
Haskell Session Types with (Almost) No Class

Riccardo Pucella Jesse A. Tov
Northeastern University

{riccardo,tov}@ccs.neu.edu

Abstract

We describe an implementation of session types in Haskell. Session
types statically enforce that client-server communication proceeds
according to protocols. They h ave b een added to several concurrent
calculi, but few implementations of session types are available.

Our embedding takes advantage of Haskell where appropriate,
but we rely on no exotic features. Thus our approach translates with
minimal modification to other p olymorphic, typed languages such
as ML and Java. Our implementation works with existing Haskell
concurrency mechanisms, handles multiple communication chan-
nels and recursive session types, and infers p rotocols automatically.

While our implementation uses unsafe operations in Haskell,
it does not violate Haskell’s safety guarantees. We formalize this
claim in a concurrent calculus with unsafe communication primi-
tives over which we layer our implementation of session types, and
we prove that the session types layer is safe. In particular, it en-
forces that channel-based communication follows consistent p roto-
cols.

Categories and Subject D escriptors D.1. 1 [Programming Tech-
niques]: Applicative (Functional) Programming—Haskell; D.3.3
[Programming L anguages]: Language Constructs and F eatures—
Concurrent p rogramming structures

General Terms Languages

Keywords Session types, concurrency, Haskell, type classes,
phantom types, functional p rogramming, embedded type systems

1. Introduction

In typed languages with channel-based communication, such as
CML (Reppy 1991) and Concurrent Haskell (Peyton Jones et al.
1996), channels are often homogeneous—parameterized by a sin-
gle type—and provided with operations to send and receive values
of that type over such a channel:

writeChan : : Chan a −> a −> IO ()
readChan : : Chan a −> IO a

A natural extension is to parameterize a channel b y a protocol
regulating the sequence of values that can b e sent or received
over the channel. For example, a protocol Int ! Int ? Bool ! ε
indicates that the associated communication channel can be used
to send an integer, receive an integer, then send a Boolean before

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided t hat copies are not made or distributed
for profit or commercial advantage and that copies b ear this notice and the full citation
on the first p age. To copy otherwise, to republish, t o p ost on servers or to redistribute
to lists, requires p rior specific p ermission and/or a fee.
Haskell’08, September 25, 2008, Victoria, BC, Canada.
Copyright ?c 2008 ACM 978-1-60558-064-7/08/09. ..$5.00

25
finishing. One can use this channel to communicate with another
thread whose corresponding channel has the dual protocol Int ?
Int !Bool ? ε that can receive an integer, send an integer, and then

receive a Boolean before finishing.
Type systems to enforce that communication conforms to a

particular protocol are k nown as session-type systems. A session
type is the representation within a type system of the protocol
associated with a channel. Session types were first introduced for
the π calculus by H onda, Vasconcelos, Kubo, and others (Honda
et al. 1998; Gay and Hole 1999, 2005). R ecent work has focused on
adapting session types to more conventional concurrent languages.

A major barrier to implementing session types i n existing lan-
guages is aliasing. This is because session types are intrinsically
stateful. Suppose a function f expects two arguments, each a chan-
nel with session type Int ! ε—that is, r eady t o send an integer, then
finish—and suppose f sends an integer on each channel argument
that it i s given. We might assume a type system such that a chan-
nel c may be passed to f only when it can b e u sed in exactly that
way: to send an integer and t hen finish. To ensure that channels are
used correctly according t o their protocol, we must check wherever
we apply f that the two channel arguments are distinct. Otherwise,
calling f cc will perform two sends on channel c, violating its p ro-
tocol. A common way to deal with this aliasing problem is to use a
substructural type system.

Implementations o f session t ypes. Several calculi for modeling
session types in more conventional concurrent languages have b een
proposed. Vasconcelos, Gay, and Ravara (2006; 2007), for instance,
have developed calculi for direct-style functional concurrent lan-
guages with built-in session types. Others have developed session-
type calculi to regulate method invocation in an object-oriented set-
ting (Vallecillo et al. 2003; Dezani-Ciancaglini et al. 2005, 2006).

Armstrong (2002) describes UBF, a framework for manipulat-
ing XML data i n Erlang. UBF controls the exchange of XML data
over Erlang channels through dynamic checking of protocols r ather

than types.
DeLine and F ¨ahndrich’s (2001) Vault adds a form of session

type to C, though their focus i s more on resources than message-
passing concurrency. Sing# (Fa¨ hndrich et al. 2006), the implemen-
tation language for Microsoft’s experimental Singularity OS, adds
full-featured session types t o C#. Neither Vault nor Sing# is imple-
mented as a library, however: each extends the type system of the
base language.

Neubauer and Thiemann (2004) present a library implementa-
tion of session types in Haskell that provides session-type check-
ing for client code that communicates via a single implicit channel
with some server. Their main example is an SMTP client, where
the session type enforces that the protocol b e respected. T hey avoid
aliasing by automatically threading the implicit channel through the
computation. Neubauer and Thiemann model their implementation
with a simple, typed calculus for session-type–regulated commu-
nication, and give a type-preserving embedding into Haskell. T hey
use type classes with functional dependencies to model the progress
of the state of the channel, and observe that this feature appears
necessary.

Our c ontributions. The main message of this p aper is that it
is feasible to develop a usable and complete session-type system
on top of a real functional programming language. W e argue, in
particular, that Haskell’s type system is sufficiently powerful to
enable a r easonable encoding.

We describe a library, implemented in Haskell, that:

• works with existing Haskell concurrency mechanisms;

• handles multiple communication channels typed independently;

• handles a form of recursive session types; and

• infers session types automatically.

We argue correctness of our implementation in the single-channel
case using a core calculus. Aliasing is avoided b y threading session
type information linearly through the system, by use of an indexed
monad. We do not thread the channel itself, but rather a capability
to use the channel. This permits the channel to b e manipulated
like any other value, thereby rendering channel aliasing h armless.
Capabilities, unlike channels, are an artifact of the type system, and
have no run-time existence. The implementation strategy is b ased
on recent work on capability calculi for session types (Pucella and
Heller 2008).

Our implementation highlights what seem to be b asic prerequi-
sites for a reasonable implementation of session types:

• a means to express the duality of session types (we use type
classes); and

• a m eans t o express linear threading of values with changing
types (we use an indexed monad).

We show that duality is expressible i n many languages, such as
Standard ML or Java 1.5. Similarly, indexed monads can b e im-
plemented in any higher-order language having some notion of pa-
rameterized t ype, again such as SML or Java. T hus, type classes
and functional dependencies are convenient but not necessary for
an implementation of session types.

Road m ap. In §2 we introduce an encoding of session types as
Haskell types.I nIn§ §23w, ewei n sthroodwu ch eo wan teo necnofdoirncge othfe ssees ssieossniot nyp etysp eass
Hina Hskaeslklet lylp, eisn.itI ianl l§y3 ,li wmeites dho two hp oawirst oofe p rocesses sceo msesmsuionnict aytpinegs
over a single channel, and in §4, we expand this treatment to
ohvaendrlea m siunlgtilpelec hcahnannenle,las nadt oi nnc§e 4. I,nw §e5, wxpea dndisc tuhsiss ut sraebatimliteyn tant do
hhoanwd oeum r uilmtipplleemc ehnatnatnieolns atteco hnncieq.uIe ns may beed iascpuplsisca ubsaleb iilnit yoa thnedr
languages. We model our implementation with a core calculus and
present several theorems in §6. Finally, we discuss future work and
pcornescelnutdes e vine §ra7l.

2. Session Types in Haskell

The central idea of session types (Gay and Hole 1999) is to p aram-
eterize a channel with some type that represents a p rotocol, which
the type system t hen enforces. In Haskell, we may encode a p roto-
col using ordinary datatypes:

data (: ! :) a r
data (:?:) a r
data Eps

These datatypes require no constructors because they will have no
run-time r epresentation.

If a is any type, and r is a p rotocol, then we interpret a : ! : r
as the protocol, “first send an a, and then continue with r.” Simi-
larly, we interpret a : ? : r as the protocol, “receive an a, and then
continue with r.” The type Eps r epresents the empty protocol of a
depleted channel that is not yet closed.

26
For example, the type Int : ! : Bool :? : Eps r epresents the

protocol, “send an Int, receive a Bool, and close the channel.” 1
If the process on one end of a channel speaks a particular

protocol, its correspondant at the other end of the channel must
be prepared to u nderstand it. For example, if one process speaks
Int : ! : Bool :? : Eps, the other process must implement the
dual protocol Int :? : Bool : ! : Eps. We encode the duality re-
lation u sing a type class with multiple p arameters and functional
dependencies (Peyton J ones et al. 1997; Jones 2000).

class D ual r s | r −> s, s −> r

The functional dependencies indicate that duality is bijective,

which helps Haskell to infer protocols and enables a form of sub-
typing. Sending and receiving are dual: if r is dual to s, then
a : ! : r is dual to a : ? : s. The empty session is dual to itself.

instance Dual r s => Dual (a : ! : r) (a :? : s)
instance Dual r s => Dual (a :? : r) (a : ! : s)
instance Dual Eps Eps

Our session types also represent alternation and recursion. If
r and s are p rotocols, then r :+ : s r epresents an active choice
between following r or s. The type r :& : s represents an offer to
follow either r or s, as chosen by the other process.

data (:+:) r s
data (:& :) r s

The two alternation operators are dual:

instance (Dual r1 s1, Dual r2 s2) =>
Dual (r1 :+ : r2) (s1 :& : s2)

instance (Dual r1 s1, Dual r2 s2) =>
Dual (r1 :& : r2) (s1 :+ : s2)

Recursion turns out to b e slightly more difficult. It is tempting t o
use a fixed-point combinator, but t his would require constructing a
type of kind ? → ? for any desired loop b ody, which is not generally
ptyopsseio bflek . nWde ? n→eed? fsoorma ne yo tdheesrir way foopr b ao rdyec,uw rshiivceh itsypn eo ttgo erneeferra ltoy
itself, so we represent this binding using de Bruijn indices.

data Rec r
data Var v

instance Dual r s => Dual (Rec r) (Rec s)
instance Dual (Var v) (Var v)

The type Rec r adds a binding for r inside r; that is, it implicitly

defines a variable bound to the whole of r that can b e used within
r. W e use Var v to r efer to the variable bound b y the vth Rec,
counting outward, where v is a Peano numeral written with type
constructors Z and S (e.g., Z or S (S Z)). For example, the protocol

Request : ! : Rec (Response : ? : (Var Z :& : Eps))

says to send a request and then b e prepared to receive one or more
responses. By contrast, a process implementing the protocol

Request : ! : Rec ((Response :? : Var Z) :& : Eps)

must send a request and b e prepared to accept any number of
responses.

3. Take 1: One Implicit Channel
Encoding protocols in Haskell is not enough. We cannot merely
provide channels parameterized b y session types and call it a day.
For example, consider a hypothetical send operation:

1 The type constructors (: ! :) and (:? :) are declared r ight associative and
with higher p recedence than (:+ :) and (:& :) .

send : : Channel (a : ! : r) −> a −> IO (Channel r)

While this send returns the correct channel for the rest of the ses-
sion, it fails to prevent reuse of the a : ! : r channel, which would
violate the p rotocol. One way to avoid this problem is to require
that channels (or at least their sessions) b e treated linearly. In this
section, we show how this is done for p rocesses having access to
only one channel, which is left implicit in the environment; in the
next section, we implement multiple concurrent channels.

We assume a substrate of synchronous channels in both typed
and untyped varieties:

writeTChan : : TChan a −> a −> IO ()
readTChan : : TChan a −> IO a

unsafeWri teUChan : : UChan −> a −> IO ()
unsafeReadUChan :: U Chan −> IO a

These channels have dynamic semantics similar to Concurrent
ML’s (Reppy 1991) synchronous channels. While TChans trans-
mit only a single type, U Chans are indiscriminating about what they
send and receive. In our implementation, they use unsafeCoerce#,
which can lead to undefined behavior if sent and received types dif-
fer. W e must somehow impose our own type discipline.

We define an abstract type Session s s ’ a, which r epresents
a computation that evolves a session from state s to state s ’ while
producing a value of type a. Session’s constructor is not exported
to client code, so that clients of the library cannot arbitrarily modify
the session state. Session is implemented as the composition of
the IO monad with a reader monad carrying a untyped channel.

newtype Session s s ’ a =
Session { unSession : : UChan −> IO a }

The phantom parameters s and s ’ must track more information
than j ust the current session. W e define a type constructor Cap
to h old not only the current session r, but another type e, which
represents a session type environment:

data Cap e r

The type Cap e r r epresents the capability to run the protocol
r. The session type environment e provides context for any free
variables Var v in r; that is, r must be closed in e. W e discuss e
in more detail when we explain recursion, and the other operations
merely thread it through.

We can now give send a type and definition that will work:

send : : a −> Session (Cap e (a : ! : r)) (Cap e r) ()
send x = Sess ion (λc −> unsafeWri teUChan c x)

Given an a, send evolves the session from a : ! : r to r. In its im-
plementation, unsafeWriteUChan indiscriminately transmits val-
ues of any type over an untyped channel. Thus, if we fail to ensure
that the r eceiving process expects a value of type a, things can go
very wrong. In §6, we argue that this cannot happen.

yPrw edroicntgab.lI ny, §r6e,cw ve ere aqrguuierest h tahte t hcaispc aabnilnitoyt htoa prepceeniv.e an a, which
it then p roduces:

recv : : Session (Cap e (a :? : r)) (Cap e r) a
recv = Session unsafeReadUChan

We use close to discard an exhausted capability, replacing it with
() . In this implementation, close is a run-time no-op.

close : : Sess ion (Cap e Eps) () ()
close = Sess ion (λ_ −> return ())

27
Composing c omputations. We also need a way to compose
Session computations. Composing a session from state s1 to s 2
with a session from state t1 to t2 should be permitted only if s2 = t1.
This is precisely the situation that indexed monads capture.

Indexed monads (Atkey 2006; Kiselyov 2006), also k nown as
parameterized monads, generalize monads to restrict composition
of computations. An indexed monad m ij a is parameterized by a
precondition iand p ostcondition j,as well as a r esult type a. Two
indexed-monad computations compose only if the p ostcondition of

the first matches the precondition of the second.

class IxMonad m where
(>>>=) : : m ij a −> (a −> m j k b) −> m ik b
(>>>) : : m ij a −> m j k b −> m ik b
m >>> k = m >>>= λ_ −> k

An indexed monad’s unit does not affect the condition:

ret : : a −> m iia

The IxMonad instance for Session is then straightforward. It
threads the implicit channel through and r uns the u nderlying com-
putations in the IO monad.

instance IxMonad Session where
ret a = Session (λ_ −> return a)
m >>>= k = Session (λc −> do a <− unSession m c

unSession (k a) c)

We use io to lift an arbitrary IO computation into Session:

io : : IO a −> Session s s a
io m = Session (λ_ −> m)

Because of io, this implementation is actually not linear but affine:
an IO action may r aise an exception and terminate the Session
computation. Provided that exceptions cannot b e caught within a
Session, this does notj eopardize safety in the sense t hat any mes-
sages received will still h ave the expected r epresentation. Some for-
mulations of session types guarantee that a session, once initiated,
will run to completion, but this seems unrealistic for real-world pro-
grams. Handling exceptions from within a session remains an open
problem.

Alternation. The session actions sel1, sel2, and offer imple-
ment alternation. Action sel1 selects the left side of an “inter-
nal choice”, thereby replacing a session r : + : s with the session
r; sel2 selects the right side. On the other side of the channel,
offer combines a Session computation for rwith a computation
for s into a computation that can handle r :& : s. Dynamically,
sel1 sends True over the channel, whereas sel2 sends False,
and offer dispatches on the boolean value r eceived.

sel1 : : Session (Cap e (r :+: s)) (Cap e r) ()
sel1 = Session (λc −> unsafeWriteUChan c True)

sel2 : : Session (Cap e (r :+ : s)) (Cap e s) ()
sel2 = Session (λc −> unsafeWriteUChan c False)

offer : : Session (Cap e r) u a −>
Session (Cap e s) u a −>
Session (Cap e (r :& : s)) u a

offer (Session m1) (Session m2)
= Session (λc −> do b <− unsafeReadUChan c

if b then m 1 c else m 2 c)

Recursion. Session actions enter, zero, and suc i mplement
recursion. Consider the r ecursive session type

Request : ! : Rec ((Response : ? : Var Z) :& : Eps)
from above. After sending a Request, we need some way to enter
the body of the R ec, and upon reaching Var Z, we need some way
to repeat the body of the Rec. We accomplish the former with
enter, which strips the Rec constructor from r and p ushes ronto
the stack e:

enter : : Session (Cap e (Rec r)) (Cap (r, e) r) ()
enter = Session (λ_ −> return ())

In e, we maintain a stack of session types for the body of each
enclosing Rec, r epresenting an environment that closes over r.
Upon encountering a variable occurence Var n, where n is a Peano
numeral, we restore the nth session type from the stack and r eturn
the stack to its former state, using n expressed with zero and suc:

zero : : Session (Cap (r, e) (Var Z))
(Cap (r, e) r) ()

zero = Session (λ_ −> return ())

suc : : Session (Cap (r,, e) (Var (S v)))
(Cap e (Var v)) ()

suc = Session (λ_ −> return ())

For example, if the current session is Var (S (S Z)), then the
operation

suc >>> suc >>> zero

pops two elements from the stack and replaces the current session
with the b ody of the third enclosing R ec.

It is worth remarking that this duplication of type and code
to pop the stack is not strictly necessary. If we explicitly write
suc >>> suc >>> zero, Haskell’s type checker can infer S (S Z) .

Icfa,n o dno tth hee o wthoerrk:h 2and,t het ypei sa lreadyk nown,t hena t ypec lass

class Pop s s ’ | s −> s ’ where pop : : Session s s ’ ()

instance Pop (Cap (r, e) (Var Z)) (Cap (r, e) r)
where pop = Session (λ_ −> return ())

instance Pop (Cap e (Var v)) (Cap e ’ r’ ’) =>
Pop (Cap (r, e) (Var (S v))) (Cap e ’ r’ ’)

where pop = Session (λ_ −> return ())

Putting i t all t ogether. Finally, we need a way to connect and run

sessions.
A Rendezvous is a synchronization object that connects the

types of two processes at compile time, and then enables their
connection by a channel at run time. The Rendezvous carries a
phantom parameter indicating the protocol to be spoken on the
shared implicit channel, and is represented by a h omogeneous,
typed channel on which the untyped channel for a particular session
will later b e exchanged. Creating a Rendezvous is as simple as
creating a new typed channel and wrapping it.

newtype Rendezvous r = Rendezvous (TChan UChan)

newRendezvous : : IO (Rendezvous r)
newRendezvous = newTChan >>= return . Rendezvous

To accept a connection request, we need a Rendezvous object,
and a Session computation whose starting session type matches
that of the R endezvous. The computation must deplete and close
its channel. At run time, accept creates a new untyped channel
on which the communication will take p lace and sends it over the

2Note thatt he definitiono ft hem ethodp opi s the same forb oth instances
of Pop, which suggests that it could be provided as a default method. This
would introduce a subtle bug, however, as it would enable defining new
instances of Pop with arbitrary effect.

28
Rendezvous channel. It then r uns the session computation on the
new channel.

accept : : Rendezvous r −>
Session (Cap () r) () a −> IO a

accept (Rendezvous c) (Session f) = do
nc <− newUChan
writeTChan c nc

f nc

To request a connection, the session type of the Session com-
putation must b e dual to that of the given R endezvous. A t run
time, request receives a new, untyped channel from accept over
the Rendezvous channel and then runs the computation using the
channel.

request : : Dual r r’ ’ => Rendezvous r −>

Session (Cap () r’ ’) () a −> IO a
request (Rendezvous c) (Session f)

= readTChan c >>= f

3.1 Implicit Channel Examples

In these examples, we use ixdo notation for indexed monads,
analogous to do notation for monads. T his syntax is implemented
by a preprocessor.

A p rint server. As an example, we implement a simple p rint
server. The client side of the p rint server protocol is:

1. Choose either to finish or to continue.

2. Send a string.

3. Go to step 1.

We first implement the server.

server = enter >>> loop w here

loop = offer c(iloxdsoe
s <− recv
io (putStrLn s)
zero
loop)

GHC’s type checker can infer that server’s session type is
Rec (Eps :& : (String :? : Var Z)).

The client reads user input, which it sends to the server for
printing. W hen the user tells the client to quit, it sends one more
string t o the server, tells the server to quit, and closes the channel.

client = enter >>> loop 0 where
loop count = ixdo

s <− io getLine
case s of

"q" −> ixdo
sel2
send (show count ++ " lines sent ")
zero ; sel1; close

_ −> ixdo
sel2; send s
zero ; loop (count + 1)

GHC infers the session type Rec (Eps :+ : (String : ! : Var Z))
for client, which is clearly dual t o the type inferred for server
above.

We run a session by creating a new Rendezvous, having the
server accept in a new thread, and having the client request in the
main thread.

runPrintSession = do
rv <− newRendezvous
forkIO (accept rv server)
request rv client

recv : : Channel t −> Session (Cap t e (a : ? : r) , x) (Cap t e r, x) a
close : : Channel t −> Session (Cap t e Eps , x) x ()
sel1 : : Channel t −> Session (Cap t e (r : + : s) , x) (Cap t e r, x) ()
sel2 : : Channel t −> Session (Cap t e (r : + : s) , x) (Cap t e s , x) ()
offer : : Channel t −> Session (Cap t e r, x) u a −> Session (Cap t e s , x) u a −> Session (Cap t e (r: & : s) , x) u a
enter : : Channel t −> Sess ion (Cap t e (Rec r) , x) (Cap t (r,, e) r, x) ()
zero : : Channel t −> Session (Cap t (r, e) (Var Z) , x) (Cap t (r, e) r, x) ()
suc : : Session (Cap t e (Var v) , x) (Cap t f s , x) () −> Session (Cap t (r, e) (Var (S v)) , x) (Cap t f s, x) ()

Figure 1. Types for multiple channel Session operations

An example o f s ubtyping. Our implementation provides a form
of protocol subtyping. Consider a reimplementation of Gay and
Hole’s (1999) arithmetic server, which provides two services, addi-
tion and negation:

server1 = offer
(ixdo a <− recv

b <− recv
send (a + b)
close)

(ixdo a <− recv
send (−a)
close)

The f ull protocol for server1 is inferred:

(Integer :? : Integer :? : Integer : ! : Eps) :& :
(Integer :? : Integer : ! : Eps)

A second server implements only the negation service:

server2 = offer
close
(ixdo a <− recv

send (−a)
close)

Its protocol is inferred as well:

Eps :& : (Integer :? : Integer : ! : Eps)

A p articular client may avail itself of only one of the offered
services:

client ’ x = ixdo sel2; send x; y <− recv; close; ret y

The client’s protocol is inferred as r :+ : (a : ! : b :?: Eps) ,

which unifies with the duals of both servers’ p rotocols. Without the
functional dependencies in Dual, however, attempting to connect
the client with server2 leads the type checker t o complain that
there is no instance of Dual for r and Eps; connecting client
with server1 also fails to type check. The functional dependency
nudges the type checker towards attempting to unify rwith the cor-
responding p art of either server’s type, which then succeeds. As a
result, the client may be composed with both servers in the same
program and never notices the difference.

4. Take n: Multiple Channels

Rather than limit ourselves to one implicit channel at a time, it
might be more flexible to work with several channels at once.
To extend Session to handle multiple channels, our first step is
to separate the channel itself from the capability to use i t for a
particular session:

newtype Channel t = Channel U Chan
data Cap t e r

The p arameter t is a unique tag that ties a given channel to the
capability to use it. A Channel t is an actual value at run time,

29
while the corresponding Cap t e r is relevant only during type-
checking. W e allow Channel t to be aliased freely because a
channel is unusable without its capability, and we treat capabilities
linearly. As before, the capability also contains a session type
environment e and a session type r that is closed in e.

We now index Session by a s tack of capabilities, while un-
derneath the hood, it is j ust the IO monad. Session is no longer
responsible for maintaining the run-time representation of chan-

nels, but instead it keeps track of the compile-time r epresentation
of capabilities.

newtype Session s s ’ a = Session { unSession : : IO a }

instance IxMonad Session w here
ret = Session . return
m >>>= k = Session (unSession m >>= unSession . k)

io : : IO a −> Session s s a
io = Session

A Session computation now carries a stack of capability types,
and communication operations manipulate only the top capability
on the stack, leaving the r est of the stack u nchanged. The send
operation t akes a channel as an argument rather t han obtaining it
implicitly, and the tag t on the channel must match the tag in the
capability.

send : : Channel t −> a −>

Session (Cap t e (a : ! : r) , x)
(Cap t e r, x) ()

send (Channel c) a = Session (unsafeWriteUChan c a)

In the type above, Cap t e (a : ! : r) is the capability on the top
of the stack before the send, and Cap t e r is the capability after
the send. Type variable x represents the rest of the capability stack,
which is unaffected b y this operation.

The implementations of the remaining operations are similarly
unsurprising. Each differs from the previous section only in obtain-
ing a channel explicitly from its argument rather than implicitly
from the indexed monad. Their types may be found in Figure 1.
Note that close now has the effect of popping the capability for
the closed channel from the top of the stack.

Stack m anipulation. Channel operations act on the top of the
capability stack. Because the capability for the particular channel
we wish to use may not be on the top of the stack, we may need to
use other capabilities than the top one. The digc ombinator suffices
to select any capability on the stack. Given a Session computation
that transforms a stack x to a stack x’ ’, dig lifts it to a computation
that transforms (r, x) to (r, x’ ’) for any r; thus, n applications
of dig will select the nth capability on the stack. N ote that dig has
no run-time effect, but merely unwraps and rewraps a Session to
change the phantom t ype parameters.

dig : : Session x x’ ’ a −> Session (r, x) (r, x’ ’) a
dig = Session . unSession

In combination with swap, we may generate any desired stack
permutation. Since swap exchanges the top two capabilities on
the stack, dig and swap may be combined to exchange any two
adjacent capabilities.

swap : : Session (r, (s , x)) (s , (r, x)) ()
swap = Session (return ())

One r eason we may want to rearrange the stack is to support
forkSession, which runs a Session computation in a new thread,
giving to it the entire visible stack. Thus, to partition the stack
between the current thread and a new thread, we use dig and
swap u ntil all the capabilities for the new thread are below all
the capabilities for the current thread. Then we call forkSession
under sufficiently many digs so that it takes only the desired
capabilities with it.

forkSession : : Session x () () −> Session x () ()
forkSession (Session c)

= Session (forkIO c >> return ())

For example, to k eep the top two capabilities on the stack for the

current thread and assign the rest to a new thread m , we would use
dig (dig (forkSession m)).

Making a c onnection. In the implicit channel case, each accept
or request starts a single Session computation that runs to com-
pletion. Because we now have multiple c hannels, we may need t o
use accept and request to start new communication sessions dur-
ing an ongoing Session computation. Given a Rendezvous and a
continuation of matching session type, accept creates a new chan-
nel/capability pair. It calls the continuation with the channel, push-
ing the corresponding capability on the top of its stack. The rank-2
type in accept ensures that the new Channel t and Cap t () r
cannot be u sed with any other capability or channel. In §5 we
dcianscnuosts bane auslteerdnaw tiet hfoa rnmyulo attihoenr ct haapta dboileisty yno otr r cehqaunirnee lh.i gInhe§ r-5raw nke
polymorphism, but this version here seems more elegant.

accept : : R endezvous r −>
(forall t . Channel t −>

Session (Cap t () r, x) y a) −>
Session x y a

accept (Rendezvous c) f = Session (do
nc <− newUChan
writeTChan c nc
unSession (f (Channel nc)))

The request function behaves similarly, but as before, it uses the
dual session type.

request : : Dual r r’ ’ =>
Rendezvous r −>
(forall t . Channel t −>

Session (Cap t () r’ ’ , x) y a) −>
Session x y a

request (Rendezvous c) f = Session (do
nc <− readTChan c
unSession (f (Channel nc)))

We may start a Session computation f rom within the IO monad.

The type of runSession ensures that the computation both begins
and ends with no capabilities in the stack.

runSession : : Session () () a −> IO a
runSession = unSession

Sending c apabilities. Now that we have multiple channels, we
might wonder whether we can send capabilities themselves over
a channel. Certainly, but since we do not allow direct access to
capabilities, this requires a specialized p air of functions.

send_ cap : : Channel t −>
Session (Cap t e (Cap t ’ e ’ r’ ’ : ! : r) ,

(Cap t ’ e ’ r’ ’ , x))

30
(Cap t e r, x) ()

send_ cap (Channel c)
= Session (unsafeWriteUChan c ())

recv_ cap : : Channel t −>
Session (Cap t e (Cap t ’ e ’ r’ ’ :? : r) , x)

(Cap t e r, (Cap t ’ e ’ r’ ’ , x)) ()
recv_ cap (Channel c) = Session (unsafeReadUChan c)

Observe that because capabilities h ave no run-time existence, the
actual value sent over the channel is () . This provides synchro-
nization so that the r eceiving process does not perform channel op-
erations with the capability b efore the sending process has finished
its p art. The phantom type parameters to Session change to reflect
the transmission of the capability.

4.1 An Example with Multiple Channels

As an example, we give an implementation of the Sutherland-
Hodgman (1974) r eentrant polygon clipping algorithm, which
takes a plane and a series of points r epresenting the vertices of
a polygon, and produces vertices for the polygon r estricted to one
side of the plane. Shivers and M ight (2006) present a stream trans-
ducer implementation, which we follow. Each transducer takes one
plane to clip by, and two Rendezvous objects for the same p roto-
col. It connects on b oth, and then receives original p oints on one
channel and sends clipped points on the other.

We assume that we have types Plane and Point, a p redicate
above that indicates whether a given point is on the visible side of
a given plane, and a partial function intersection that computes
where the line segment between two p oints intersects a plane.

GHC infers all the types in this example.

type SendList a = Rec (Eps :+: (a : !: Var Z))

clipper :: Plane −> Rendezvous (SendList Point)
−> Rendezvous (SendList Point)
−> Session x x ()

clipper p lane inrv outrv =
accept outrv $ λoc −>
request inrv $ λic −> ixdo
let shutdown = ixdo close ic ; sel1 oc; ; close oc

put p t = dig $ ixdo
sel2 oc; ; send oc p t ; zero oc

−− Attempt to get a p oint; p ass it to y es, or
−− call no if there are n o m ore:
get n o yes = offer ic no $ ixdo

pt <− recv ic ; zero ic ; yes p t
−− Ift he line crosses the p lane, send the intersection p oint:
putCross line =

maybe (ret ()) put (line ‘ intersect ‘ p lane)
putIfVisible p t =

if p t ‘ above ‘ p lane then put p t else ret ()
dig (enter oc)
enter ic
get shutdown $ λpt0 −>

let loop p t = ixdo
putIfVisible p t
get (putcross (pt , p t0) >>> shutdown)

(λpt ’ −> ixdo putcross (pt ,pt ’)
loop p t ’)

in loop pt0

We use sendlist to send a list of points to the first transducer

in the p ipeline, and we use recvlist to accumulate p oints pro-
duced b y the last transducer.

sendlist : : [a] −> Rendezvous (SendList a)
−> Session x x ()

sendlist xs rv = accept rv start w here
start oc = enter oc >>> loop xs where

loop [] = ixdo sel1 oc ; close oc
loop (x:xs) = ixdo sel2 oc; ; send oc x

zero oc; loop xs

recvlist : : Rendezvous (SendList a) −> Session x x [a]
recvlist rv = request rv start where

start ic = enter ic >>> loop [] where
loop acc = offer ic

(close ic >>> ret (reverse acc))
(recv ic >>>= λx −> zero ic >>> loop (x : acc))

Given a list of planes and a list of points, clipMany starts a
clipper for each plane in a separate thread. It starts sendlist a
new thread, giving it the list of p oints and connecting it to the first
clipper. It then runs recvlist in the main thread to gather up
the result.

clipMany : : [Plane] −> [Point] −> IO [Point]

clipMany p lanes p oints = runSession $ ixdo
rv <− io newRendezvous
forkSession (sendlist p oints rv)
let loop [] rv = recvlist rv

loop (p :ps) rv = ixdo
rv’ <− io n ewRendezvous
forkSession (clipper p rv rv’ ’)
loop p s rv’

loop p lanes rv

4.2 Beyond Stack A ccess for Capabilities

We are not yet satisfied. W e have multiple, independently typed
channels, but accessing their capabilities by stack position is a pain.
With a considerable amount of type class m achinery, we can re-
place position-based capability access with named-based access.
In particular, we equip channels with sufficient information so that
the type system can automatically search the capability environ-
ment for their capabilities. The details of how to do this are b eyond
the scope of this p aper, and we are still exploring designs with dif-
ferent trade-offs. Two approaches seem p romising.

One possibility is to add a key to each capability, changing the
capability stack into a h eterogeneous association list, `a la H List
(Kiselyov et al. 2004) and p arameterizing channels b y this key
as well. New keys are generated b y e ach accept and request.
Capability environment lookup, update, and delete operations are
written u sing type classes with functional dependencies, and the
effect of each operation is encoded in its type class context. For
example, recv and send in such a system may have the types:

recv : : (Modify t k s (a :? : r) r s ’) =>
Channel t k −> Session s s ’ a

send : : (Modify t k s (a :! : r) r s ’) =>
Channel t k −> a −> Session s s ’ ()

Unfortunately, this approach destroys session type inference.
A second strategy is to include all session information, in ad-

dition to a key, as type parameters to Channel. We k eep a second
copy of the type parameters in the capability environment. Session
operations take a channel, check that it matches the information in
the capability environment, and then update the environment and
return an updated channel:

recv : : (Update (Channel t n e (a :? : r)) s
(Channel t n e r) s ’) =>

Channel t n e (a :?: r) −>

Session s s ’ (a, Channel t n e r)

send : : (Update (Channel t n e (a : ! : r)) s
(Channel t n e r) s ’) =>

Channel t n e (a : ! : r) −> a −>

Session s s ’ (Channel t n e r)

3 1
In the above example, the channels maintain the session types, and
the capability environment ensures that channels are not u sed im-
properly. The type class U pdate checks that the given channel
type is current and modifies the capability environment to reflect
changes to the channel’s session type. Keeping session types di-
rectly available as parameters to channels restores type inference,
but encoding r ecursion remains problematic.

5. Discussion
5.1 Usability

Whenever an encoding-based library is proposed, the question of
usability arises. W hile the b est way to answer that question is with

a well-designed usability test suite and real non-expert users, we
can make an initial pass at assessing the strengths and weaknesses
of our approach.

The main strength of our approach is that the r esulting code is
very close to that of standard channel-based concurrent p rograms,
with little additional burden. The example in Appendix 4.1 illus-
trates this point, as we implement a polygon-clipping algorithm us-
ing our library in much the way that one might implement it using
message-passing concurrency without session types. The only dif-
ferences involve the use of accept and request to acquire the
ability to communicate over a channel, and the use of seli oper-
ations to control choices. The r est of the code is merely channel-
based c ommunication. That the computation occurs in a monad
would be necessary even without our library. T ype inference works
nicely in this example and many others. The code requires no type
annotations to type check, and we provide type signatures only for
clarity.

We do, however, suffer many of the problems inherent in the
use of phantom types and similar encoding techniques. In p ar-
ticular, type error messages can b e obscure and need to be un-
derstood in light of the encoding. Nonetheless, many of our er-
ror messages are quite comprehensible. For example, if the ex-
ample client in §3. 1 attempts to send an Int r ather t han a
Samtrpilnegc , GiHenCt iconm§ p3l.1aina st tehmatp ist t“oCo suelnddna a’n nt Im nattcr hat heexrpt ehcatnead
type ‘ Int ’ against inferred type ‘ String,’ ” r ather than
some obscure message about missing instances. If the client at-
tempts a recv when the server is r eceiving as well, that error mes-
sage is also informative: “Couldn ’ t m atch expected type ‘ a
:? : Var Z ’ against inferred type ‘ String : ! : r’. ”

Other usability problems arise from a balancing act h aving t o
do with naming. First, position-based access to capabilities using
dig and swap is more difficult to program than name-based access.

Likewise, de Bruijn indices for recursion are likely more difficult to
manage than named variables. Finally, the use ofbinary sums for al-
ternation may also be inferior to name-based alternation among an
arbitrary number of cases, especially when representing p rotocols
with multi-way alternation. We have experimented with encoding,
for instance, name-based capability access or named-variable re-
cursion using type classes with either functional dependencies or
associated types (Chakravarty et al. 2005). However, this tends to
yield worse type inference and more cryptic e rror messages. T here
is a trade-off, t herefore, between the weight of the encoding and the
feasibility of type inference and useful type errors.

5.2 Applicability to Other Languages

Our thesis is that session types may b e embedded in a general
purpose programming language without r esorting to exotic lan-
guage features and t echniques. Yet in the previous section, we took
advantage of several extensions to Haskell’s type system: multi-
parameter type classes, functional dependencies, empty datatype
declarations, and rank-2 polymorphism. In this section, we discuss
which features of our session types implementation are necessary
module type DUAL = sig

type client type server
val witness : (client , server) dual

end

module Eps : DUAL
with type client = eps

and type server = eps

module Send (T : sig type t end) (R : DUAL) : DUAL
with type client = (R. .client , T. t) send

and type server = (R. .server, T. t) recv

module Choose (R : D UAL) (S : D UAL) : DUAL
with type client = (R. .client , S. .client) choose

and type server = (R. .server, S. .server) offer

(a) OCaml modules

final class Dual<C , S> {
private D ual () { }

public static Dual<Eps , Eps> eps
= new Dual<Eps , Eps> () ;

public <A> Dual<Send<A , C> , Recv<A , S>>
send() {

return new Dual<Send<A , C> , Recv<A , S>> () ;
}

public <C2 , S2> Dual<Choose<C , C2> , Offer<S , S2>>
choose(Dual<C2 , S2> right) {

right .nullCheck() ;
return new Dual<Choose<C , C2> , Offer<S , S2>> () ;

}

(b) J ava 1.5 generics
Figure 2. Fragmentso fd uality proofs ystems

Figure 2. Fragments of duality proof systems

and which merely convenient, and we argue that a similar imple-
mentation is practical in other languages.

Session t ype duality. Representing duality is essential. In our im-

plementation, we use a type class to check that communicating p ro-
cesses speak dual p rotocols. The type class uses functional depen-
dencies to p ropagate information when a type is incompletely spec-
ified; as we saw in §3.1, this helps with p olymorphism. We could
iefniceodd;e as spr woetos caowl si nub§ t3y.p1in,tg h eixsp hleiclpitslyw —itthhi pso ilsy rm aothreprh cisomm.p Wliceatc eodu—ld
but with functional dependencies, it comes for free.

Nonetheless, type classes are not strictly necessary for this to
work. The Dual class and instances encode a small p roof system
for duality, and Haskell constructs duality proofs where needed. It
is possible, however, to encode p roofs explicitly, and constructing
proof objects can b e as simple as writing one side of the protocol in
stylized form. For example, using Java 1.5 generics (Gosling et al.
2005), we write

Dual<Send<String , Recv<Character , Eps>> ,
Recv<String , Send<Character , Eps>>> =

Dual . eps .<Char>recv() .<String>send() ;

for the same proof. Fragments of two such proof systems may b e
found in Figure 2.

We have written similar duality proof systems in Standard ML,
C#, and Scala. These formulations r ely on two essential features:

• Session types and duality theorems are represented by some
notion of p arameterized type.

• Either abstract types or private constructors prevent arbitrary
construction of proof objects.

Java almost fails on the latter count, since null i s a proof of every
theorem, but we consider dynamic null checks to be a fact of life
in Java. Each session-type factory method performs a null check
on its receiver, and some check their argument, to ensure that any
non-null Session object is a valid proof. One additional dynamic
check b efore connecting ensures that the session then proceeds
without incident.

Notably, it is also possible to embed an implicit duality proof
in the indexed monad. I n this formulation, we maintain a pair of
the current session and its dual at every step. In our Standard ML
proof-of-concept implementation of this scheme, a complete ses-
sion computation has the type (γ * δ , unit , α) session, where
γ is the computation’s own protocol, δ is the dual protocol, and α is
the type of value computed b y it. Rendezvous objects are parame-
terized by the protocol as seen from the client side, so when starting

32
a session, request ensures that γ matches the r endezvous object,
while accept checks δ:

val request : γ rendezvous −>
(γ * δ , unit , α) session −> α

val accept : δ rendezvous −>
(γ * δ , unit , α) session −> α

Indexed monads. Barring a linear or affine type system in the
host language—Clean’s uniqueness types (Barendsen and Smetsers
1996) may be sufficient—some other means to prevent aliasing of
capabilities is required. The indexed monad Session accomplishes
this in our Haskell i mplementation of session types.

Indexed monads offer a principled way to embed a variety of
substructural type disciplines, and they are r easonably expressed
in the same variety of languages that can express duality proofs.
Since the type of the bind operation is higher order, however, Java’s
lack of lambda incurs a h eavy syntactic burden. As types get larger,
explicit t ype annotations b ecome increasingly b urdensome as well.

Multiple c oncurrent s essions. The solution employed in §4, a
heterogeneous stack of capabilitieTs,h seho suolldut iwonorek minp any odf tnhe§ l4a,n a-

guages m entioned in the discussion above. All of these languages’
type systems are capable of expressing the r equisite p olymorphic
push and pop operations.

In Haskell, however, we can go a step further (§4.2), by storing
capaInbH iliatisekse illn, hao wheetveeror,g ewneeoc uans greoc aosr dt.e pAf cucrtehsseirn(g§ 4c.2ap),ab biylits itoesr nbyg
name rather than stack position is a convenient improvement, but
we do not know how to do this without the c ompile-time computa-
tion that type classes provide.

Separate channels and c apabilities. In the Haskell implementa-
tion with multiple c hannels, we separate channel values from the
capability types that restrict their u se. This has the nice property
that the capability stack and attendant stack manipulations need
have no runtime reality. In a language that supports neither exis-
tential nor r ank-2 quantification, nor some other way of generating
unique tags, it is possible to combine each channel-capability p air
into a single value managed b y the indexed monad.

6. Formalization

The implementation of session types in §3 and §4 is in t erms of
uTnhesai fme, pulnetmypeendta tcihoanno nfels se. sYieot,n w tyep celsa iimn t 3haa tn odu§r 4ui ses ionf tt ehrem tsyo pef
system prevents threads from r eceiving values of unexpected type.

Wopeerfa otrimonaslwi zeitht h aisc oi rnetuc itailocnulf uisrsλ tFb kFy.m W oeda edlidngs est hsieonu nt ysapfeesc t ohaλ nnFkeFl
type variables α, β , γ

variables x ,y,z

program types π ::= τ1 k τ2

programs p ::= e1 kk e2

types τ ::= 1 | α | τ1 → τ2 | ∀ α.τ | χ k τk
tetyrpmess eτ ::::== ι1 || α x α| |λτ x:→τ.e | e1 e2 |τ Λ| α χ.e | e[τ]

type constructors χ ::= M 1|
data constructors ι ::= hi00 | unit11 | bind22 | recv10 | send11

values v ::= λx:τ.e | Λ α.e
| (ιnm)[τ]k (where k≤ m)

evalpuroatgioranm cor netseuxlttssw E : :::==|([u]ιnmn| i)t[E [ττ1]e m]v v| 1kv k Eu n|i t[E τ2[]τ]v 2 (where k≤ n)
utharteiaodn contexts TE ::= [] | bEine d [τ]2 ET v

type contexts ∆ ::= α1 , . . . , αn
value contexts Γ ::= x 1 :τ1 , . . . ,xn :τn

Figure 3. Syntax of λFkF

by means of a library, capturing the essence of our implementation
in §3. W e then prove t hat the library enforces the properties we
idnes §ir3e. f Wore eot uhre snep ssrioovne-tyt hpaet st yhsetel mib.r Wa rye e foncfours oens t thhee s ipnrogplee-rcthieasnn weel
case for simplicity, but this approach should generalize to multiple
channels.

A λFkF programis apairoftwothreads thatreduceconcurrently
and may communicate via an implicit channel. Each thread is
a term in a variant of System F (Girard 1971, 1972; Reynolds
1974) extended with type constructors and several data constructor
constants. The syntax of λFkF appears in F igure 3.

Each data constructor ιmn is equipped with two arities, which are
used in the definition of normal forms. Subscript m is the n umber
of type applications admitted by the constructor, and superscript

nasbrainiit tsuydrt2a 2 h2t[eτ,e1da]n [l.luτ F2mo o]fb vrb e1e inrvxdo 2af2m2a,rp ae blpis epny,ldnics 22taia[nτtcic1otie]cn,bs b vaiin nuluddne2222tis[lτh.1t Fah]os[eτrt 2r y]lee,psgub eiblitnia ilrndiig22tt[yyτ,v 1w 2 a]l[euτa e2g n]edi v sn1ev f ,ruaa alunlllldyye

elide arities in examples and discussion.
The type constructor M1 with data constructors unit and bind

form a monad, which is used to sequence c ommunication between
the two threads. As the language is call-by-value, t his sequenc-
ing may seem redundant, but its purpose will b ecome apparent
when we tackle type soundness. N ormal forms for programs, de-
noted by the syntactic metavariable w, are p airs of injected values
unit[τ1] v1 k unit[τ2] v2.

We writek FuTniVt[τ(τ) for the free type variables of τ, defined in the
standard way. We write N {M/X} for the capture-avoiding substi-
tsutatinodna rodf w Ma fyo.r W W Xe i wn rN it.e WN {e Mu s/eX Xth}e f noort tahteio cna Mp tuk ae-sa svhooidrtihnagnds u fbosrt a-
repetition of indexed syntactic objects, M 1 M2 · · · Mk. We consider
both terms and types t o b e equivalent up to alp·ha·· c Monversion.

We give the static semantics for λFkF in Figure 4 . The type sys-
tem is largely conventional. The r ules for typing variables, abstrac-
tions, applications, type abstractions, and type applications are as
in System F. E ach data constructor is given an ordinary type that
agrees with its arity. The program typing judgment T -PROG re-
quires that each thread ei in a program e1 k e2 have a type M τi,
in which case the whole program is then gkive en the type τ1 k τ2.
Note that no rule connects the types between the threads ink any
way—this is important.

An evaluation context semantics may be found in Figure 5.
The reduction relation for threads (−→) is conventional, but the

33

TYPES: ∆ ‘ τ

∆‘ τ (FTV(τ)⊆ ∆)

CONSTANTS: T ypeOf(ι) = τ

TypeOf(hi) = 1 TypeOf(unit) = ∀ α.α → M α

TypeOf(bind) = ∀α.∀α0. M α → (α → M α0) → M α0

TypeOf(send) = ∀ α.α → M 1 TypeOf(recv) = ∀α. M α

TERMS: ∆;Γ ‘ e : τ

∆;Γ‘ ι : T ypeOf(ι) ∆;Γ,x:τ‘ x : τ

∆ ‘ τ∆1;Γ∆ ‘ ‘λ τx2:τ1∆.e;: Γ τ,1x→:τ1τ ‘2e : τ 2(x∈ / d omΓ)

∆;Γ‘ e1∆:;τ Γ0→ ‘e τ 1e2∆:;τ Γ‘ e 2:τ 0 ∆;Γ∆,‘ αΛ ;Γα‘ .ee :∀ : ατ .τ(α∈ / ∆)

∆ ‘ τ ∆;Γ ‘ e : ∀ α.τ0

∆;Γ‘ e [τ]: τ 0{τ/α}

PROGRAMS: ‘ p : π

(T-PROG)
‘ e1 : M τ1 ‘ e2 : M τ2
‘ e1ke 2:τ 1kτ 2

Figure 4. Type system for λFkF

reduction relation for programs (=⇒) is slightly more interesting.
rTehdeu cfitirsotn rt weola riuonlef so rarp er ostgrruacmtusr a(l=: ⇒R)-iT sHs RliEghAtDly a mlloowres nthtreeraedstsin gto.
step according to (−→), and R-FLIP means that r eductions that
satpepplya ctoc oar pdainirg ot of t(h −re→ad)s, aa lnsod aR p-pFly to their transposition. Rule R-

ID implements M ’s left identity. Because the t ype system fails to
enforce any interthread p roperties, we require that r ule R-SEND,
which implements communication between the threads, perform
a runtime check. Only when send and recv agree on the type
parameter τ is communication allowed t o proceed.

This last b ug/feature models the untyped channel primitives
unsafeUChanSend and unsafeUChanRecv that we assume in our
Haskell implementation. The dynamic behavior in Haskell differs
slightly from that in our model. In Haskell, if communication co-
erces an Int to type Int −> Int, we are unlikely to notice imme-
diately, but subsequent behavior is badly undefined. For the sake
of expedience, we choose in λFkF to get stuck as soon as possible

rathIters h thoaunlpd rb oece iendcri enaa snini gnlcyonc lseiasrtea nttst htaiste.p ointt hatλ FkFexhibits
only a limited form of type soundness. It enjoys subject reduction
because of the dynamic check in R-SEND, but the progress lemma
is impeded b y the presence of communicationf aults.

Definition 6.1 (Stuck Programs). A program configuration p is
stuck if it is not a result w and there is no p 0 such that p =⇒ p0.

Definition 6.2 (Communication Faults). A program configuration
p is s tuck i n c ommunication if it is stuck in one of the f ollowing
four situations.

1. B oth threads are attempting to send a message, a s in

T1 [send [τ1] v1] k T2 [send [τ2] v2].

THREAD REDUCTIONS: e −→ e

(λx:τ.e)v − →e {v/x} (Λα.e)[τ]− →e {τ/α}

e −→ e0

E[e]− →E [e0]

PROGRAM REDUCTIONS: p =⇒ p

(R-THREAD) (R-FLIP)
e1 −→ e10 e2 k e1 =⇒ e20 k e10

e1ke 2=⇒e 10ke 2 e1ke 2=⇒e 10ke 20

(R-ID)

T1[bind[τ]2(unit[τ3]v 1)v 2]k e= ⇒T 1[v2v1]k e
(R-SEND)

T1[recv[τ]]k T 2[send[τ]v]= ⇒ T1[unit[τ]v]k T 2[unit[1]h i]

Figure 5. Operational semantics for λFkF

2. B oth threads are a ttempting to receive a message, as in

T1 [recv[τ1]] k T2[recv[τ2]]

3. One thread is attempting to communicate but the other is f in-
ished reducing, as in

T1 [recv[τ1]] k unit[τ2] v2,

T1 [send [τ1] v1] k unit[τ2] v2,

or their transpositions over k.
4. oThr eth tehirret ardasn are ready tvoe rcok m.municate but their types d o not

agree, as in

T1 [recv[τ1]] k T2 [send [τ2] v2]

or its transposition, where τ1 = τ2.

We have a soundness p roof (Wright and Felleisen 1994) of the

following theorem:

Theorem 6.3 (Soundness for λFkF). If‘ p : π, then either:
• p d iverges,
• p =⇒∗ w where ‘ w : π, or
• p eventually beereco‘ mw es: sπt,u cokr in communication.

6.1 The Session Types Library for λFkF
We now define a library for λFkF that adds session types and, we

sacenlavdiem rsea,vl aen rp earwlog nt reyewpsesc lo c eonmsntmsatnrauts.cI ti toni rsts e, raa ml bissbto rrafarcλ ytlFyi kn,F i tntheert es mremsn.ssW eo t efhan λ toFwi ktFd r eeqtfyuinpireeess
that programs access the old p rimitives unit, bind, send, and recv
only through the library. We describe the library informally for a
few paragraphs b efore making things precise.

Library i nterface. The library’s signature gives the new type con-
structors with their arities and the new constants with their t ypes:

χ‘ ::= S 3 | ·? ·| ·! ·| ·⊕ ·| ·& ·| ε 0
unit‘ : ∀β.∀α.Sβ β α
bind‘ : ∀ β .∀β0.∀β00.∀α.∀α.

Sβ β0 α → (α → Sβ0 β00 α0) → S β β00 α0

recv‘ : ∀ β.∀α.S(α ? β) β α
send‘ : ∀β.∀α.α → S(α !β) β 1

34

sel1‘ : ∀ β1.∀β2.S(β1 ⊕ β2) β1 1
sel2‘ : ∀ β1.∀β2.S(β1 ⊕ β2) β2 1

offer‘ : ∀ β1.∀β2.∀β0.∀α.
Sβ1 β0 α → Sβ2 β0 α → S (β1 &β 2) β0 α

These types correspond to the types given in Haskell in §3.
eTsehet ylpibersarc yo arlessop oandddt so oat hnee wty ptyespge ivj uedngi mneH nat sfkoerl ldiu na§l i3ty., which

corresponds to the Haskell type class Dual:

(D-EPS) (D-SEND) (D-RECV)
τ2 ./ τ20 τ2 ./ τ20

ε. /ε τ1!τ 2./τ 1?τ 02 τ1?τ 2./τ 1!τ 02

(D-CHOOSE) (D-OFFER)
τ1 ./ τ10 τ2 ./ τ20 τ1 ./ τ10 τ2 ./ τ20

τ1⊕τ 2./τ 10&τ 20 τ1&τ 2./τ 10⊕τ 20

It r edefines the program typing rule R-PROG using the new duality
relation to ensure that the threads’ session types are dual:

(T‘-PROG)

‘ e1 : Sτ1 ε τ10 ‘ e2 : Sτ2 ε τ20 τ1 ./ τ2
‘‘e1ke 2:τ 10k τ20

Note that while the premises enforce that τ1 and τ2 be dual, these
types are not mentioned in the conclusion. T his makes the subject
reduction lemma easier to state and p rove.

Library implementation. The new types and constants are de-
fined in terms of λFkF:

S β β0 α,M α α ? β,1 α!β ,1

ε,1 β ⊕β 0 ,1 β & β0 ,1

unit‘ ,Λβ. unit bind‘ ,Λβ.Λβ0.Λβ00. bind

send‘ ,Λβ.send recv‘ ,Λβ. recv

sel1‘ ,Λβ1.Λβ2.send[∀γ.γ→ γ→ γ](Λγ.λt:γ.λf :γ.t)

sel2‘ ,Λβ1.Λβ2.send[∀γ.γ→ γ→ γ](Λγ.λt:γ.λf :γ.f)

offer‘ ,Λβ1 .Λβ2.Λβ0.Λα.λx1 :M α.λx2: M α.

bind[∀γ.γ → γ → γ] [α]

(recv[∀γ.γ → γ → γ])

(λz:(∀γ.γ → γ → γ).z[M α] x 1 x2)

The library’s dynamics derive directly from the above definitions.

6.2 A Semantics for the Library

We are now ready to state the principal claim of this section:

Claim. Ifa λFkFprogram is written using the new library, with no
mention of the p rimitives unit, bind, recv, nor send, andf urther-
more, iftheprogram has a type according to the new rule T‘-PROG,
then the program either converges to a program result or diverges.
In p articular, well-typed programs written with the library do not
have communicationf aults.

We formalize this intuition with a new calculus λ‘FkF, by which

wλeFkFg i.vT eha es c ehmaangnetiscst ot oλ t ‘FhekFl ifbrroamryλ d FikrFecatlryer s autmhemrat hriaznedi ni tn erF migsuro ef
6. The type constructors (χ) are the same as for the library. The
data constructors (ι) are the same as the constants defined in the
library, and they are given the same types that they have in the
library. Program results (w) and thread contexts (T) are adjusted
for the new data constructors.

The type judgment for terms is as for λFkF, and we use the
new r ule T‘-PROG for typing programs. Similarly, the small-step

NEW SYNTAX:

type constructors χ ::= S 3 | · ? ·| ·! ·| ·⊕ · | · & · | ε 0
value constructors ι ::= hi00 | unit‘12 | bind‘52 | recv‘20 | send‘12 | sel1‘02 | sel2‘20 | o ffer‘42

program results w ::= u nit‘[τ1][τ10] v1 k u nit‘[τ2][τ20] v2

thread contexts T ::= [] | bind‘[τ]5 T v

NEW DYNAMICS:

Evolve([],τ0) = [] Evolve(bind‘[τ][τ]4T v,τ0) = b ind‘[τ0][τ]4 (Evolve(T,τ0)) v

(R‘-THREAD) (R‘-FLIP) (R‘-ID)
e1 −→ e10 e2 k e1=⇒‘ e20 k e10

e1k e2=⇒‘e10ke 2 e1k e2=⇒‘e10ke 20 T1[bind‘[τ]5(unit‘[τ0]2v1)v 2] ke 2=⇒‘T1[v2v1]k e 2

(R‘-SEND)
Evolve(T1 , τ1) = T10 Evolve(T2, τ2) = T20

T1[recv‘[τ1][τ]]k T 2[send‘[τ2][τ]v]= ⇒‘T10[unit‘[τ1][τ]v]k T 20[unit‘[τ2][1]h i]

(TR1‘[o-SfEfeLri‘)[τE]4vvo1lvev2(T]k1 ,T τi2)[s =eliT ‘10[τ0]2]= E⇒vo‘lvTe10([vTi2],k τi0T)20= [unT 2i0t‘[τi0][1]h i](i∈ { 1,2})
Figure 6. Summary of changes for λ‘FkF

relationf ort hreads (−→) ist he samea s forλ FkF,b utt he small-step
rreellaattiioonn ffoorr programs →(=⇒)i)s ntheeeds sam m reevi assif oonr. Tλhe structural r ules R‘-
rTeHlaRtiEoAnDf o oarn pdr Rog‘r-aFmLsIP (=ar⇒e)unncehedansg reevdi, saiondn . R T‘h-IeDs risu mctuerreally r uulpesdaR ted
to reflect the type parameters taken b y library operations u nit‘ and
bind‘. The remaining r ules are somewhat strange, because we need
to adjust the type parameters in thread contexts. To see why t his is
necessary, consider the configuration

T1 [recv‘[ε][1]] k T2[send‘[ε][1]hi].
The terms in the holes have types:

‘ r ecv‘[ε][1] :S(1 ? ε) ε 1

‘ s end‘[ε][1] hi :S(1 ! ε) ε 1

The configuration takes a step to

T10[unit‘[ε][1] hi] k T20[unit‘[ε][1] hi],
and now the t erms in the holes have d ifferent types t han before:

‘ u nit‘[ε][1] hi : S ε ε 1

‘ u nit‘[ε][1] hi : S ε ε 1

The thread contexts T1 and T2 therefore need to b e adjusted to
accomodate the new types. I n a precise sense, this is because S
is an indexed monad. We use a function Evolve to update the first

ttayhnpedeL li teyb patpra reLrasmyJt o·edKetef λ rbineF oikft Fai eonf causconhno cffb tiigλ ionun‘Fdrka‘t Fhtiintaoytn ptt shea,eskt eet a hsrnrmdλ eas‘c Fd,oka Fnc noscdtnaotnt enyxftspit.gse F.usroab rtyie oxe naxsmp,apt enlerdm,insg,
Lqrecv‘[ε][1] k s end‘[ε][1] hiy

= (Λβ. reycv) [1] [1] k (Λβ .send) [1] [1] hi.

Wcome mpialyert fhrionmkoλ ‘fFkL FtJo·Kλ a sFki Fn.liningt hel ibrary’sd efinitions,o r asa

35

λ‘FkWF:e have aW right-Felleisen–style type soundness p roof for
Lemma 6.4 (Soundness ofλ ‘FkF). If‘ ‘ p :π then either p diverges
or p =⇒∗‘ w where ‘‘ w : π.

We also p roved an agreement lemma between λ‘FkF and λFkF:
Lemma 6.5 (Agreement).

•LComJπpKil iantiλ oFnk pFr.eservest ypes:I f‘ ‘p:πi nλ ‘FkF,t hen‘ LJpK:
•CLsoomJmπepK wi iln0astλ iuocnhp t hreasterL veJspc Ko =n⇒ve∗rgwe0n.ce:I fp =⇒‘∗,wt ,het hne n‘Lt heJrpeKi :s

•LCoJmppKil daitsvioeucrnhgp ets hre iansterλL vFeJkspFK.d i =ve⇒rgence:I fp d ivergesi nλ ‘FkF,t hen
TLogJeptKhed ri,v ethrgesees yinieλ ld a soundness theorem about the λFkF ses-

sionL LtyJppeKs dliibvrearrgye.

Theorem 6.6 (Library Soundness). I f ‘‘ p : π in λ‘FkF, then in
λTFhekFo either LJpK diverges or LJpK I= f⇒‘ ∗ w where ‘ w : LJπK.

7. Ceitohnerc lLusJpioKnd ivaenrgde sFou rtLu rJep KW= o⇒rkw

We have demonstrated t hat session types may be embedded in
a variety of p olymorphic p rogramming languages, not merely as
primitives in dedicated core calculi. With r easonable r equirements
on the h ost language, we provide3 all the principal features of
session types in a usable library. Yet much remains to b e done in
making session types practical for real-world use.

Several language features present problems or opportunities
when combined with session types. How to combine session types
with exceptions is an open question, for example. Raising excep-
tions is not a problem if we allow capabilities to be affine r ather
than linear, but it is unclear how exceptions may be caught and

3LiterateH askelli sa vailable ont hew eba th ttp://www.ccs.neu.edu/
~tov/session-types/.
communication resumed safely. One potential solution—and p er-
haps a p rofitable opportunity in its own right—could b e to com-
bine session types with software transactional memory (Harris et al.
2005). It might also be fruitful to integrate session types with CML-
style events.

It would b e interesting to investigate how some of our imple-
mentation techniques may b e applied toward other embedded type
systems. Indexed monads, in particular, seem especially p romising.

They are able to encode a variety of substructural type systems,
including linear, affine, relevance, and ordered logics, and they al-
low `a la carte selection of structural rules for particular t ypes and
operations. Indexed monads may also b e useful in the embedding
of effect systems, as in Kiselyov’s (2007) Haskell implementation
of Asai and Kameyama’s (2007) polymorphic delimited continua-
tions.

With the increasing prevalence of concurrent and distributed
systems, more and b etter technology is needed to specify and check
the behavior of communicating p rocesses. Session types have the
potential to play an important part in this story, and we believe this
paper represents a step toward their wider availability.

Acknowledgments
We wish to thank Ryan Culpepper, Elizabeth Magner, Stevie
Strickland, and Sam Tobin-Hochstadt for their helpful comments,
and Alec Heller in p articular for his sharp eye and perpetual en-
couragement.

References
J. Armstrong. Getting Erlang to talk to the outside world. In P roc. 2002

ACM SIGPLAN workshop on Erlang, pages 64–72. ACM Press, 2002.

K. Asai and Y. Kameyama. Polymorphic delimited continuations. In
Programming L anguages and Systems, volume 4807 of Lecture N otes
in Computer Science, p ages 239–254. Springer-Verlag, 2007.

R. Atkey. Parameterized notions of computation. In P roc. Workshop on
Mathematically Structured Functional Programming (MSFP’06). BCS,
2006.

E. Barendsen and S. Smetsers. Uniqueness typing for functional languages
with graph rewriting semantics. M athematical Structures in Computer
Science, 6(6):579–612, 1996.

M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow.
Associated types with class. In Proc. 3 2ndA nnual ACM Symposium on

Principles of Programming L anguages (POPL’05), p ages 1–1 3. ACM
Press, 2005.

R. DeLine and M. F a¨ hndrich. Enforcing high-level protocols in low-level
software. In Proc. 2001 ACM SIGPLAN Conference on Programming
Language Design and I mplementation (PLDI’01). ACM Press, 2001.

M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou. A
distributed object-oriented language with session types. In
Proc. Symposium on Trustworthy Global Computing, volume 3706 of
Lecture N otes in Computer Science. Springer-Verlag, 2005.

M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou.
Session types for object-oriented languages. In Proc. European
Conference on Object-Oriented Programming (ECOOP ’06).
Springer-Verlag, 2006.

M. F ¨ahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J . R. Larus,
and S. Levi. Language support for fast and reliable message-based
communication in Singularity OS. In Proc. 1stA CM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys ’2006), p ages
177–190. ACM Press, 2006.

S. J . Gay and M. J. Hole. Subtyping for session types in the pi calculus.
Acta I nformatica, 42(2/3):191–225, 2005.

S. J . Gay and M. J . Hole. T ypes and subtypes for client-server interactions.
In P roc. 8th European S ymposium on Programming (ESOP’99),
volume 1576 of Lecture N otes in Computer Science, p ages 74–90.
Springer-Verlag, 1999.

36
S. J . Gay and V . T. V asconcelos. Asynchronous functional session types.

Technical Report 2007–25 1, Department of Computing, University of
Glasgow, May 2007.

J.-Y. Girard. Une extension de l’interpre ´tation de G o¨del `a l’analyse, et son
application `a l’´e limination des coupures dans l’analyse et la th´e orie des
types. In J. E. Fenstad, editor, P roc. Second Scandinavian L ogic
Symposium, pages 63–92. North-Holland, 197 1.

J.-Y. Girard. I nterpre ´tationf onctionelle et ´ elimination des coupures de
l’arithme ´tique d’ordre s up e´rieur. PhD thesis, Universite ´ Paris VI, 1972.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The J avaTM Language
Specification. Addison Wesley, 3rd edition, 2005.

T. Harris, S. Marlow, S. Peyton J ones, and M. Herlihy. Composable
memory transactions. In P roc. ACM SIGPLAN Symposium on on
Principles and Practice of Parallel Programming (PPoPP’05). ACM
Press, 2005.

K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based p rogramming. In
Proc. European Symposium on Programming Languages and Systems,
volume 138 1 of Lecture N otes in Computer Science, p ages 122–138.
Springer-Verlag, 1998.

M. P . J ones. Type classes with functional dependencies. In Programming
Languages and Systems, volume 1782 of Lecture N otes in Computer
Science, pages 230–244. Springer-Verlag, 2000.

O. Kiselyov. Simple variable-state ‘monad’ . Mailing list message,
December 2006. URL http : //www .haskell .org/pipermail/
haskell/2006-December/018917 .html.

O. Kiselyov. Genuine shift/reset in Haskell98. Mailing list message,
December 2007. URL http : //www .haskell .org/pipermail/
haskell/2007-December/020034 .html.

O. Kiselyov, R. Lammel, and K. Schupke. Strongly typed h eterogeneous
collections. In P roc. ACM SIGPLAN Workshop on Haskell
(Haskell’04), p ages 96–107. ACM Press, 2004.

M. Neubauer and P. T hiemann. An implementation of session types. In
Proc. 7th I nternational S ymposium on P ractical Aspects of Declarative
Languages (PADL’04), volume 3057 of Lecture N otes in Computer
Science, pages 56–70, 2004.

S. Peyton Jones, A. Gordon, and S. F inne. Concurrent Haskell. In
Proc. 23rd A nnual ACM Symposium on Principles of Programming
Languages (POPL’96), pages 295–308. ACM Press, 1996.

S. Peyton Jones, M. P. Jones, and E. Meijer. Type classes: An exploration
of the design space, 1997.

R. Pucella and A. Heller. Capability-based calculi for session types.
Unpublished manuscript, 2008.

J. H. Reppy. CML: A higher concurrent language. In Proc. 1991 ACM
SIGPLAN Conference on P rogramming Language D esign and
Implementation (PLDI’91), volume 26, pages 293–305. ACM Press,
1991.

J. C. Reynolds. Towards a theory of type structure. In P roc. Colloque sur
la P rogrammation, volume 19 of Lecture N otes in Computer Science,
pages 408–425. Springer-Verlag, 1974.

O. Shivers and M. Might. Continuations and transducer composition. In
Proc. 2006 ACM SIGPLAN Conference on Programming Language
Design and I mplementation (PLDI’06), pages 295–307. ACM Press,
2006.

I. E . Sutherland and G. W. Hodgman. Reentrant polygon clipping.
Communications of the A CM, 17(1):32–42, January 1974.

A. Vallecillo, V. T. Vasconcelos, and A . Ravara. Typing the behavior of
objects and components using session types. In P roc. International
Workshop on Foundations of Coordination Languages and Software
Architectures, volume 68(3) of Electronic N otes in Theoretical
Computer Science. Elsevier Science Publishers, 2003.

V. T. Vasconcelos, S. J . Gay, and A. Ravara. T ypechecking a multithreaded
functional language with session types. Theoretical Computer Science,
368(1–2):64–87, 2006.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

