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Abstract
We describe an implementation of session types in Haskell. Session
types statically enforce that client-server communication proceeds
according to protocols. They have been added to several concurrent
calculi, but few implementations of session types are available.

Our embedding takes advantage of Haskell where appropriate,
but we rely on no exotic features. Thus our approach translates with
minimal modification to other polymorphic, typed languages such
as ML and Java. Our implementation works with existing Haskell
concurrency mechanisms, handles multiple communication chan-
nels and recursive session types, and infers protocols automatically.

While our implementation uses unsafe operations in Haskell,
it does not violate Haskell’s safety guarantees. We formalize this
claim in a concurrent calculus with unsafe communication primi-
tives over which we layer our implementation of session types, and
we prove that the session types layer is safe. In particular, it en-
forces that channel-based communication follows consistent proto-
cols.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming—Haskell; D.3.3
[Programming Languages]: Language Constructs and Features—
Concurrent programming structures

General Terms Languages

Keywords Session types, concurrency, Haskell, type classes,
phantom types, functional programming, embedded type systems

1. Introduction
In typed languages with channel-based communication, such as
CML (Reppy 1991) and Concurrent Haskell (Peyton Jones et al.
1996), channels are often homogeneous—parameterized by a sin-
gle type—and provided with operations to send and receive values
of that type over such a channel:

writeChan :: Chan a −> a −> IO ()
readChan :: Chan a −> IO a

A natural extension is to parameterize a channel by a protocol
regulating the sequence of values that can be sent or received
over the channel. For example, a protocol Int ! Int ? Bool ! ε

indicates that the associated communication channel can be used
to send an integer, receive an integer, then send a Boolean before
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finishing. One can use this channel to communicate with another
thread whose corresponding channel has the dual protocol Int ?
Int ! Bool ? ε that can receive an integer, send an integer, and then
receive a Boolean before finishing.

Type systems to enforce that communication conforms to a
particular protocol are known as session-type systems. A session
type is the representation within a type system of the protocol
associated with a channel. Session types were first introduced for
the π calculus by Honda, Vasconcelos, Kubo, and others (Honda
et al. 1998; Gay and Hole 1999, 2005). Recent work has focused on
adapting session types to more conventional concurrent languages.

A major barrier to implementing session types in existing lan-
guages is aliasing. This is because session types are intrinsically
stateful. Suppose a function f expects two arguments, each a chan-
nel with session type Int ! ε—that is, ready to send an integer, then
finish—and suppose f sends an integer on each channel argument
that it is given. We might assume a type system such that a chan-
nel c may be passed to f only when it can be used in exactly that
way: to send an integer and then finish. To ensure that channels are
used correctly according to their protocol, we must check wherever
we apply f that the two channel arguments are distinct. Otherwise,
calling f cc will perform two sends on channel c, violating its pro-
tocol. A common way to deal with this aliasing problem is to use a
substructural type system.

Implementations of session types. Several calculi for modeling
session types in more conventional concurrent languages have been
proposed. Vasconcelos, Gay, and Ravara (2006; 2007), for instance,
have developed calculi for direct-style functional concurrent lan-
guages with built-in session types. Others have developed session-
type calculi to regulate method invocation in an object-oriented set-
ting (Vallecillo et al. 2003; Dezani-Ciancaglini et al. 2005, 2006).

Armstrong (2002) describes UBF, a framework for manipulat-
ing XML data in Erlang. UBF controls the exchange of XML data
over Erlang channels through dynamic checking of protocols rather
than types.

DeLine and Fähndrich’s (2001) Vault adds a form of session
type to C, though their focus is more on resources than message-
passing concurrency. Sing# (Fähndrich et al. 2006), the implemen-
tation language for Microsoft’s experimental Singularity OS, adds
full-featured session types to C#. Neither Vault nor Sing# is imple-
mented as a library, however: each extends the type system of the
base language.

Neubauer and Thiemann (2004) present a library implementa-
tion of session types in Haskell that provides session-type check-
ing for client code that communicates via a single implicit channel
with some server. Their main example is an SMTP client, where
the session type enforces that the protocol be respected. They avoid
aliasing by automatically threading the implicit channel through the
computation. Neubauer and Thiemann model their implementation
with a simple, typed calculus for session-type–regulated commu-
nication, and give a type-preserving embedding into Haskell. They
use type classes with functional dependencies to model the progress
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of the state of the channel, and observe that this feature appears
necessary.

Our contributions. The main message of this paper is that it
is feasible to develop a usable and complete session-type system
on top of a real functional programming language. We argue, in
particular, that Haskell’s type system is sufficiently powerful to
enable a reasonable encoding.

We describe a library, implemented in Haskell, that:

• works with existing Haskell concurrency mechanisms;
• handles multiple communication channels typed independently;
• handles a form of recursive session types; and
• infers session types automatically.

We argue correctness of our implementation in the single-channel
case using a core calculus. Aliasing is avoided by threading session
type information linearly through the system, by use of an indexed
monad. We do not thread the channel itself, but rather a capability
to use the channel. This permits the channel to be manipulated
like any other value, thereby rendering channel aliasing harmless.
Capabilities, unlike channels, are an artifact of the type system, and
have no run-time existence. The implementation strategy is based
on recent work on capability calculi for session types (Pucella and
Heller 2008).

Our implementation highlights what seem to be basic prerequi-
sites for a reasonable implementation of session types:

• a means to express the duality of session types (we use type
classes); and

• a means to express linear threading of values with changing
types (we use an indexed monad).

We show that duality is expressible in many languages, such as
Standard ML or Java 1.5. Similarly, indexed monads can be im-
plemented in any higher-order language having some notion of pa-
rameterized type, again such as SML or Java. Thus, type classes
and functional dependencies are convenient but not necessary for
an implementation of session types.

Road map. In §2 we introduce an encoding of session types as
Haskell types. In §3, we show how to enforce these session types
in Haskell, initially limited to pairs of processes communicating
over a single channel, and in §4, we expand this treatment to
handle multiple channels at once. In §5, we discuss usability and
how our implementation techniques may be applicable in other
languages. We model our implementation with a core calculus and
present several theorems in §6. Finally, we discuss future work and
conclude in §7.

2. Session Types in Haskell
The central idea of session types (Gay and Hole 1999) is to param-
eterize a channel with some type that represents a protocol, which
the type system then enforces. In Haskell, we may encode a proto-
col using ordinary datatypes:

data (:!:) a r
data (:?:) a r
data Eps

These datatypes require no constructors because they will have no
run-time representation.

If a is any type, and r is a protocol, then we interpret a :!: r
as the protocol, “first send an a, and then continue with r.” Simi-
larly, we interpret a :?: r as the protocol, “receive an a, and then
continue with r.” The type Eps represents the empty protocol of a
depleted channel that is not yet closed.

For example, the type Int :!: Bool :?: Eps represents the
protocol, “send an Int, receive a Bool, and close the channel.” 1

If the process on one end of a channel speaks a particular
protocol, its correspondant at the other end of the channel must
be prepared to understand it. For example, if one process speaks
Int :!: Bool :?: Eps, the other process must implement the
dual protocol Int :?: Bool :!: Eps. We encode the duality re-
lation using a type class with multiple parameters and functional
dependencies (Peyton Jones et al. 1997; Jones 2000).

class Dual r s | r −> s, s −> r

The functional dependencies indicate that duality is bijective,
which helps Haskell to infer protocols and enables a form of sub-
typing. Sending and receiving are dual: if r is dual to s, then
a :!: r is dual to a :?: s. The empty session is dual to itself.

instance Dual r s => Dual (a :!: r) (a :?: s)
instance Dual r s => Dual (a :?: r) (a :!: s)
instance Dual Eps Eps

Our session types also represent alternation and recursion. If
r and s are protocols, then r :+: s represents an active choice
between following r or s. The type r :&: s represents an offer to
follow either r or s, as chosen by the other process.

data (:+:) r s
data (:&:) r s

The two alternation operators are dual:

instance (Dual r1 s1, Dual r2 s2) =>
Dual (r1 :+: r2) (s1 :&: s2)

instance (Dual r1 s1, Dual r2 s2) =>
Dual (r1 :&: r2) (s1 :+: s2)

Recursion turns out to be slightly more difficult. It is tempting to
use a fixed-point combinator, but this would require constructing a
type of kind ?→ ? for any desired loop body, which is not generally
possible. We need some other way for a recursive type to refer to
itself, so we represent this binding using de Bruijn indices.

data Rec r
data Var v

instance Dual r s => Dual (Rec r) (Rec s)
instance Dual (Var v) (Var v)

The type Rec r adds a binding for r inside r; that is, it implicitly
defines a variable bound to the whole of r that can be used within
r. We use Var v to refer to the variable bound by the vth Rec,
counting outward, where v is a Peano numeral written with type
constructors Z and S (e.g., Z or S (S Z)). For example, the protocol

Request :!: Rec (Response :?: (Var Z :&: Eps))

says to send a request and then be prepared to receive one or more
responses. By contrast, a process implementing the protocol

Request :!: Rec ((Response :?: Var Z) :&: Eps)

must send a request and be prepared to accept any number of
responses.

3. Take 1: One Implicit Channel
Encoding protocols in Haskell is not enough. We cannot merely
provide channels parameterized by session types and call it a day.
For example, consider a hypothetical send operation:

1 The type constructors (:!:) and (:?:) are declared right associative and
with higher precedence than (:+:) and (:&:).
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send :: Channel (a :!: r) −> a −> IO (Channel r)

While this send returns the correct channel for the rest of the ses-
sion, it fails to prevent reuse of the a :!: r channel, which would
violate the protocol. One way to avoid this problem is to require
that channels (or at least their sessions) be treated linearly. In this
section, we show how this is done for processes having access to
only one channel, which is left implicit in the environment; in the
next section, we implement multiple concurrent channels.

We assume a substrate of synchronous channels in both typed
and untyped varieties:

writeTChan :: TChan a −> a −> IO ()
readTChan :: TChan a −> IO a

unsafeWriteUChan :: UChan −> a −> IO ()
unsafeReadUChan :: UChan −> IO a

These channels have dynamic semantics similar to Concurrent
ML’s (Reppy 1991) synchronous channels. While TChans trans-
mit only a single type, UChans are indiscriminating about what they
send and receive. In our implementation, they use unsafeCoerce#,
which can lead to undefined behavior if sent and received types dif-
fer. We must somehow impose our own type discipline.

We define an abstract type Session s s’ a, which represents
a computation that evolves a session from state s to state s’ while
producing a value of type a. Session’s constructor is not exported
to client code, so that clients of the library cannot arbitrarily modify
the session state. Session is implemented as the composition of
the IO monad with a reader monad carrying a untyped channel.

newtype Session s s’ a =
Session { unSession :: UChan −> IO a }

The phantom parameters s and s’ must track more information
than just the current session. We define a type constructor Cap
to hold not only the current session r, but another type e, which
represents a session type environment:

data Cap e r

The type Cap e r represents the capability to run the protocol
r. The session type environment e provides context for any free
variables Var v in r; that is, r must be closed in e. We discuss e
in more detail when we explain recursion, and the other operations
merely thread it through.

We can now give send a type and definition that will work:

send :: a −> Session (Cap e (a :!: r)) (Cap e r) ()
send x = Session (λc −> unsafeWriteUChan c x)

Given an a, send evolves the session from a :!: r to r. In its im-
plementation, unsafeWriteUChan indiscriminately transmits val-
ues of any type over an untyped channel. Thus, if we fail to ensure
that the receiving process expects a value of type a, things can go
very wrong. In §6, we argue that this cannot happen.

Predictably, recv requires the capability to receive an a, which
it then produces:

recv :: Session (Cap e (a :?: r)) (Cap e r) a
recv = Session unsafeReadUChan

We use close to discard an exhausted capability, replacing it with
(). In this implementation, close is a run-time no-op.

close :: Session (Cap e Eps) () ()
close = Session (λ_ −> return ())

Composing computations. We also need a way to compose
Session computations. Composing a session from state s1 to s2
with a session from state t1 to t2 should be permitted only if s2 = t1.
This is precisely the situation that indexed monads capture.

Indexed monads (Atkey 2006; Kiselyov 2006), also known as
parameterized monads, generalize monads to restrict composition
of computations. An indexed monad m i j a is parameterized by a
precondition i and postcondition j, as well as a result type a. Two
indexed-monad computations compose only if the postcondition of
the first matches the precondition of the second.

class IxMonad m where
(>>>=) :: m i j a −> (a −> m j k b) −> m i k b
(>>>) :: m i j a −> m j k b −> m i k b
m >>> k = m >>>= λ_ −> k

An indexed monad’s unit does not affect the condition:

ret :: a −> m i i a

The IxMonad instance for Session is then straightforward. It
threads the implicit channel through and runs the underlying com-
putations in the IO monad.

instance IxMonad Session where
ret a = Session (λ_ −> return a)
m >>>= k = Session (λc −> do a <− unSession m c

unSession (k a) c)

We use io to lift an arbitrary IO computation into Session:

io :: IO a −> Session s s a
io m = Session (λ_ −> m)

Because of io, this implementation is actually not linear but affine:
an IO action may raise an exception and terminate the Session
computation. Provided that exceptions cannot be caught within a
Session, this does not jeopardize safety in the sense that any mes-
sages received will still have the expected representation. Some for-
mulations of session types guarantee that a session, once initiated,
will run to completion, but this seems unrealistic for real-world pro-
grams. Handling exceptions from within a session remains an open
problem.

Alternation. The session actions sel1, sel2, and offer imple-
ment alternation. Action sel1 selects the left side of an “inter-
nal choice”, thereby replacing a session r :+: s with the session
r; sel2 selects the right side. On the other side of the channel,
offer combines a Session computation for r with a computation
for s into a computation that can handle r :&: s. Dynamically,
sel1 sends True over the channel, whereas sel2 sends False,
and offer dispatches on the boolean value received.

sel1 :: Session (Cap e (r :+: s)) (Cap e r) ()
sel1 = Session (λc −> unsafeWriteUChan c True)

sel2 :: Session (Cap e (r :+: s)) (Cap e s) ()
sel2 = Session (λc −> unsafeWriteUChan c False)

offer :: Session (Cap e r) u a −>
Session (Cap e s) u a −>
Session (Cap e (r :&: s)) u a

offer (Session m1) (Session m2)
= Session (λc −> do b <− unsafeReadUChan c

if b then m1 c else m2 c)

Recursion. Session actions enter, zero, and suc implement
recursion. Consider the recursive session type

Request :!: Rec ((Response :?: Var Z) :&: Eps)
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from above. After sending a Request, we need some way to enter
the body of the Rec, and upon reaching Var Z, we need some way
to repeat the body of the Rec. We accomplish the former with
enter, which strips the Rec constructor from r and pushes r onto
the stack e:

enter :: Session (Cap e (Rec r)) (Cap (r, e) r) ()
enter = Session (λ_ −> return ())

In e, we maintain a stack of session types for the body of each
enclosing Rec, representing an environment that closes over r.
Upon encountering a variable occurence Var n, where n is a Peano
numeral, we restore the nth session type from the stack and return
the stack to its former state, using n expressed with zero and suc:

zero :: Session (Cap (r, e) (Var Z))
(Cap (r, e) r) ()

zero = Session (λ_ −> return ())

suc :: Session (Cap (r, e) (Var (S v)))
(Cap e (Var v)) ()

suc = Session (λ_ −> return ())

For example, if the current session is Var (S (S Z)), then the
operation

suc >>> suc >>> zero

pops two elements from the stack and replaces the current session
with the body of the third enclosing Rec.

It is worth remarking that this duplication of type and code
to pop the stack is not strictly necessary. If we explicitly write
suc >>> suc >>> zero, Haskell’s type checker can infer S (S Z).
If, on the other hand, the type is already known, then a type class
can do the work:2

class Pop s s’ | s −> s’ where pop :: Session s s’ ()

instance Pop (Cap (r, e) (Var Z)) (Cap (r, e) r)
where pop = Session (λ_ −> return ())

instance Pop (Cap e (Var v)) (Cap e’ r’) =>
Pop (Cap (r, e) (Var (S v))) (Cap e’ r’)

where pop = Session (λ_ −> return ())

Putting it all together. Finally, we need a way to connect and run
sessions.

A Rendezvous is a synchronization object that connects the
types of two processes at compile time, and then enables their
connection by a channel at run time. The Rendezvous carries a
phantom parameter indicating the protocol to be spoken on the
shared implicit channel, and is represented by a homogeneous,
typed channel on which the untyped channel for a particular session
will later be exchanged. Creating a Rendezvous is as simple as
creating a new typed channel and wrapping it.

newtype Rendezvous r = Rendezvous (TChan UChan)

newRendezvous :: IO (Rendezvous r)
newRendezvous = newTChan >>= return . Rendezvous

To accept a connection request, we need a Rendezvous object,
and a Session computation whose starting session type matches
that of the Rendezvous. The computation must deplete and close
its channel. At run time, accept creates a new untyped channel
on which the communication will take place and sends it over the

2 Note that the definition of the method pop is the same for both instances
of Pop, which suggests that it could be provided as a default method. This
would introduce a subtle bug, however, as it would enable defining new
instances of Pop with arbitrary effect.

Rendezvous channel. It then runs the session computation on the
new channel.

accept :: Rendezvous r −>
Session (Cap () r) () a −> IO a

accept (Rendezvous c) (Session f) = do
nc <− newUChan
writeTChan c nc
f nc

To request a connection, the session type of the Session com-
putation must be dual to that of the given Rendezvous. At run
time, request receives a new, untyped channel from accept over
the Rendezvous channel and then runs the computation using the
channel.

request :: Dual r r’ => Rendezvous r −>
Session (Cap () r’) () a −> IO a

request (Rendezvous c) (Session f)
= readTChan c >>= f

3.1 Implicit Channel Examples
In these examples, we use ixdo notation for indexed monads,
analogous to do notation for monads. This syntax is implemented
by a preprocessor.

A print server. As an example, we implement a simple print
server. The client side of the print server protocol is:

1. Choose either to finish or to continue.

2. Send a string.

3. Go to step 1.

We first implement the server.

server = enter >>> loop where
loop = offer close

(ixdo
s <− recv
io (putStrLn s)
zero
loop)

GHC’s type checker can infer that server’s session type is
Rec (Eps :&: (String :?: Var Z)).

The client reads user input, which it sends to the server for
printing. When the user tells the client to quit, it sends one more
string to the server, tells the server to quit, and closes the channel.

client = enter >>> loop 0 where
loop count = ixdo

s <− io getLine
case s of
"q" −> ixdo

sel2
send (show count ++ " lines sent")
zero; sel1; close

_ −> ixdo
sel2; send s
zero; loop (count + 1)

GHC infers the session type Rec (Eps :+: (String :!: Var Z))
for client, which is clearly dual to the type inferred for server
above.

We run a session by creating a new Rendezvous, having the
server accept in a new thread, and having the client request in the
main thread.

runPrintSession = do
rv <− newRendezvous
forkIO (accept rv server)
request rv client
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recv :: Channel t −> Session (Cap t e (a :?: r), x) (Cap t e r, x) a
close :: Channel t −> Session (Cap t e Eps, x) x ()
sel1 :: Channel t −> Session (Cap t e (r :+: s), x) (Cap t e r, x) ()
sel2 :: Channel t −> Session (Cap t e (r :+: s), x) (Cap t e s, x) ()
offer :: Channel t −> Session (Cap t e r, x) u a −> Session (Cap t e s, x) u a −> Session (Cap t e (r:&:s), x) u a
enter :: Channel t −> Session (Cap t e (Rec r), x) (Cap t (r, e) r, x) ()
zero :: Channel t −> Session (Cap t (r, e) (Var Z), x) (Cap t (r, e) r, x) ()
suc :: Session (Cap t e (Var v), x) (Cap t f s, x) () −> Session (Cap t (r, e) (Var (S v)), x) (Cap t f s, x) ()

Figure 1. Types for multiple channel Session operations

An example of subtyping. Our implementation provides a form
of protocol subtyping. Consider a reimplementation of Gay and
Hole’s (1999) arithmetic server, which provides two services, addi-
tion and negation:

server1 = offer
(ixdo a <− recv

b <− recv
send (a + b)
close)

(ixdo a <− recv
send (−a)
close)

The full protocol for server1 is inferred:

(Integer :?: Integer :?: Integer :!: Eps) :&:
(Integer :?: Integer :!: Eps)

A second server implements only the negation service:

server2 = offer
close
(ixdo a <− recv

send (−a)
close)

Its protocol is inferred as well:

Eps :&: (Integer :?: Integer :!: Eps)

A particular client may avail itself of only one of the offered
services:

client’ x = ixdo sel2; send x; y <− recv; close; ret y

The client’s protocol is inferred as r :+: (a :!: b :?: Eps),
which unifies with the duals of both servers’ protocols. Without the
functional dependencies in Dual, however, attempting to connect
the client with server2 leads the type checker to complain that
there is no instance of Dual for r and Eps; connecting client
with server1 also fails to type check. The functional dependency
nudges the type checker towards attempting to unify r with the cor-
responding part of either server’s type, which then succeeds. As a
result, the client may be composed with both servers in the same
program and never notices the difference.

4. Take n: Multiple Channels
Rather than limit ourselves to one implicit channel at a time, it
might be more flexible to work with several channels at once.
To extend Session to handle multiple channels, our first step is
to separate the channel itself from the capability to use it for a
particular session:

newtype Channel t = Channel UChan
data Cap t e r

The parameter t is a unique tag that ties a given channel to the
capability to use it. A Channel t is an actual value at run time,

while the corresponding Cap t e r is relevant only during type-
checking. We allow Channel t to be aliased freely because a
channel is unusable without its capability, and we treat capabilities
linearly. As before, the capability also contains a session type
environment e and a session type r that is closed in e.

We now index Session by a stack of capabilities, while un-
derneath the hood, it is just the IO monad. Session is no longer
responsible for maintaining the run-time representation of chan-
nels, but instead it keeps track of the compile-time representation
of capabilities.

newtype Session s s’ a = Session { unSession :: IO a }

instance IxMonad Session where
ret = Session . return
m >>>= k = Session (unSession m >>= unSession . k)

io :: IO a −> Session s s a
io = Session

A Session computation now carries a stack of capability types,
and communication operations manipulate only the top capability
on the stack, leaving the rest of the stack unchanged. The send
operation takes a channel as an argument rather than obtaining it
implicitly, and the tag t on the channel must match the tag in the
capability.

send :: Channel t −> a −>
Session (Cap t e (a :!: r), x)

(Cap t e r, x) ()
send (Channel c) a = Session (unsafeWriteUChan c a)

In the type above, Cap t e (a :!: r) is the capability on the top
of the stack before the send, and Cap t e r is the capability after
the send. Type variable x represents the rest of the capability stack,
which is unaffected by this operation.

The implementations of the remaining operations are similarly
unsurprising. Each differs from the previous section only in obtain-
ing a channel explicitly from its argument rather than implicitly
from the indexed monad. Their types may be found in Figure 1.
Note that close now has the effect of popping the capability for
the closed channel from the top of the stack.

Stack manipulation. Channel operations act on the top of the
capability stack. Because the capability for the particular channel
we wish to use may not be on the top of the stack, we may need to
use other capabilities than the top one. The dig combinator suffices
to select any capability on the stack. Given a Session computation
that transforms a stack x to a stack x’, dig lifts it to a computation
that transforms (r, x) to (r, x’) for any r; thus, n applications
of dig will select the nth capability on the stack. Note that dig has
no run-time effect, but merely unwraps and rewraps a Session to
change the phantom type parameters.

dig :: Session x x’ a −> Session (r, x) (r, x’) a
dig = Session . unSession

In combination with swap, we may generate any desired stack
permutation. Since swap exchanges the top two capabilities on
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the stack, dig and swap may be combined to exchange any two
adjacent capabilities.

swap :: Session (r, (s, x)) (s, (r, x)) ()
swap = Session (return ())

One reason we may want to rearrange the stack is to support
forkSession, which runs a Session computation in a new thread,
giving to it the entire visible stack. Thus, to partition the stack
between the current thread and a new thread, we use dig and
swap until all the capabilities for the new thread are below all
the capabilities for the current thread. Then we call forkSession
under sufficiently many digs so that it takes only the desired
capabilities with it.

forkSession :: Session x () () −> Session x () ()
forkSession (Session c)

= Session (forkIO c >> return ())

For example, to keep the top two capabilities on the stack for the
current thread and assign the rest to a new thread m, we would use
dig (dig (forkSession m)).

Making a connection. In the implicit channel case, each accept
or request starts a single Session computation that runs to com-
pletion. Because we now have multiple channels, we may need to
use accept and request to start new communication sessions dur-
ing an ongoing Session computation. Given a Rendezvous and a
continuation of matching session type, accept creates a new chan-
nel/capability pair. It calls the continuation with the channel, push-
ing the corresponding capability on the top of its stack. The rank-2
type in accept ensures that the new Channel t and Cap t () r
cannot be used with any other capability or channel. In §5 we
discuss an alternate formulation that does not require higher-rank
polymorphism, but this version here seems more elegant.

accept :: Rendezvous r −>
(forall t. Channel t −>

Session (Cap t () r, x) y a) −>
Session x y a

accept (Rendezvous c) f = Session (do
nc <− newUChan
writeTChan c nc
unSession (f (Channel nc)))

The request function behaves similarly, but as before, it uses the
dual session type.

request :: Dual r r’ =>
Rendezvous r −>
(forall t. Channel t −>

Session (Cap t () r’, x) y a) −>
Session x y a

request (Rendezvous c) f = Session (do
nc <− readTChan c
unSession (f (Channel nc)))

We may start a Session computation from within the IO monad.
The type of runSession ensures that the computation both begins
and ends with no capabilities in the stack.

runSession :: Session () () a −> IO a
runSession = unSession

Sending capabilities. Now that we have multiple channels, we
might wonder whether we can send capabilities themselves over
a channel. Certainly, but since we do not allow direct access to
capabilities, this requires a specialized pair of functions.

send_cap :: Channel t −>
Session (Cap t e (Cap t’ e’ r’ :!: r),

(Cap t’ e’ r’, x))

(Cap t e r, x) ()
send_cap (Channel c)

= Session (unsafeWriteUChan c ())

recv_cap :: Channel t −>
Session (Cap t e (Cap t’ e’ r’ :?: r), x)

(Cap t e r, (Cap t’ e’ r’, x)) ()
recv_cap (Channel c) = Session (unsafeReadUChan c)

Observe that because capabilities have no run-time existence, the
actual value sent over the channel is (). This provides synchro-
nization so that the receiving process does not perform channel op-
erations with the capability before the sending process has finished
its part. The phantom type parameters to Session change to reflect
the transmission of the capability.

4.1 An Example with Multiple Channels
As an example, we give an implementation of the Sutherland-
Hodgman (1974) reentrant polygon clipping algorithm, which
takes a plane and a series of points representing the vertices of
a polygon, and produces vertices for the polygon restricted to one
side of the plane. Shivers and Might (2006) present a stream trans-
ducer implementation, which we follow. Each transducer takes one
plane to clip by, and two Rendezvous objects for the same proto-
col. It connects on both, and then receives original points on one
channel and sends clipped points on the other.

We assume that we have types Plane and Point, a predicate
above that indicates whether a given point is on the visible side of
a given plane, and a partial function intersection that computes
where the line segment between two points intersects a plane.

GHC infers all the types in this example.

type SendList a = Rec (Eps :+: (a :!: Var Z))

clipper :: Plane −> Rendezvous (SendList Point)
−> Rendezvous (SendList Point)
−> Session x x ()

clipper plane inrv outrv =
accept outrv $ λoc −>
request inrv $ λic −> ixdo
let shutdown = ixdo close ic; sel1 oc; close oc

put pt = dig $ ixdo
sel2 oc; send oc pt; zero oc

−− Attempt to get a point; pass it to yes, or
−− call no if there are no more:
get no yes = offer ic no $ ixdo

pt <− recv ic; zero ic; yes pt
−− If the line crosses the plane, send the intersection point:
putCross line =

maybe (ret ()) put (line ‘intersect‘ plane)
putIfVisible pt =
if pt ‘above‘ plane then put pt else ret ()

dig (enter oc)
enter ic
get shutdown $ λpt0 −>
let loop pt = ixdo

putIfVisible pt
get (putcross (pt, pt0) >>> shutdown)

(λpt’ −> ixdo putcross (pt,pt’)
loop pt’)

in loop pt0

We use sendlist to send a list of points to the first transducer
in the pipeline, and we use recvlist to accumulate points pro-
duced by the last transducer.

sendlist :: [a] −> Rendezvous (SendList a)
−> Session x x ()

sendlist xs rv = accept rv start where
start oc = enter oc >>> loop xs where

loop [] = ixdo sel1 oc; close oc
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loop (x:xs) = ixdo sel2 oc; send oc x
zero oc; loop xs

recvlist :: Rendezvous (SendList a) −> Session x x [a]
recvlist rv = request rv start where

start ic = enter ic >>> loop [] where
loop acc = offer ic

(close ic >>> ret (reverse acc))
(recv ic >>>= λx −> zero ic >>> loop (x : acc))

Given a list of planes and a list of points, clipMany starts a
clipper for each plane in a separate thread. It starts sendlist a
new thread, giving it the list of points and connecting it to the first
clipper. It then runs recvlist in the main thread to gather up
the result.

clipMany :: [Plane] −> [Point] −> IO [Point]
clipMany planes points = runSession $ ixdo

rv <− io newRendezvous
forkSession (sendlist points rv)
let loop [] rv = recvlist rv

loop (p:ps) rv = ixdo
rv’ <− io newRendezvous
forkSession (clipper p rv rv’)
loop ps rv’

loop planes rv

4.2 Beyond Stack Access for Capabilities
We are not yet satisfied. We have multiple, independently typed
channels, but accessing their capabilities by stack position is a pain.
With a considerable amount of type class machinery, we can re-
place position-based capability access with named-based access.
In particular, we equip channels with sufficient information so that
the type system can automatically search the capability environ-
ment for their capabilities. The details of how to do this are beyond
the scope of this paper, and we are still exploring designs with dif-
ferent trade-offs. Two approaches seem promising.

One possibility is to add a key to each capability, changing the
capability stack into a heterogeneous association list, à la HList
(Kiselyov et al. 2004) and parameterizing channels by this key
as well. New keys are generated by each accept and request.
Capability environment lookup, update, and delete operations are
written using type classes with functional dependencies, and the
effect of each operation is encoded in its type class context. For
example, recv and send in such a system may have the types:

recv :: (Modify t k s (a :?: r) r s’) =>
Channel t k −> Session s s’ a

send :: (Modify t k s (a :!: r) r s’) =>
Channel t k −> a −> Session s s’ ()

Unfortunately, this approach destroys session type inference.
A second strategy is to include all session information, in ad-

dition to a key, as type parameters to Channel. We keep a second
copy of the type parameters in the capability environment. Session
operations take a channel, check that it matches the information in
the capability environment, and then update the environment and
return an updated channel:

recv :: (Update (Channel t n e (a :?: r)) s
(Channel t n e r) s’) =>

Channel t n e (a :?: r) −>
Session s s’ (a, Channel t n e r)

send :: (Update (Channel t n e (a :!: r)) s
(Channel t n e r) s’) =>

Channel t n e (a :!: r) −> a −>
Session s s’ (Channel t n e r)

In the above example, the channels maintain the session types, and
the capability environment ensures that channels are not used im-
properly. The type class Update checks that the given channel
type is current and modifies the capability environment to reflect
changes to the channel’s session type. Keeping session types di-
rectly available as parameters to channels restores type inference,
but encoding recursion remains problematic.

5. Discussion
5.1 Usability
Whenever an encoding-based library is proposed, the question of
usability arises. While the best way to answer that question is with
a well-designed usability test suite and real non-expert users, we
can make an initial pass at assessing the strengths and weaknesses
of our approach.

The main strength of our approach is that the resulting code is
very close to that of standard channel-based concurrent programs,
with little additional burden. The example in Appendix 4.1 illus-
trates this point, as we implement a polygon-clipping algorithm us-
ing our library in much the way that one might implement it using
message-passing concurrency without session types. The only dif-
ferences involve the use of accept and request to acquire the
ability to communicate over a channel, and the use of seli oper-
ations to control choices. The rest of the code is merely channel-
based communication. That the computation occurs in a monad
would be necessary even without our library. Type inference works
nicely in this example and many others. The code requires no type
annotations to type check, and we provide type signatures only for
clarity.

We do, however, suffer many of the problems inherent in the
use of phantom types and similar encoding techniques. In par-
ticular, type error messages can be obscure and need to be un-
derstood in light of the encoding. Nonetheless, many of our er-
ror messages are quite comprehensible. For example, if the ex-
ample client in §3.1 attempts to send an Int rather than a
String, GHC complains that it “Couldn’t match expected
type ‘Int’ against inferred type ‘String,’” rather than
some obscure message about missing instances. If the client at-
tempts a recv when the server is receiving as well, that error mes-
sage is also informative: “Couldn’t match expected type ‘a
:?: Var Z’ against inferred type ‘String :!: r.’”

Other usability problems arise from a balancing act having to
do with naming. First, position-based access to capabilities using
dig and swap is more difficult to program than name-based access.
Likewise, de Bruijn indices for recursion are likely more difficult to
manage than named variables. Finally, the use of binary sums for al-
ternation may also be inferior to name-based alternation among an
arbitrary number of cases, especially when representing protocols
with multi-way alternation. We have experimented with encoding,
for instance, name-based capability access or named-variable re-
cursion using type classes with either functional dependencies or
associated types (Chakravarty et al. 2005). However, this tends to
yield worse type inference and more cryptic error messages. There
is a trade-off, therefore, between the weight of the encoding and the
feasibility of type inference and useful type errors.

5.2 Applicability to Other Languages
Our thesis is that session types may be embedded in a general
purpose programming language without resorting to exotic lan-
guage features and techniques. Yet in the previous section, we took
advantage of several extensions to Haskell’s type system: multi-
parameter type classes, functional dependencies, empty datatype
declarations, and rank-2 polymorphism. In this section, we discuss
which features of our session types implementation are necessary
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module type DUAL = sig
type client type server
val witness : (client, server) dual

end

module Eps : DUAL
with type client = eps
and type server = eps

module Send (T : sig type t end) (R : DUAL) : DUAL
with type client = (R.client, T.t) send
and type server = (R.server, T.t) recv

module Choose (R : DUAL) (S : DUAL) : DUAL
with type client = (R.client, S.client) choose
and type server = (R.server, S.server) offer

(a) OCaml modules

final class Dual<C, S> {
private Dual() { }

public static Dual<Eps, Eps> eps
= new Dual<Eps, Eps>();

public <A> Dual<Send<A, C>, Recv<A, S>>
send() {

return new Dual<Send<A, C>, Recv<A, S>>();
}

public <C2, S2> Dual<Choose<C, C2>, Offer<S, S2>>
choose(Dual<C2, S2> right) {

right.nullCheck();
return new Dual<Choose<C, C2>, Offer<S, S2>>();

}

(b) Java 1.5 generics

Figure 2. Fragments of duality proof systems

and which merely convenient, and we argue that a similar imple-
mentation is practical in other languages.

Session type duality. Representing duality is essential. In our im-
plementation, we use a type class to check that communicating pro-
cesses speak dual protocols. The type class uses functional depen-
dencies to propagate information when a type is incompletely spec-
ified; as we saw in §3.1, this helps with polymorphism. We could
encode protocol subtyping explicitly—this is rather complicated—
but with functional dependencies, it comes for free.

Nonetheless, type classes are not strictly necessary for this to
work. The Dual class and instances encode a small proof system
for duality, and Haskell constructs duality proofs where needed. It
is possible, however, to encode proofs explicitly, and constructing
proof objects can be as simple as writing one side of the protocol in
stylized form. For example, using Java 1.5 generics (Gosling et al.
2005), we write

Dual<Send<String, Recv<Character, Eps>>,
Recv<String, Send<Character, Eps>>> =

Dual.eps.<Char>recv().<String>send();

for the same proof. Fragments of two such proof systems may be
found in Figure 2.

We have written similar duality proof systems in Standard ML,
C#, and Scala. These formulations rely on two essential features:

• Session types and duality theorems are represented by some
notion of parameterized type.

• Either abstract types or private constructors prevent arbitrary
construction of proof objects.

Java almost fails on the latter count, since null is a proof of every
theorem, but we consider dynamic null checks to be a fact of life
in Java. Each session-type factory method performs a null check
on its receiver, and some check their argument, to ensure that any
non-null Session object is a valid proof. One additional dynamic
check before connecting ensures that the session then proceeds
without incident.

Notably, it is also possible to embed an implicit duality proof
in the indexed monad. In this formulation, we maintain a pair of
the current session and its dual at every step. In our Standard ML
proof-of-concept implementation of this scheme, a complete ses-
sion computation has the type (γ * δ, unit, α) session, where
γ is the computation’s own protocol, δ is the dual protocol, and α is
the type of value computed by it. Rendezvous objects are parame-
terized by the protocol as seen from the client side, so when starting

a session, request ensures that γ matches the rendezvous object,
while accept checks δ:

val request : γ rendezvous −>
(γ * δ, unit, α) session −> α

val accept : δ rendezvous −>
(γ * δ, unit, α) session −> α

Indexed monads. Barring a linear or affine type system in the
host language—Clean’s uniqueness types (Barendsen and Smetsers
1996) may be sufficient—some other means to prevent aliasing of
capabilities is required. The indexed monad Session accomplishes
this in our Haskell implementation of session types.

Indexed monads offer a principled way to embed a variety of
substructural type disciplines, and they are reasonably expressed
in the same variety of languages that can express duality proofs.
Since the type of the bind operation is higher order, however, Java’s
lack of lambda incurs a heavy syntactic burden. As types get larger,
explicit type annotations become increasingly burdensome as well.

Multiple concurrent sessions. The solution employed in §4, a
heterogeneous stack of capabilities, should work in any of the lan-
guages mentioned in the discussion above. All of these languages’
type systems are capable of expressing the requisite polymorphic
push and pop operations.

In Haskell, however, we can go a step further (§4.2), by storing
capabilities in a heterogeneous record. Accessing capabilities by
name rather than stack position is a convenient improvement, but
we do not know how to do this without the compile-time computa-
tion that type classes provide.

Separate channels and capabilities. In the Haskell implementa-
tion with multiple channels, we separate channel values from the
capability types that restrict their use. This has the nice property
that the capability stack and attendant stack manipulations need
have no runtime reality. In a language that supports neither exis-
tential nor rank-2 quantification, nor some other way of generating
unique tags, it is possible to combine each channel-capability pair
into a single value managed by the indexed monad.

6. Formalization
The implementation of session types in §3 and §4 is in terms of
unsafe, untyped channels. Yet, we claim that our use of the type
system prevents threads from receiving values of unexpected type.
We formalize this intuition first by modeling the unsafe channel
operations with a core calculus λ F‖F. We add session types to λ F‖F
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type variables α,β ,γ
variables x,y,z

program types π ::= τ1 ‖ τ2
programs p ::= e1 ‖ e2

types τ ::= 1 | α | τ1→ τ2 | ∀α.τ | χ
k

τk
terms e ::= ι | x | λx:τ.e | e1 e2 | Λα.e | e[τ]

type constructors χ ::= M
1

data constructors ι ::= 〈〉00 | unit1
1 | bind2

2 | recv0
1 | send1

1

values v ::= λx:τ.e | Λα.e
| (ιn

m)[τ]k (where k ≤ m)
| (ιn

m)[τ]m vk (where k ≤ n)
program results w ::= unit[τ1] v1 ‖ unit[τ2] v2

evaluation contexts E ::= [] | E e | v E | E[τ]
thread contexts T ::= [] | bind [τ]2 T v

type contexts ∆ ::= α1, . . . ,αn
value contexts Γ ::= x1:τ1, . . . ,xn:τn

Figure 3. Syntax of λ F‖F

by means of a library, capturing the essence of our implementation
in §3. We then prove that the library enforces the properties we
desire for our session-type system. We focus on the single-channel
case for simplicity, but this approach should generalize to multiple
channels.

A λ F‖F program is a pair of two threads that reduce concurrently
and may communicate via an implicit channel. Each thread is
a term in a variant of System F (Girard 1971, 1972; Reynolds
1974) extended with type constructors and several data constructor
constants. The syntax of λ F‖F appears in Figure 3.

Each data constructor ιn
m is equipped with two arities, which are

used in the definition of normal forms. Subscript m is the number
of type applications admitted by the constructor, and superscript
n is the number of applications until the resulting value is fully
saturated. For example, since bind2

2 has type arity 2 and value
arity 2, all of bind2

2, bind2
2[τ1], bind2

2[τ1][τ2], bind2
2[τ1][τ2] v1, and

bind2
2[τ1][τ2] v1 v2 are syntactic values. For legibility, we generally

elide arities in examples and discussion.
The type constructor M1 with data constructors unit and bind

form a monad, which is used to sequence communication between
the two threads. As the language is call-by-value, this sequenc-
ing may seem redundant, but its purpose will become apparent
when we tackle type soundness. Normal forms for programs, de-
noted by the syntactic metavariable w, are pairs of injected values
unit[τ1] v1 ‖ unit[τ2] v2.

We write FTV(τ) for the free type variables of τ , defined in the
standard way. We write N{M/X} for the capture-avoiding substi-
tution of M for X in N. We use the notation Mk as shorthand for a
repetition of indexed syntactic objects, M1 M2 · · · Mk. We consider
both terms and types to be equivalent up to alpha conversion.

We give the static semantics for λ F‖F in Figure 4. The type sys-
tem is largely conventional. The rules for typing variables, abstrac-
tions, applications, type abstractions, and type applications are as
in System F. Each data constructor is given an ordinary type that
agrees with its arity. The program typing judgment T-PROG re-
quires that each thread ei in a program e1 ‖ e2 have a type Mτi,
in which case the whole program is then given the type τ1 ‖ τ2.
Note that no rule connects the types between the threads in any
way—this is important.

An evaluation context semantics may be found in Figure 5.
The reduction relation for threads (−→) is conventional, but the

TYPES: ∆ ` τ

∆ ` τ
(FTV(τ)⊆ ∆)

CONSTANTS: TypeOf(ι) = τ

TypeOf(〈〉) = 1 TypeOf(unit) = ∀α.α →Mα

TypeOf(bind) = ∀α.∀α ′.Mα → (α →Mα
′)→Mα

′

TypeOf(send) = ∀α.α →M1 TypeOf(recv) = ∀α.Mα

TERMS: ∆;Γ ` e : τ

∆;Γ ` ι : TypeOf(ι) ∆;Γ,x:τ ` x : τ

∆ ` τ1 ∆ ` τ2 ∆;Γ,x:τ1 ` e : τ2

∆;Γ ` λx:τ1.e : τ1→ τ2
(x /∈ domΓ)

∆;Γ ` e1 : τ
′→ τ ∆;Γ ` e2 : τ

′

∆;Γ ` e1 e2 : τ

∆,α;Γ ` e : τ

∆;Γ ` Λα.e : ∀α.τ
(α /∈ ∆)

∆ ` τ ∆;Γ ` e : ∀α.τ ′

∆;Γ ` e[τ] : τ
′{τ/α}

PROGRAMS: ` p : π

(T-PROG)
` e1 : Mτ1 ` e2 : Mτ2

` e1 ‖ e2 : τ1 ‖ τ2

Figure 4. Type system for λ F‖F

reduction relation for programs (=⇒) is slightly more interesting.
The first two rules are structural: R-THREAD allows threads to
step according to (−→), and R-FLIP means that reductions that
apply to a pair of threads also apply to their transposition. Rule R-
ID implements M’s left identity. Because the type system fails to
enforce any interthread properties, we require that rule R-SEND,
which implements communication between the threads, perform
a runtime check. Only when send and recv agree on the type
parameter τ is communication allowed to proceed.

This last bug/feature models the untyped channel primitives
unsafeUChanSend and unsafeUChanRecv that we assume in our
Haskell implementation. The dynamic behavior in Haskell differs
slightly from that in our model. In Haskell, if communication co-
erces an Int to type Int −> Int, we are unlikely to notice imme-
diately, but subsequent behavior is badly undefined. For the sake
of expedience, we choose in λ F‖F to get stuck as soon as possible
rather than proceed in an inconsistent state.

It should be increasingly clear at this point that λ F‖F exhibits
only a limited form of type soundness. It enjoys subject reduction
because of the dynamic check in R-SEND, but the progress lemma
is impeded by the presence of communication faults.

Definition 6.1 (Stuck Programs). A program configuration p is
stuck if it is not a result w and there is no p′ such that p =⇒ p′.

Definition 6.2 (Communication Faults). A program configuration
p is stuck in communication if it is stuck in one of the following
four situations.

1. Both threads are attempting to send a message, as in

T1[send[τ1] v1] ‖ T2[send[τ2] v2].
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THREAD REDUCTIONS: e−→ e

(λx:τ.e) v−→ e{v/x} (Λα.e)[τ]−→ e{τ/α}

e−→ e′

E[e]−→ E[e′]

PROGRAM REDUCTIONS: p =⇒ p
(R-THREAD)

e1 −→ e′1
e1 ‖ e2 =⇒ e′1 ‖ e2

(R-FLIP)
e2 ‖ e1 =⇒ e′2 ‖ e′1
e1 ‖ e2 =⇒ e′1 ‖ e′2

(R-ID)

T1[bind [τ]2 (unit[τ3] v1) v2] ‖ e =⇒ T1[v2 v1] ‖ e

(R-SEND)

T1[recv[τ]] ‖ T2[send[τ] v] =⇒ T1[unit[τ] v] ‖ T2[unit[1] 〈〉]

Figure 5. Operational semantics for λ F‖F

2. Both threads are attempting to receive a message, as in

T1[recv[τ1]] ‖ T2[recv[τ2]]

3. One thread is attempting to communicate but the other is fin-
ished reducing, as in

T1[recv[τ1]] ‖ unit[τ2] v2,

T1[send[τ1] v1] ‖ unit[τ2] v2,

or their transpositions over ‖.
4. The threads are ready to communicate but their types do not

agree, as in
T1[recv[τ1]] ‖ T2[send[τ2] v2]

or its transposition, where τ1 6= τ2.

We have a soundness proof (Wright and Felleisen 1994) of the
following theorem:

Theorem 6.3 (Soundness for λ F‖F). If ` p : π , then either:
• p diverges,
• p =⇒∗ w where ` w : π , or
• p eventually becomes stuck in communication.

6.1 The Session Types Library for λ F‖F

We now define a library for λ F‖F that adds session types and, we
claim, a progress lemma. It is a library in the sense that it defines
several new type constructors, abstractly, in terms of λ F‖F types
and several new constants in terms of λ F‖F terms. We now require
that programs access the old primitives unit, bind, send, and recv
only through the library. We describe the library informally for a
few paragraphs before making things precise.

Library interface. The library’s signature gives the new type con-
structors with their arities and the new constants with their types:

χ` ::= S3 | · ? · | · ! · | · ⊕ · | ·& · | ε
0

unit` : ∀β .∀α.Sβ β α

bind` : ∀β .∀β ′.∀β ′′.∀α.∀α.

Sβ β ′ α → (α → Sβ ′ β ′′ α ′)→ Sβ β ′′ α ′

recv` : ∀β .∀α.S(α ? β ) β α

send` : ∀β .∀α.α → S(α ! β ) β 1

sel1` : ∀β1.∀β2.S(β1 ⊕ β2) β1 1
sel2` : ∀β1.∀β2.S(β1 ⊕ β2) β2 1

offer` : ∀β1.∀β2.∀β ′.∀α.

Sβ1 β ′ α → Sβ2 β ′ α → S(β1 & β2) β ′ α

These types correspond to the types given in Haskell in §3.
The library also adds a new type judgment for duality, which

corresponds to the Haskell type class Dual:
(D-EPS)

ε ./ ε

(D-SEND)
τ2 ./ τ

′
2

τ1 ! τ2 ./ τ1 ? τ
′
2

(D-RECV)
τ2 ./ τ

′
2

τ1 ? τ2 ./ τ1 ! τ
′
2

(D-CHOOSE)
τ1 ./ τ

′
1 τ2 ./ τ

′
2

τ1 ⊕ τ2 ./ τ
′
1 & τ

′
2

(D-OFFER)
τ1 ./ τ

′
1 τ2 ./ τ

′
2

τ1 & τ2 ./ τ
′
1 ⊕ τ

′
2

It redefines the program typing rule R-PROG using the new duality
relation to ensure that the threads’ session types are dual:

(T`-PROG)
` e1 : Sτ1 ε τ

′
1 ` e2 : Sτ2 ε τ

′
2 τ1 ./ τ2

`` e1 ‖ e2 : τ
′
1 ‖ τ

′
2

Note that while the premises enforce that τ1 and τ2 be dual, these
types are not mentioned in the conclusion. This makes the subject
reduction lemma easier to state and prove.

Library implementation. The new types and constants are de-
fined in terms of λ F‖F:

S β β
′
α , Mα α ? β , 1 α ! β , 1

ε , 1 β ⊕ β
′ , 1 β & β

′ , 1

unit` , Λβ .unit bind` , Λβ .Λβ
′.Λβ

′′.bind

send` , Λβ .send recv` , Λβ . recv

sel1` , Λβ1.Λβ2.send[∀γ.γ → γ → γ](Λγ.λ t:γ.λ f :γ.t)

sel2` , Λβ1.Λβ2.send[∀γ.γ → γ → γ](Λγ.λ t:γ.λ f :γ. f )

offer` , Λβ1.Λβ2.Λβ
′.Λα.λx1:Mα.λx2:Mα.

bind[∀γ.γ → γ → γ][α]
(recv[∀γ.γ → γ → γ])
(λ z:(∀γ.γ → γ → γ).z[Mα] x1 x2)

The library’s dynamics derive directly from the above definitions.

6.2 A Semantics for the Library
We are now ready to state the principal claim of this section:

Claim. If a λ F‖F program is written using the new library, with no
mention of the primitives unit, bind, recv, nor send, and further-
more, if the program has a type according to the new rule T`-PROG,
then the program either converges to a program result or diverges.
In particular, well-typed programs written with the library do not
have communication faults.

We formalize this intuition with a new calculus λ F‖F
` , by which

we give a semantics to the library directly rather than in terms of
λ F‖F. The changes to λ F‖F

` from λ F‖F are summarized in Figure
6. The type constructors (χ) are the same as for the library. The
data constructors (ι) are the same as the constants defined in the
library, and they are given the same types that they have in the
library. Program results (w) and thread contexts (T ) are adjusted
for the new data constructors.

The type judgment for terms is as for λ F‖F, and we use the
new rule T`-PROG for typing programs. Similarly, the small-step
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NEW SYNTAX:

type constructors χ ::= S3 | · ? · | · ! · | · ⊕ · | ·& · | ε
0

value constructors ι ::= 〈〉00 | unit`
1
2 | bind`

2
5 | recv`

0
2 | send`

1
2 | sel1`

0
2 | sel2`

0
2 | offer`

2
4

program results w ::= unit`[τ1][τ ′1] v1 ‖ unit`[τ2][τ ′2] v2

thread contexts T ::= [] | bind` [τ]5 T v

NEW DYNAMICS:

Evolve([ ],τ ′) = [ ] Evolve(bind`[τ][τ]4T v,τ ′) = bind`[τ
′][τ]4 (Evolve(T,τ ′)) v

(R`-THREAD)
e1 −→ e′1

e1 ‖ e2 =⇒` e′1 ‖ e2

(R`-FLIP)
e2 ‖ e1 =⇒` e′2 ‖ e′1
e1 ‖ e2 =⇒` e′1 ‖ e′2

(R`-ID)

T1[bind` [τ]5(unit` [τ ′]2 v1) v2] ‖ e2 =⇒` T1[v2 v1] ‖ e2

(R`-SEND)
Evolve(T1,τ1) = T ′1 Evolve(T2,τ2) = T ′2

T1[recv`[τ1][τ]] ‖ T2[send`[τ2][τ]v] =⇒` T ′1[unit`[τ1][τ] v] ‖ T ′2[unit`[τ2][1] 〈〉]

(R`-SELi)
Evolve(T1,τi) = T ′1 Evolve(T2,τ

′
i ) = T ′2

T1[offer` [τ]4 v1 v2] ‖ T2[seli` [τ ′]2] =⇒` T ′1[vi] ‖ T ′2[unit`[τ
′
i ][1] 〈〉]

(i ∈ {1,2})

Figure 6. Summary of changes for λ F‖F
`

relation for threads (−→) is the same as for λ F‖F, but the small-step
relation for programs (=⇒) needs revision. The structural rules R`-
THREAD and R`-FLIP are unchanged, and R`-ID is merely updated
to reflect the type parameters taken by library operations unit` and
bind`. The remaining rules are somewhat strange, because we need
to adjust the type parameters in thread contexts. To see why this is
necessary, consider the configuration

T1[recv`[ε][1]] ‖ T2[send`[ε][1]〈〉].

The terms in the holes have types:

` recv`[ε][1] : S(1 ? ε) ε 1
` send`[ε][1] 〈〉 : S(1 ! ε) ε 1

The configuration takes a step to

T ′1[unit`[ε][1] 〈〉] ‖ T ′2[unit`[ε][1] 〈〉],

and now the terms in the holes have different types than before:

` unit`[ε][1] 〈〉 : S ε ε 1
` unit`[ε][1] 〈〉 : S ε ε 1

The thread contexts T1 and T2 therefore need to be adjusted to
accomodate the new types. In a precise sense, this is because S
is an indexed monad. We use a function Evolve to update the first
type parameter of each bind` in the thread contexts.

Let L J·K be a function that takes λ F‖F
` configurations, terms,

and types to λ F‖F configurations, terms, and types by expanding
the library definitions of λ F‖F

` types and constants. For example,

L
q

recv`[ε][1] ‖ send`[ε][1] 〈〉
y

= (Λβ . recv)[1][1] ‖ (Λβ .send)[1][1] 〈〉.

We may think of L J·K as inlining the library’s definitions, or as a
compiler from λ F‖F

` to λ F‖F.

We have a Wright-Felleisen–style type soundness proof for
λ F‖F

` :

Lemma 6.4 (Soundness of λ F‖F
` ). If `` p : π then either p diverges

or p =⇒∗` w where `` w : π .

We also proved an agreement lemma between λ F‖F
` and λ F‖F:

Lemma 6.5 (Agreement).

• Compilation preserves types: If `` p : π in λ F‖F
` , then `L JpK :

L JπK in λ F‖F.
• Compilation preserves convergence: If p =⇒∗` w, then there is

some w′ such that L JpK =⇒∗ w′.
• Compilation preserves divergence: If p diverges in λ F‖F

` , then
L JpK diverges in λ F‖F.

Together, these yield a soundness theorem about the λ F‖F ses-
sion types library.

Theorem 6.6 (Library Soundness). If `` p : π in λ F‖F
` , then in

λ F‖F either L JpK diverges or L JpK =⇒∗ w where ` w : L JπK.

7. Conclusion and Future Work
We have demonstrated that session types may be embedded in
a variety of polymorphic programming languages, not merely as
primitives in dedicated core calculi. With reasonable requirements
on the host language, we provide3 all the principal features of
session types in a usable library. Yet much remains to be done in
making session types practical for real-world use.

Several language features present problems or opportunities
when combined with session types. How to combine session types
with exceptions is an open question, for example. Raising excep-
tions is not a problem if we allow capabilities to be affine rather
than linear, but it is unclear how exceptions may be caught and

3 Literate Haskell is available on the web at http://www.ccs.neu.edu/
~tov/session-types/.
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communication resumed safely. One potential solution—and per-
haps a profitable opportunity in its own right—could be to com-
bine session types with software transactional memory (Harris et al.
2005). It might also be fruitful to integrate session types with CML-
style events.

It would be interesting to investigate how some of our imple-
mentation techniques may be applied toward other embedded type
systems. Indexed monads, in particular, seem especially promising.
They are able to encode a variety of substructural type systems,
including linear, affine, relevance, and ordered logics, and they al-
low à la carte selection of structural rules for particular types and
operations. Indexed monads may also be useful in the embedding
of effect systems, as in Kiselyov’s (2007) Haskell implementation
of Asai and Kameyama’s (2007) polymorphic delimited continua-
tions.

With the increasing prevalence of concurrent and distributed
systems, more and better technology is needed to specify and check
the behavior of communicating processes. Session types have the
potential to play an important part in this story, and we believe this
paper represents a step toward their wider availability.
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