘Graph r eduction intermediate n otation’, the instruction
sGetri no:f aG rvairpthuar le dmuaccthioinnei notef am semdiaatlel f nuontcattiioonn’a,l tlahnegi unsagtreu cwtiiotnh
strict semantics, with features that enable implementation of
laziness [Boquist 1999].

• Silly: ‘Simple imperative little language’, an abstraction of fea-
tSuilrelys: :f o‘Suimndp ilne every iamtipveerl aittitlvee laanngguuaaggee’ ,(ai fn-s atbatsetmraecntiots,n ao sfsif gena--
ments, explicit memory allocation) augmented with primitives
for manipulating a stack, easily translatable t o e .g. C (not all
features of C are p rovided, only those that are n eeded for our
purpose).

• BC: A bytecode language for a low-level machine intended
BtoC i:n Aterpb ryette cGodrine lwanhgicuha ies fnoort aw lhowol-el-epvroeglrm amac hainnaelyi nzetden ndeodr

transformed. We do not discuss this language in this paper.

The compiler targets different b ack ends, based on a choice of the
user. In all cases, the compiler starts compilation on a per module
basis, desugaring the Haskell source text to E ssential Haskell, type
checking it and translating it to Core. Then there is a choice from
three modes of operation:

• In whole-program analysis m ode, the Core modules of the pro-
gram oalned-p rreogquriarmed a lniablryasriisesm aodree ,at hsseeC mbolreedm t oodguetlhese ro fat nhde pro-
cessed further as a whole. At the Grin level, elaborate inter-
module optimization takes p lace. Ultimately, all functions are
translated to low level C, which can be compiled by a standard
compiler. As alternative back ends, we are experimenting with
other target languages, among which are the Common Interme-
diate Language (CIL) from the Common language infrastruc-

ture used by .NET, and the Low-Level Virtual Machine (LLVM)
compiler infrastructure.

2010/5/31

Figure 2. Syntax of the Grin language. An ∗ denotes 0 or more
occurrences. Var, Name, and Constr are identifiers r eferring to
values, functions, or constructors. U nderlining denotes a defining
position. Lit is an integer or character literal.

• In bytecode interpreter mode, the Core modules are translated
Iton bGyrtinec osedpeari natteelryp. Eeatecrhm mGordine ,mt hoedCu leo ies tmroandsullaetseda irnet otr ainnsstlrautecd-
tions for a custom bytecode machine. The bytecode is emitted
in the form of C arrays, which are interpreted by a h andwritten
bytecode interpreter in C.

• In J ava mode, the Core modules are translated to J ava byte-
cIond Jea, vtoa b meo idnte,ert phreeteC do rbey mtheo dJaulveas sva irrteut arla amnaslcahteinde o(JVJ Mava). Ebyatceh-
function is translated to a separate c lass with an eval function,
and each closure i s r epresented by an object combining a func-
tion with its parameters. Together with a driver function in J ava
which steers the interpretation, these can be stored in a J ava
archive (jar) and b e interpreted by a standard J ava interpreter.

The bytecode interpreter mode is intended for use d uring program
development: it takes less time to compile, but because of the inter-
pretation overhead the resulting program runs slower. The whole-
program analysis mode is intended to be used for the final program:
it takes more time to compile, but generates code t hat is more effi-
cient.

3.2 The Grin i ntermediate language

Grin is a small language designed to be an intermediate language
between Core (a higher-order lazy functional language) and Silly
(an imperative language). Grin is a functional language (function
bodies are expressions which are evaluated when a function is
called) but it is first-order (all functions are defined at top level and
cannot be passed as arguments) and strict (arguments are evaluated
when functions are called). Nevertheless, Grin has an imperative
spirit, as the evaluation of expressions can h ave side effects on the
heap. The sequencing of these side effects is made explcit in the

4

Grin code, u sing a monadic notation: the only possible expression
forms are a handful of b asic operations on the h eap, and a monadic
bind and unit operation.

The mapping from Core to Grin makes the evaluation order ex-
plicit. Thus, it has t o simulate the lazy semantics of Core by means
of primitives that are provided in Grin for that purpose. The data
that is manipulated by Grin is structured into n odes, which are
tagged lists of single-word e lements. Nodes can be assigned t o lo-
cal variables directly, but local variables can also hold pointers to
nodes that are stored on the heap.

Refer to figure 2 for the syntax of the Grin language. It shows that
a program consists of b indings, each of which is either a function
definition or the initialization of global variable with a pointer
to a node stored on the heap. Function definitions are optionally
annotated with an Annot, the meaning of which is described in
section 5.

The body of a function is an expression of the built-in monad: ei-

ther one of six p rimitive forms, a monadic binding of one expres-
sion to a variable in another expression, or a selection from alter-
natives based on the value of a variable. Sequencing is written in
monadic style as e1; λx → e2, with semantics ‘execute e1, b ind
the r esult to x and t;hλenx e →xec eute e2 in the new context. Although
the lambda symbol suggests t hat we can define local functions, t his
is by no means general lambda-calculus, as the lambda can only
be used in this particular position. The notation involving the semi-
colon, lambda and arrow is j ust a triadic expression form, which
in a different concrete syntax would look more like an imperative
assignment statement x := e1; e2 .

We will discuss the semantics of the various expression forms
shortly, but first we focus on nodes and t ags. A node can b e thought
of as a variable-sized block of memory, consisting of a tag indicat-
ing its purpose, and a payload of zero or more pointers. A special
form of node consists of a tag and a primitive literal.

Tags come in four flavors: C, P, F, and A. N odes with C or P
tag are final: when a pointer to them is evaluated, they r emain the
same. Nodes with F or A tags encode a deferred computation.
They are also known as thunks, u sed in the implementation of
lazy evaluation. When a pointer to such a node is evaluated, the
computation takes place, and the node is updated with a final node.

The meaning of the four tag flavors is as follows:
• C corresponds t o a constructor in Haskell. For example, the

Cemc ptoyr lesispt nh adss t taog aC c/oNnsitl aunctdo rca inn H bea rk eepllr.eF seonrtee dx aams pal n,ot dhee
with zero-length payload (C/Nil). A non-empty list can be
constructed as (C/Cons x xs).

• P stands for a p artially parametrised function. In the lambda
Pcalcs utalunds,s f ao rfun acp tiaornti alplyplp iacrataimone rwisitedh ftuo nfcetwio nar.g Inumt henetls a mtob dbea
reduceable is in head n ormal f orm, that is, cannot be further

evaluated. The P tag encodes which function was p artially
parameterized, and (written as a numeric suffix) the number
of p arameters it still lacks. The payload of a node with P-tag
holds the argunents it has already r eceived. For example, the
node (P1/plus one), where one could b e globally b ound b y
one ← store (C/Int 1), denotes a partial parameterization of
founnect← ions ptlourse, s (tCill/ lIanctki1 n)g, dietsn soetecsona d p aarrgtiualm peanrta.

• F is used to denote a deferred call to a function. For example,
tFhei s nuo dseed (Ft o/d dienviodtee aod neef ezrerreod)c aisl lat no a en fcuondcintiog o.fF othre fxaacmt tphleat,
function divide will be called, but only when this node is forced
to evaluation.

• A is used to denote the deferred application of a p artially pa-
rA am isetu ersiezdedt o ofd unecnotioten htoe fu dertfheerrre adrg aupmpleinctatsi. o Nno odfeas pwairthti athlliys tpaag-
must h ave a payload of at least one pointer, which is sup-
posed to evaluate to a node with P tag. For example, the
node (A succ one), where variable succ is bound to node

2010/5/31
(P1/plus one), will b e updated to (C/Int 2), but only w hen
forced to evaluation.

We now turn to the semantics of the various expression forms.
• unit n, where n is an explicit node, j ust returns that n ode,

uwnitihtoun t h,a wvihnegre esin dei esff aencte sx opnli tcihte nhoedape.,
• unit x j ust returns the value of the variable x, which can b e a

nuondiet o xr jau psot irnetteurr nvsa tlhuee.
• e1; λx → e2 executes e1, b inds the r esult t o variable x and

esu;bsλexqu→ entl ye executes e2. It returns whatever e2 returns.
• store n stores the node value n on the heap, and returns a

sptooinrteer tno sitt

• call f a1. .. an calls function f with the given arguments, and
c reatullrnf s athe node t hat is its result

• apply x b1. . . bk expects variable x to evaluate to a node with
vaaplpuel y(Px mb /f a1. . . an), and calls f a1. . . an b1. . . bm if k > m.
When k > m, the r esult of the call is r ecursively applied to the
remaining arguments.
When k < m, the function can’t be c alled for lack of argu-
ments, and an appropriate new Pm−k-node is r eturned.

• eval x expects a pointer i n variable x and fetches the corre-
sepvoanldix ng e xnpoedcet sfa rop mo tnhtee r hi enapv a. rIifa btlhee xnoa dned i fse itcnh ehsea tdh enc oromrreal-
form, that is, has a C or P tag, that node is j ust r eturned. If the
node has an F/f tag, function f is called. The node is updated
with the result, and that r esult is also r eturned. If the node i s
(A x a1. . . an), the effect is the same as an apply.

• case x of. . .p → e. . . expects a node in variable x and
ecaxesceutex s e oxpfr.e.s.psion→ →e e co.u.p.le edx pwecitths p aa tnteordne p nthv ata rmiaabtclehe xs at hnadt
node.

Variables in a Grin program can in principle hold e ither a pointer
or a node. But all syntactic structures involving variables h ave
specific r equirements on the value of that variable. In this sense
Grin is a (implicitly) typed language: it can b e statically determined
which variables hold pointers, and which hold nodes. The type
requirements are as follows: the first Var in an apply and the
one in a case should hold a node, but the other Vars occurring in
a eval, call, apply, and node payload should hold a pointer. The
Var in a unit can hold either a pointer or a node.

Likewise, the return value of each statement form is fixed: call,
apply, eval, and unit n return a node, whereas store returns
a pointer. The r emaining expression forms unit, sequencing, and
case, return whatever their sub-constructs return.

The code generator (Core to Grin transformation) takes care that
the generated Grin program is type correct in t his respect. It can
generate a store expression when a node needs to b e available
as a pointer, and it can generate an eval expression when the node
pointed to by a pointer is needed. For a final node, evalj ust fetches
the node pointed to. For a non-final (thunk) node, eval first forces
the thunk to a final node, but that is a good thing to do when a node
is needed.

4. Dynamic handling of overloading

4.1 Dictionaries

The standard technique for implementing overloading in Haskell,
as described b y Augustsson [Augustsson 1993], makes use of d ic-
tionaries. A dictionary basically contains the implementations for
a p articular instance of the functions specified in a class. Calling an
overloaded function then amounts to selecting one of the functions
from the dictionary, and subsequently applying it to its arguments.

Function names are not storable values in Grin, but we can store
a node that represents a p artially parameterized f unction. A s an
example, consider the instance declaration in Haskell that defines
both member functions of Eq for the Int type:

5
instance Eq Int where

eq x y = eqPrimInt x y
ne x y = not (eqPrimInt x y)

A Grin representation of the dictionary corresponding to this dec-

laration is a node, using the dictionary name as a constructor, and
having two pointers corresponding to the two function definitions
as its payload: The two pointers p oint to nodes denoting partial
parameterizations of functions: they have ‘already’ received 0 ar-
guments, and are still lacking 2 arguments:

eqIntP ← store (P2/eqPrimInt)
neIntP ←← ssttoorree ((PP2/neInt)
dictEqInt ←← ssttoorree ((CP/Eq eqIntP neIntP)

As the definition of eq for Int is j ust a call to eqPrimInt, we can
use (P2/eqPrimInt) for the first pointer. But the definition of ne
for Int is not j ust a renaming of an existing function. It therefore
gives r ise to a new function binding in Grin:

neInt x y =
{store (F/eqPrimInt x y); λr →

csatollr eno(tF /re

}
The second member of the dictEqInt dictionary points to the P2-
node of this function.

The class declaration in Haskell, which only contains signatures
for the member functions, nevertheless gives rise to generated Grin
code: one function binding for each member function. These func-
tions take a single dictionary argument, and select the appropriate
field from that dictionary. The selector functions for the Eq class
are polymorhpic functions that p ick a specific element from a dic-
tionary:

eq d =
{eval d; λt →

ceavasel td ;oλft
(C/Eq p q) → {eval p}

}
n}e d =
{eval d; λt →

ceavasel td ;oλft
(C/Eq p q) → {eval q }

}
Finally, we describe the code that is generated for the call in Haskell
of a c lass member function, as in the example

test1 = eq 3 4

Grin code for t his example does the call to the member function
in two steps. First the selector function is called on the dictionary
corresponding to the type (Int in the example) of the arguments.
This is supposed to r eturn a P2-tagged node, which is subsequently
applied to the arguments by apply.

test1 =
{store (C/Int 3) ; λx →

ssttoorree ((CC//IInntt 34)) ; λλyx →→

csatollr eq Cdic/ItnEtq4 In)t;; λλpy →→

acpalplle yq p xc y

}
Overloaded function that are not declared in the class, such as the
Haskell function

elem :: Eq a ⇒ a → [a] → Bool

are implemented as a Grin function that takes an additional dictio-
nary argument. In essence, the overloaded function is made poly-
morphic again.

2010/5/31

4.2 Default definitions

Now suppose that we are compiling a class with a default definition,
for example the Eq class with a default definition for ne:

class Eq a where
eq :: a → a → Bool
enqe :: :: aa →→ aa →→ BBooooll
nnee :x: y →= nao t→ (Beqo xo y)

Clearly, the compiler needs t o generate code for the default func-
tion. It can’t be named ne, as that name is already used for the
selector function, so let’s name i t neDef. In the b ody of neDef we
need to call eq. This process, as in the test1 example above, takes
two steps: first select the function from the dictionary, then apply it
to its arguments.

The dictionary where the member functions can b e found needs to
be p assed as an additional argument to neDef. Essentially, default
functions are implemented j ust as overloaded functions outside a
class, such as elem. So, although the Haskell default definition for
ne has 2 parameters, its Grin implementation has 3:

neDef d x y =
{store (F/eq d) ; λf →

ssttoorree ((FA/ e fq qxd y)) ; λλrf →→

csatollr eno(tA Ar

}
Note that the 2-stage calling process is disguised h ere in its lazy
form. Instead of a call and an apply as in the test1 example, we

store a deferred c all to the selector b y means of an F-node, and
a deferred apply b y means of an A-node. Whether or not these
thunk-nodes are ever evaluated i s decided inside the not function.
Actually, not indeed does evaluate its argument, but without a
strictness analysis we can’t predict that when compiling neDef.

Inside a dictionary for class Eq, we need two P2-nodes, as eq and
ne in Haskell have 2 arguments. We would get something like:

eqIntP ← store (P2/eqPrimInt)
neIntP ←← ssttoorree ((PP2/neDef dictEqInt)
dictEqInt ←← ssttoorree ((CP/Eq eqIntP neIntP)

The dictionary is to be populated with pointers to P-nodes, that re-
fer to f unctions which are a mixture from the instance declaration
(eqIntP in the example) and default definitions from the class dec-
laration (neIntP). Note that neIntP and dictEqInt are r eferring
to each other, which is allowed in Grin.

In a setting where compilation is done for separate modules, it
is not possible to generate without e xtra tricks the dictionary at
compile time. Class and instance declarations can r eside in separate
modules, and normally the code generated for the class declaration
is not available for inspection by the compiler at the moment that
the dictEqInt binding is generated.

Instead of h aving the compiler emit the binding

dictEqInt ← store (C/Eq eqIntP neIntP)

directly, the compiler generates code that can construct the dictio-
nary at run time, at the first occasion that it is used.

4.3 Dynamic generation of dictionaries – f irst attempt

Instead of the explicit construction of the dictionary by the com-

piler, the compiler generates a nullary function that can construct
it on demand. The dictionary variable is bound to a thunk for that
function, thus triggering the construction when the dictionary is
first used.

makeEqInt =
{ -- construct P2-nodes for b oth dictionary fields

6

}
d}ictEqInt ← store (F/makeEqInt)

By the nature of the evaluation/updating mechanism, from the
moment that dictEqInt has b een evaluated for the first time, it will
be bound to the final C/Eq-node.

For construction the dictionary, we need information f rom the class
declaration. The only way of communication with another mdule is
to call functions or to evaluate global b indings. W e arrange that
the class module, for this purpose, defines a global binding to
a dictionary that contains fields for the default functions, and ⊥
ael dseicwtihoernaer.

neDefP ← store (P3/neDef)
dictEqDef ←← ssttoorree ((CP/Eq ⊥ neDefP)

Note that this ‘default dictionary’ stores P3-nodes, not P2-nodes
as we need in the instance dictionaries.

Now the dictionary for the instance is constructed b y fetching
the default dictionary, and applying the P3-node found there to
the dictionary it needs. That is: the dictionary that we are about
to build; lazy evaluation allows this seemingly circular definition.

Applying a P3-node to one further argument results in a P2-node,
which is stored in the dictionary, along with a P2-node for the other
function:

makeEqInt =
{eval dictEqDef; λd0

case ddic0 otEfq
(C/Eq q) →

{eval q ; λq0
aepvapllqy q0 dictEqInt ; λq00
store (P2/eqPrimInt) ; λp
unit (C/Eq p q00)

}
}

4.4 Dynamic generation of dictionaries

Although the idea in the previous subsection works in simple situa-
tions, such as the Eq example, it does not work in general. The flaw
is that default definitions not always take the additional dictionary
parameter as suggested in the first attempt. Situations where that
assumption doesn’t hold are:

• the default definition does not use the other members. The Core
tchoedde egfeanueltra dtoefri onnitilyon nind toreosdu ncoetsu asded tihteio noathle epra mraemmebteerrss .w ThheenC Cthoerye
are really necessary, so here we get a default definition without
dictionary parameter.

• the default definition does use other fields, but only from su-
tpheerc dleafssaeusl.t Td ehefi Cnitoioren ncd oodees sgu enseero atthoer rof piteilmdisz,eb su ufto ro tnhliys sfriotumatis oun-
by having the function take the dictionary for the superclass di-

rectly.

In both situations the expression apply q0 dictEqInt in the first
attempt applies q0 wrongly.

To solve this problem, we take an approach inspired by Fax e´n
[Fax e´n 2002]. His endeavour was to give a formal d efinition of the
semantics ofHaskell, but actually the construction used there works
quite well in a practical setting.

The idea is that the responsibility for applying the default dictionary
to the (thunk for t he) final r esult is shifted from the instance module
to the class module. In this way the class module, that k nows about
the expectations of the default definitions, can decide to apply the
default definition to the final result, not to do that if it is not needed,
or rather use the superclass when needed.

2010/5/31
For this purpose, the creation of the default dictionary is now m ade
dynamic as well, and parameterized by the instance that it is needed
in:

makeEqDef d =
{store (P2/neDef d); λq →

sutnoirte e((CP/E/qn e⊥D eq)f

}
In this example, i n the first line it was decided to apply the def-
inition to the final dictionary after all, but here the compiler has
freedom to act differently if the desires of neDef would have been
different.

In this new arrangement, we r evise the definition of makeEqInt
such that, instead of fetching eqDef, it calls our new dynamic

generator makeEqDef:

makeEqInt =
{call makeEqDef dictEqInt; λd0

case mda0 koefE
(C/Eq q) →

{store (Pq)2 →/eqPrimInt) ; λp
sutnoirte e(C (P/Eq p q)

}
}

5. Static handling of overloading

When it is possible to inspect and transform the program as
a whole, we can fully eliminate the run-time overhead of ma-
nipulating dictionaries. The idea was first described b y Jones
[Jones 1995]. We t ake a radical transformational approach, describ-
ing the n ecessary steps as separate program transformation steps.
Thus we adhere to our p hilosophy of preferring a large number of
easy transformations, over a small number of complicated ones.

The most important transformations are:
• MergeInstance: for each instance declarations, merge the defi-

Mniteirognes fnostunadnc c the:ef reo rwe aithch hthi en dtaenfacueltd deecfliarnaittiioonnss ,imn tehreg eclt ahses ddeefci--
laration.

• SelectMember: statically rather than dynamically select mem-
b Seerles cfrtMome ma bd iecr:tiso tnaatriyca

• SpecConst: specialize functions that are called with a constant
aSrpgeucmCeonnt.s t T:h sipse eicsi aa ligzeenf eruanlc tteiochnsnit qhuate athreatc caallne dalw soi ttrha ansc foonrmsta annt

expression like plus x 1to succ x, where succ is a specialized
version of plus with constant argument 1. Here we use it to

specialize overloaded functions that are called with a constant
dictionary.

The opportunities for applying these transformations are prepared
by some more transformations:

• EvalKnown: simplify uses of eval x in a situation where the
vEavlauleK onfo xw nha:p spimenpsl ftoy b ues esstat oifce allvya kln xowi nn

• ApplyKnown: simplify u ses of apply p x in a situation where
Athep pvlyalKuen oowf p hs aimpppelnifys t uos e bes sotfa aticpaplllyy kp nox wi nn

• DropUnused: remove bindings to (local and global) variables
tDharot paUren nuesveedr: ur esemdo

• DropUnreachable: r emove bindings to global variables and
fDunrocptiUonnrs ethacath aabrel en:o tre e rmeaocvheabb lein fdrionmgs smt aoign l

5.1 The MergeInstance transformation

In a whole-program analysis setting, it is possible to statically
merge the functions defined in an instance with the default defi-
nitions from the class. However, the (EH to Core) code generator
generates Core code without having a particular back end in mind,
and thus we are confronted with the code as described in the p revi-

7

ous section for dynamic dictionary construction. Our first task is to
turn that in a static construction. The goal is to replace

dictEqInt ← store (F/makeEqInt)

back to

dictEqInt ← store (C/Eq eqIntP neIntP)

and to generate the appropriate member fields:

eqIntP ← store (P2/eqPrimInt)

neqeIInnttPP ←← ssttoorree ((PP2/neDef dictEqInt)

This is hard for two reasons: it is hard to see that dictEqInt is
indeed a dictionary: it would involve deconstructing the thunk,
inspecting the code of makeEqInt r ecognize that it has the form
of generated code for instance declarations, extract the names of
function definitions from it, as well as the r eference to makeEqDef
which is to b e deconstructed as well.

Although this approach is possible in p rinciple, it feels like re-
versely engineering the outcome of all the transformations that
were responsible of generating this Grin definitions. Apart from
being tricky, the procedure is deemed to b reak whenever we would
make changes in the Core to Grin transformation pipeline.

Instead, we take a different approach, by making the intention of
some of the generated function definitions manifest, by means of
annotations. The p rice is that we need t o extend b oth the Core and
the Grin language to facilitate such annotations.

• the definition of makeEqInt is annotated with a marker dictinst:
‘tthheisd ecfoinnsititoruncotsf am daickteiEonqIanryt ci soarrnensopotantdedinwg ttoh aa minastraknecred dicetcilan-s
ration’;

• the definition of makeEqDef is annotated with a m arker
dthiect dcelfainssiti: ‘nthoi sf fism maa kdiecEtiqoDnaefry gisen aenranototra ecdorr ewsitphonda inm ga rtok ar
the default definitions in a class declaration’;

• the definition of neDef is annotated with a marker overloaded:
‘tthheisd eifsi anint ioovneorflonaedeDde fde ifsaaunltn odteafitenidtwionit hwaitmh asprkeecrifoicv aedrdloitiaodneald
argument desiderata’.

Apart from the marker we embed i n the annotation all information
relevant for the dictionaries:

• for dictinst, we need the name of the tag of the dictionary, the
nfoamrd ei cotfi tnhset d, iwctein oenaerdyt hceon nastmruecto ofrt hfoer t athge o fdet hfaeud ltic tdioefnianriytio,nt hse,
and all the names of the members defined.

• for dictclass, we need the names of all default definitions.

•• ffoorr doivcetrclloaasdse,w de, wneee ndet ehed naa mdesecsro ifpt aiollnd oeffa tuhlet ddeifcintiiotnioanrsie.s it
nfoeredo sv (eanrldo awdheetdhe,rw wite n neeeedds aond ee satc raipll)t.i

In our example, the relevant annotations are:

makeEqInt =
dictinst (Eq makeEqDef (eqPrimInt)) {... }

makeEqDef d =
dictclass (neDef) {. . . }

neDef d x y =
overloaded (()) {. . . }

There are underscores in the dictinst and dictclass annotations
for members t hat are not defined. The annotation of the overloaded
function is a list of lists of numbers. E ach element corresponds to
a dictionary argument. An empty element (as in the example) in-
dicates that this function simply needs the dictionary for the whole
class. A singleton list element (n) indicates that a dictionary for the
nth superclass is needed. Longer lists specify super-superclasses;
for example (3 1) specifies the third superclass of the first super-
class.

The annotations can be easily inserted when generating Core, be-
cause all this information is available anyway when generating
the Core definitions. The annotations are propagated unchanged
through all Core and Grin transformations, so that we have them

2010/5/31

available when we need them: i n the MergeInstance transforma-
tion.

5.2 The SelectMember transformation

Dictionaries are passed as additional arguments to overloaded func-
tions. In the function bodies, they can be p assed to other overloaded
functions, but in the end dictionaries are only u sed for a single pur-
pose: t o select a m ember function from t hem. An example is test1
which we introduced earlier:

test1 =
{store (C/Int 3) ; λx →

ssttoorree ((CC//IInntt 34)) ; λλyx →→

csatollr eq Cdic/ItnEtq4 In)t;; λλpy →→

acpalplle yq p xc y

}
The third line selects a field from the dictionary b y calling the
eq selector; the resulting function is subsequently applied to its
arguments.

Now that the previous transformation has made all dictionaries
statically available, we can proceed by selecting the member fields
statically. T his is what the SelectMember transformation does: it
scans the Grin program for expressions of the form call s d where
s is a selector function and d is a dictionary. In the example, the
selector is eq, which is a Grin function defined b y

eq d =
{eval d; λt →

ceavasel td ;oλft
(C/Eq p q) → {eval p }

}
It is recognized as a selector, because its definition is a two-line
function where the second line evaluates one of the members of a
dictionary. We actually hunt the program for selectors, that is func-
tions that have this very structure. (Again this is a f orm of reverse

engineering; another approach would b e to explicitly annotate se-
lector functions as such at the moment they are generated, in a simi-
lar fashion as we use dictinst and dictclass annotations to avoid
hunting for complex p atterns).

In the example, the dictionary is dictEqInt, which is a global
variable that at this time (after the MergeInstance transformation)
is defined as

dictEqInt ← store (C/Eq eqEqInt neEqInt)

Now that the selector and the dictionary are identified, the call
can b e p erformed statically: the expression call eq dictEqInt is
replaced by eval eqEqInt.

Our example ends u p as transformed to:

test1 =
{store (C/Int 3); λx →

ssttoorree ((CC//IInntt 43));; λλyx →→

esvtoarl eeq(ECq/IInntt ; λλpy →→

apply p x y

}
5.3 The EvalKnown transformation

At this point in the pipeline of transformations it is useful to p er-
form two transformations t hat simplify the Grin program based
on variables of which the value may b e k nown in a p articular
context. There are two such transformations: EvalKnown and
ApplyKnown.

An eval expression occurs in Grin code when it is needed to force a
variable to head normal form and to fetch its value from the heap. A

8
typical occurrence is in the b ody of a function, where the unknown
value of the argument needs to be forced and fetched in order to b e
scrutinized:

f x =

{eval x; λv →

ceavasel xv; λofv. . .

Sometimes, a Grin program evaluates a variable of which the value
is k nown. We can encounter expressions like:

store (C/Int 5) ; λn →

esvtoarl en(

This is equivalent to the shorter expression:

unit (C/Int 5)

which is more efficient since it avoids storing a node on the heap,
and executing the eval operation to fetch it back.

So is the Grin code generator to b lame for emitting inefficient code
like in the example above? Not really, because the value of the vari-
able could have become known only later, as a r esult of transforma-
tion ofGrin code. For example, if the inline transformation decides
to inline the call to f in

store (C/Int 5) ; λn →

csatollr fe (nC

we end up with such inefficient store-eval combinations.

To compensate for this, we introduced a transformation EvalKnown
that hunts for occurrences of eval x where x has a known value,
either because it is a global variable or because it is the target of an
earlier store. T his transformation catches situations like the exam-
ple above. Since this t ransformation is carried out anyway, the Grin

code generator can afford itself to generate inefficient store-eval
pairs on occasion. This makes the code generator simpler: it can b e
defined compositionally, without having to b other about avoiding
store-eval pairs.

The EvalKnown transformation symbolically collects all (local and
global) stores, and for each eval x checks whether the variable x
has a known value. We distinguish two cases:

• x is a global or local variable u sed to store a value v in head
xnoir sma al g floobrma,l ot hralt oisc aal n voadreia wbleithu as eCd toor Psto otarega. a T vhaelun ee vvai nl nxh ceaand

be replaced by unit v.
• x is a local variable used to store a thunk with an F tag, that is

ax ni soad el o(Fca/lfv aar1i . . . eanu)s. Wdh toesn t oxr ies aut shedun oknw lyi tohn cane, Ftht eang ,et vhaatl ixs

can b e replaced by call f a1. . . an

The reason that we b ring up this whole story, is that the pre-
vious SelectMember transformation generates opportunities for
EvalKnown. Remember that it has replaced call eq dictEqInt by
eval eqEqInt. This is an opportunity for the EvalKnown transfor-
mation, since eqEqInt is a global variable bound to (P2/eqPrimInt).
Thus eval eqEqInt is transformed to unit (P2/eqPrimInt).

Our example thus now is transformed to:

test1 =
{store (C/Int 3) ; λx →

ssttoorree ((CC//IInntt 34)) ; λλyx →→

unit (P2/eqPrimInt) ; λλpy →→

apply p /xe y

}
5.4 The ApplyKnown transformation

The apply operation expects a value that r epresents a p artially
applied function, and applies it to further arguments. Normally this

operation is generated by the code generator for values that are not
statically known, for example when emitting code for polymorphic
functions such as map.

2010/5/31

But similar to the previous subsection, where eval is occasionally
used on variables with a statically known value, situations can oc-
cur where apply is used on values that are statically known. In
fact, this happens in the example outcome of the previous trans-
formation: we h ave an apply operating on a value that obviously
is (P2/eqPrimInt), a partial application of eqPrimInt lacking 2
parameters.

Since in this example the lacking 2 parameters are provided as part
of the apply operation, the call is thereby saturated and equivalent
to call eqPrimInt x y.

This is exactly what the EvalKnown transformation performs: it
symbolically collects all units, and for each apply x b1. . . bk
checks whether the variable x holds a known node (Pm/f a1. . . an).
There are three cases:

• k < m (undersaturated call): replace the apply operation by
ukn< itm m(P (mun−dke/rsfa tau1 . . . adn bal1l . . . rbekp)l

• k = m (saturated call): replace the apply operation b y
cka= ll fm a(s1 . . . arant bd1 . . . bl):k

• k > m (oversaturated call): do nothing. (This situation does not
koc> cumr i (no tvheer scaotnutraetxet ddi csacllu)s:sd eod nino thhinisg p aper. I sfi titu adtiooens doocecusrn oint
other situations, doing nothing is always safe.)

Our example ends up as:

test1 =
{store (C/Int 3) ; λx →

ssttoorree ((CC//IInntt 34)) ; λλyx →→

unit (P2/eqPrimInt) ; λλpy →→

call eqPri/emqIPnrti mx y

}
Note that the binding of the P2-node to p has now become ob-
solete. However, it is not removed b y the ApplyKnown transfor-
mation, as it will be caught anyway by a DropUnused transfor-
mation p erformed further downstream the transformation p ipeline.
This way, we keep the individual transformations straightforward,
while they together still do all that is needed.

5.5 The SpecConst transformation

The combined effort of all transformations so far has succeeded in
annihilating all dictionary overhead involved in the Haskell expres-
sion eq 3 4. Now let’s see what happens for the Haskell expression
ne 5 6.

Because the instance declaration Eq Int relies on the default
definition for ne, the r esulting Grin code is different. The field
selection and subsequent apply is shortcut successfully, but the
default definition neDef that is now called is overloaded, and thus
needs an additional dictionary parameter itself.

test2 =
{store (C/Int 5); λx →

ssttoorree ((CC//IInntt 65));; λλyx →→

csatollr ene (DCe/fIn dtic6 t)E;qλyInt→ x y

}
So we still have the overhead associated with run-time dictionary
passing here.

To overcome this, we rely on a technique that is actually more

general: statically apply partial evaluation and generate specialized
‘clones’ of a function that is called with a constant argument. Func-
tion neDef has three p arameters, and in this call the first argument
is a global constant: a dictionary, that (since the SelectMember
transformation is p erformed) is defined as a global constant:

dictEqInt ← store (C/Eq eqEqInt neEqInt)

In this particular example the other two arguments are constants as
well, so the function may end up t o be specialized for all three argu-

9

ments. In a typical situation however only the dictionary is constant,
and we get a specialized copy still expecting two parameters.

For the sake of argument, we assume here that the function is
only specialized for its dictionary argument (imagine an option to
be active that forbids specializing for integer arguments). Starting
from the original definition of neDef:

neDef d x y =
{store (F/eq d) ; λf →

ssttoorree ((FA/ e fq qxd y));; λλrf →→
csatollr eno(tA Ar

}
a clone is generated, which is specialized for the first argument:

neDef0 x y =
specialized (neDef (dictEqInt))

{store (F/eq dictEqInt) ; λf →
ssttoorree ((FA/ e fq qxd yic)t ; λλrf →→
call not r

}
Note that the clone is annotated in such a way that it is manifest
what was the original function, and for which arguments it was
specialized. This way, when the t ransformation is run again later,
we can avoid making another clone for the same argument.

The call is adapted accordingly:

test2 =
{store (C/Int 5); λx →

ssttoorree ((CC//IInntt 65));; λλyx →→

csatollr ene (DCe/fIn0 x y

}

5.6 ...and repeat

After the specialization, new opportunities are exposed in the b ody
of the clone for transformations that we discussed earlier. Firstly,
the operation store (F/eq dictEqInt) is an opportunity for the
SelectMember transformation. In subsection 5.2 we described that
for all selectors s t hat select field i f rom a dictionary, and all
constant dictionaries d having f as it’s ith field, it replaces call s d
by eval f .

We now widen the t ask of SelectMember t o also handle selections
from constant dictionaries that are disguised as thunk. T hat is:
replace store (F/s d) by unit f .

In this way, we lose the lazy behavior of the field selection. But
there is no need for laziness in this situation: field selection cannot
fail, and it is performed fast – in fact, now that we perform it
statically, it takes no time at all. Nobody will oppose not postponing
a call that takes zero time and cannot fail.

Another d e´ja vu: the unit eqEqInt that emerges from the previous
transformation can b e combined with the thunkified apply in
store (A f x y). This is done b y the ApplyKnown, whose task is
also widened t o h andle situations where an apply is disguised as
a thunk with A tag.

Next, further opportunities for another SpecConst transforma-
tion may arise, etcetera. All i n all, the following sequence of
transformations should be p erformed r epeatedly: SelectMember,
EvalKnown, ApplyKnown, and SpecConst.

New opportunities will appear as often as overloaded functions
keep calling each other, r equiring as many iterations as the static
nesting depth of overloaded functions. If we want to b e sure that all
dictionary-passing is removed, we should iterate the four transfor-
mations u ntil we r each a fixed p oint. In p ractice, a fixed number of
iterations could satisfy.

2010/5/31
In real-life example programs involving the complicated classes
from the numeric, IO, and r ead/show libraries, we observed the
transformation of a program to converge to a fixed p oint after about
5 iterations.

6. Concluding remarks

The UHC compiler is written in Haskell itself. The ease of defining
recursive datastructures, parsers, and tree traversals make Haskell a
useful tool for compiler writing. Still, writing a tree traversal for a
non-trivial language like the intermediate languages in UHC takes
some effort.

This is aggravated b y the fact that many transformations in UHC
perform multi-pass transformations over the parse tree. The trans-
formations in the case study of this paper follow this pattern as
well: SelectMember scans the program for finding selectors, and
then scans the program again for finding calls to the selectors.

To write the tree traversals for all 60 transformations in UHC,
most of which are multi-pass, by hand would b e too much work.
That is why we employ an attribute grammar based p reproces-
sor for Haskell, that greatly facilitates writing tree traversals
[Fokker and Swierstra 2008, website UUAG]. Maybe it is even fair
to say that UHC is written in the language of attribute grammars,
and it is compiled into Haskell by the preprocessor. There is a vague
border between the concepts of ‘preprocessor’ and ‘compiler’, be-
tween ‘software generation’ and ‘program translation’.

6.1 Related work

The Haskell compiler that is most widely u sed is the Glasgow
Haskell Compiler (GHC) [website GHC]. It is of production qual-
ity, and many people contribute to its implementation or t o support-
ing libraries and applications.

Like UHC, GHC is written in Haskell itself, but without the aid of
a p reprocessor. GHC is structured as a sequence of transformations
[Peyton J ones and Santos 1994, Santos 1995], but it tries to do as
much as possible in a single transformation. This makes it harder to
understand how various optimization steps cooperate and interact.
On the positive side, economizing on transformations makes the
compiler fast.

GHC is designed to compile modules separately, and it is interest-
ing to see how it handles overloading. W hen a module is compiled,

GHC reads summaries (known as ‘hi’-files) of the modules it im-
ports. T hese summaries consist mainly of signatures of exported
functions. But an exception is made for default definitions in class
declarations: these definitions are stored in full in the summaries. In
this way, GHC is able t o do specialization of default defintions, at
the expense of causing massive recompilation if a default definition
changes, since the hi-file then changes.

There is a vast amount of literature on the implementation of over-
loading. We mention work on using dictionaries for implementing
overloading [Augustsson 1993], dynamical merging of dictionaries
in separate modules [Fax e´n 2002], and statical elimination of the
overhead of dictionary passing [Jones 1995].

The p hilosophy of writing a Haskell compiler by means of m any
small transformations, including Grin as an intermidiate language,
was proposed in the Grin project [Boquist and Johnsson 1996,
Boquist 1999]. They focused on whole-program analysis for stati-
cally approximating the values of heap pointers. Overloading is not
implemented in this project.

Computations over abstract syntax trees and tree t ransforma-
tion form a major part of any compiler. An alternative t o our
attribute-based approach is the Stratego system [Visser 2001,

10
website Stratego]. Stratego is strong in expressing local r ewrites,
and is able to perform transformations repeatedly. It is a large sys-
tem that employs its own language. This makes it self-contained,
but it lacks the ease of an underlying general purpose language.

An alternative system that does use attribute grammars for tree
rewriting is Jastadd [Ekman and Hedin 2007, website Jastadd]. It

uses a different u nderlying language (Java). Thus, it doesn’t get
lazy evaluation for free, but it is easier to maintain non-local refer-
ences in the abstract syntax tree.

References
[Augustsson 1993] Lennart A ugustsson. Implementing Haskell overload-

ing. In: F unctional P rogramming and Computer A rchitecture FPCA
1993, p p 65–73.

[Bernardy et al 2009] Jean-Philippe Bernardy et al. A comparison of C++
concepts and Haskell type classes. In: ACM workshop on generic
programming GP 2009, pp. 37–48.

[Boquist and Johnsson 1996] Urban Boquist and Thomas Johnsson. The
GRIN project: A highly optimising back end for lazy functional
languages. In: Workshop on I mplementation ofF unctional L anguages
IFL 1996. Springer LNCS 1268.

[Boquist 1999] U rban Boquist. Code optimisation techniques for lazy
functional languages. PhD Thesis Chalmers University, G ¨oteborg March
1999.

[Dijkstra 2005] A tze Dijkstra. Stepping through Haskell. PhD Thesis
Utrecht University, November 2005.

[Dijkstra, Fokker and Swierstra 2009] Atze Dijkstra, J eroen Fokker and
S. Doaitse Swierstra. The architecture of the Utrecht Haskell Compiler.
In: ACM Haskell symposium Haskell’09, pp. 93–104.

[Ekman and Hedin 2007] Torbj¨o rn E kman and G o¨rel Hedin. The JastAdd
System: modular extensible compiler construction. Science of Computer
Programming 69 (2007), pp. 14–26.

[Fax e´n 2002] Karl-Filip Faxe ´n. A static semantics for Haskell. J . Func-
tional P rogramming 12 (2002), pp. 295–357.

[Fokker and Swierstra 2008] J eroen F okker and S. Doaitse Swierstra.

Abstract interpretation of functional programs using an attribute
grammar system. In: Language D escriptions, Tools and A pplications
LDTA 2008.

[Jones 1995] Mark. P. Jones. Dictionary-free overloading b y partial
evaluation. Lisp and symbolic computation 8 (1995), pp. 229–248.

[Peyton J ones 2003] Simon Peyton J ones. Haskell 98, language and
libraries: the revised report. Cambridge univeristy p ress, 2003.

[Peyton Jones and Santos 1994] Simon Peyton J ones and Andre Santos.
Compilation by transformation in the Glasgow Haskell Compiler.
In: Functional p rogramming (K. Hammond e t al, ed.), pp. 184–204.
Workshops in computing, Springer, 1994.

[Santos 1995] Andre Santos. Compilation by transformation in non-strict
functional languages. PhD Thesis University of Glasgow, 1995.

[Swierstra, Azero and Saraiva 1998] S. Doaitse Swierstra, P ablo R. Azero
Alocer, and Jo˜a o Saraiva. Designing and implementing combinator
languages. In: Advanced f unctional p rogramming AFP’98. Springer
LNCS 1608.

[Visser 2001] Eelco Visser. Stratego: A language for program transforma-
tion based on rewriting strategies. System description of Stratego 0.5. In:
Rewriting Techniques and A pplications, RTA’01, pp. 357–361 . Springer
LNCS 2051.

[website Jastadd] www .jastadd .org

[website Stratego] www .program-transformation .org/Stratego

[website GHC] www .haskell .org/ghc

[website UHC] www .cs .uu .nl/wiki/bin/view/UHC

[website U UAG] www .cs .uu .nl/wiki/bin/view/HUT

2010/5/31

