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Abstract. The Haskell String type is notoriously inefficient. We intro-
duce a new data type, ByteString, based on lazy lists of byte arrays, com-
bining the speed benefits of strict arrays with lazy evaluation. Equational
transformations based on term rewriting are used to deforest interme-
diate ByteStrings automatically. We describe novel fusion combinators
with improved expressiveness and performance over previous functio-
nal array fusion strategies. A library for ByteStrings is implemented,
providing a purely functional interface, which approaches the speed of
low-level mutable arrays in C.
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1 Introduction

Haskell can be beautiful. Here we have a small Haskell program to compute the
hash of the alphabetic characters in a file:

return · f oldl? hash 5381 · map toLower · f ilter isAlpha =< < readFile f
uwrnhe· ref o hladlshh ha c = h1 ∗ m33a + oLrdow c

and an equivalent naive C implementation:

int c ;
long h = 5381 ;
FILE *fp = fopen (f , "r" ) ;
while ( (c = fgetc (fp) ) != EOF)

if (isalpha(c) )



h = h * 33 + tolower (c) ;
fclose (fp) ;
return h;

Although elegant, the naive Haskell program is many times slower than the
naive C version! Sadly it is all too common an experience that idiomatic Haskell
programs dealing with strings and I/O can have poor performance.

With some care, it is possible to produce a reasonable Haskell implementation
a few times slower than the C version, but at the expense of simplicity and ele-
gance. This is unsatisfying, as the benefits of higher abstraction are abandoned.
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Ideally, we would have our cake and eat it too. That is, we would like to program
in a high-level declarative style and also produce fast code that is competitive
with C:

import Data.ByteString.Lazy. Char8 as B
return · B.foldl? hash 5381 · B.map toLower · B.filter isAlpha =< < B.readFile f

uwrnhe· reB h.faosldh h c = 5h3 ∗ 3 ·3 + oardp c

By replacing the string type w ith our ByteString representation, Haskell is
able to approach the speed of C, while still retaining the elegance of the idioma-
tic implementation. With stream f usion enabled, it actually beats the original
C program (Figure 1). Only by sacrificing clarity and explicitly manipulating
mutable blocks is the C program able t o outperform Haskell.

ByteBySttreiSHngtars Bin(nklgeooN ll (cffk auu[-CIssiviiOhooeann  CCr))] 0 1 2 3 4 5 6 7 8
Fig. 1. Relative running times (seconds)



The main contribution of this paper is to introduce a new system for fusion,
based on streams, offering greater expressiveness and generality than has been
possible with previous work on functional array fusion [3,4] . Secondly, w e de-
scribe a full scale, successful implementation of stream fusion for byte arrays,
providing a fast ByteString type for Haskell. The implementation utilises exis-
tential types [10] , the Haskell foreign function interface [2] and compiler rewrite
rules [11] , while presenting the user with a familiar, purely functional interface.
The fusion techniques presented are not restricted to arrays or to Haskell, and
should be generally applicable to sequence-like data structures, including lists.

The use of fusible array combinators dramatically improves both the time
and space performance of I/O and string-based Haskell programs. Indeed, we
are finally able to realise the performance promise of declarative programming
in Haskell. The ByteString library is shipped with the latest Haskell implemen-
tations. The performance results therefore have practical impact, as the library
is already used in performance-critical applications [1] .

The remainder of the paper is organised as follows: in Section 2 we describe
briefly the ByteString data types, both strict and lazy versions. Section 3 gives an
overview of related fusion systems before presenting fusion based on streams and
its application to ByteStrings. Section 4 explains the concrete implementation
of the ByteString types. Section 5 presents benchmarks and finally in Section 6
we suggest further w ork before concluding.
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2 Representing Strings

When the designers of Haskell chose a representation for strings they chose
simplicity and elegance over performance:

type String = C[har]

The representation is certainly convenient. A wide range of polymorphic list
functions are available, and the recursive structure of the list type makes it
easy to write inductively defined functions. The use of a concrete, rather than
abstract, data type, allows for a very expressive programming style using pattern
matching.

The representation is also undeniably inefficient; for both processing and in-
put/output. A linked list of boxed characters gives poor data density and often



poor locality of reference. With the heap representation used by the Glasgow
Haskell Compiler (GHC) [14] on a 32 bit machine the [Char] type uses 12 bytes
per character1 . This means only 5 characters fit into a 64 byte cache line.

The obvious solution to the performance problems is to use arrays of unboxed
bytes. The first step is to implement an abstract type, ByteString, internally
represented by unboxed byte arrays, along with a suite of operations over this
type similar to those available for the standard String type. Full details of the
representation are deferred to Section 4.1.

The lazy [Char] representation means that it is not necessary to keep the whole
string resident in memory if it can be generated and consumed incrementally.
Haskell supports this programming style by providing “lazy I/O” : functions that
transparently interleave processing of data with I/O, enabling programs to run
in constant space.

A ByteString representation based on unboxed byte arrays, however, forces the
entire string to be resident at all times –  lazy I/O is impossible. When working
with files larger than available memory, a strict ByteString representation can
be simply unusable. Forcing users to explicitly manage data in blocks, as C
programmers typically must do, would be a great shame in a language built on
lazy evaluation. The solution to restore laziness is to define a lazy list structure
containing strict elements:

import qualified Data.ByteString as Strict
newtype ByteString = LBS [Strict.ByteString]

This representation provides the best of both worlds, enabling both the perfor-
mance benefits of strict ByteStrings and lazy processing of streams. The repre-
sentation is described in more detail in Section 4.2.

3 Fusion

The program presented in the introduction is essentially a pipeline of simple
computations. This is a typical example of high-level Haskell code: the ability to

1 Char boxes are preallocated by GHC as an optimisation, reducing the space from
20 to 12 bytes per character.
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formulate complex algorithms as compositions of primitive combinators is one of
the main strengths of the functional paradigm. However, extensive optimisation



is required to compile programs written in this style to efficient code. In parti-
cular, a naive implementation would create a large number of intermediate data
structures, resulting in suboptimal performance with respect to both space and
time.

Eliminating intermediate results is particularly important in array-based pro-
grams. Consider, for instance, the computation sum (enumFromTo 0 n) . With
lists, Haskell’s non-strictness ensures that enumFromTo produces one element
at a time w hich is then immediately consumed by sum. Thus, although an in-
termediate list is created the computation can still run in constant space. In
the case of arrays, however, the entire intermediate array must be allocated and
filled before sum can be applied to it. In addition to requiring O(n) space, this
efivlaleldua bteiofonr strategy ins ableso a pilpl-lsiuedit etdo tito. m Inoda derdnit hioanrdt woa rreeq, ueisrpinecgi aOll(yn w)s itpha respect
to cache behaviour.

If we want to generate efficient code for such computations we have to ensure
that the intermediate data structure is eliminated automatically. In the context
of inductive data structures, in particular lists, this problem is known as defo-
restation [15] and has been studied extensively [9] . Array fusion, on the other
hand, has received comparatively little attention. In the following, w e discuss a
number of approaches to fusion for both arrays and lists, before describing the
system used in the ByteString library.

3.1 Fusion Strategies

The Glasgow Haskell Compiler makes implementing fusion particularly easy due
to its support for programmer-defined rewrite rules [11] w hich are applied by
the compiler during optimisation. This allows us to specify custom equational
transformations as part of the library without changing the compiler, in a manner
similar to the list fusion system currently used by GHC. This flexibility has let
us experiment with a number of fusion systems in the ByteString library. We
review the most important ones below.

foldr/build. The most popular approach to list deforestation, and indeed
the one used by GHC, is f oldr/ build fusion [7,6,5,8,13] . It requires basic list
operations to be written in terms of two combinators:

foldr :: (a → b → b) → b → [a] → b

fboulidldr :: (∀b. (a → bb → b) → b [a → b) → [a]

Here, f oldr is the list catamorphism, and build is an abstract list constructor.
The fusion rule:



?foldr/build fusion? ∀ g k z . f oldr k z (build g) → g k z

eliminates intermediate lists by passing the elements constructed by g directly
to the consumer k. Though only a limited range of functions are fusible, this
system works well and, despite initial appearances, is even applicable to non-
inductive sequences such as arrays [7] . However array fusion based on f oldr/build
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is currently not efficient enough to be practical. Fused array code requires a
particular form of higher-order function that cannot be compiled to efficient code
by current versions of GHC. For the same reason, GHC cannot produce efficient
code for a fused f oldl under this approach, greatly limiting the application of
foldr/build to arrays, where many key functions make use of f oldl traversals (for
example, sum).

destroy/unfoldr. Just as with f oldr/build fusion, destroy/unfoldr fusion [12]
defines two combinators, one for production and one for consumption:

destroy :: (∀b. (b → Maybe (a, b)) → b → c) → [a] → c

unfoldr :: ( b∀ → Maybe (a, b)) → b) → [a]

The production of lists is captured by the list anamorphism unfoldr. It pro-
duces a list from the seed b and a stepper function which, given the current seed,
either generates the next element and the new seed, or returns Nothing ending
the list. List consumption is encapsulated by destroy. As before, intermediate
lists are eliminated by a fusion rule which ensures that produced elements are
immediately passed on to the consumer:

?destroy/unfoldr fusion? ∀ g f e . destroy g (unfoldr f e) → g f e

A major advantage of destroy/unfoldr is its support for f oldl and zip-like
algorithms, which cannot be implemented easily in the f oldr/ build framework.

One aspect that feels somewhat suboptimal is that defining functions that
both produce and consume lists (such as map) is not totally straightforward
and the full fusion transformation for them requires many steps, including an
additional destroy/destroy rule.

Functional Array Fusion. Chakravarty and Keller [3,4] introduce a fusion
system designed specifically for array code. It is based on a single combinator
which captures left-to-right array traversals:



loop :: (s → a → (s, Maybe a)) → s → Array a → (Array a, s)

The semantics of a traversal is given by a stepper function which, given a state
and an array element, produces a new state and, optionally, a new element. The
main fusion rule combines adjacent loops by suitably composing the stepper
functions:

?loop/loop fusion? ∀ f g s t .
loop f s · fst · loop g tf → loop (fuse f g) (s, t)

While this system has been shown to work well for standard array algorithms
such as map, f ilter and scan, it does not readily support more complex compu-
tations, in particular those which process arrays from right to left or consume
multiple arrays. In particular, zips can only be fused in this framework if the
array type is polymorphic in the type of the elements which ByteString is not.
Furthermore, array transformers that produce more elements than they consume
cannot be implemented at all; this rules out a fusible concatMap.
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3.2 Stream Fusion

Of the three fusion systems, our contribution is most closely related to the
destroy/unfoldr system and indeed inherits many of its benefits.

Both f oldr/ build and destroy/unfoldr reflect the inductive structure of lists,
effectively requiring fusible algorithms to process elements from head to tail. An
array fusion framework, however, should support other access patterns if we are
to effectively make use of O(1) array indexing. Thus, we would like to decouple
tthoe e foferdcteivr eilny wmhaikceh array Oel(e1m)ea nrtrsa are reexaidn or whurist,tew ne wf roomul dthl iek ecto omd peuctoautpiolne
performed for each element. In general, we are interested in a range of single-
pass algorithms which access each element exactly once. Such algorithms can be
split into three phases:

– read the array producing a stream of elements,
– process the elements transforming the stream, and
– write the resulting stream into a new array.

With such a separation, access patterns can be fully captured by the read and
write phases, without affecting the processing phase. Furthermore, in a pipeline
composed of such computations, adjacent write/read phases can be eliminated
provided they access elements in the same order.



Obviously, a crucial question is how streams of elements are represented. Since
they will always be used sequentially, lists seem to be an obvious choice. However,
this would leave us with the problem of eliminating intermediate lists in addition
to fusing the write/read phases. We can do better than that by encapsulating a
list anamorphism:

data Step s =Done
| Yield Word8 s
| Skip s

data Stream = S∃ksi.p pSst ream (s → Step s) s Int

Here, a Stream is defined by an existentially wrapped seed and a stepper function
which, in each step, can indicate one of three possible results: no more elements
will be produced (Done) ; a new element is produced together with a new seed
(Yield) ; or a new seed is returned without producing an element (Skip) . The last
alternative, while not strictly necessary, leads to more efficient code. Streams
also store a hint on the number of elements. This helps to reduce the number
of costly array reallocations in the write phase. For the ByteString library we
restrict ourselves to streams of Word8. The above definition, however, can be
easily made polymorphic in the type of elements. For efficiency reasons, we make
extensive use of strictness annotations, omitted here for clarity.

We can now easily convert an array to a stream by reading the elements from
left to right (we defer the discussion of other access patterns to Section 3.6) :

readUp :: ByteString → Stream
readUp s = BSytrteeaSmtr nnegx t→ →0 n

where
n = length s
next i| i < n = Yield (index s i) (i + 1)

| oit< herwn ise = Done
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The implementation of writeU Up :: Stream → ByteString, which constructs an
array mfrpolmem a stream, i os fomw rititteeUdp pfo: r: space reasons tbeuStt riisn negq,uaw lhlyic hstrc aoingshttfrourcwtsara dn.

Crucially, converting a stream to an array and then back is j ust the identity
operation on streams. Hence, the two conversions can be eliminated, avoiding
the creation of the intermediate array. This insight is captured by the following
rewrite rule, which is central to our fusion framework:

?readUp/writeUp fusion? readUp · write Up → id



3.3 Stream Transformers

The reading and writing phases of array algorithms are captured by readUp
and writeU Up, respectively, but how do we implement the processing phase? In
general, an array transformer of type ByteString → ByteString will have the form
gwerniteerU Up a·n ha ·r aryeatdrUanps fworhmereer ho fits a set rBeaymteS Sttrrainngsfo →rmB ery toeSf type Sw trielalh ma → Shetr efaomrm.
Fworirt instance, we can pimw phleermeeh nit s map as mfot lrloawnssf:o

map :: ( Word8 → Word8) → ByteString → ByteString
map f = worridte8U Up · moardpS8) f · readUp

The actual computation is performed by mapS, which applies f to each element
of a stream:

mapS :: (Word8 → Word8) → Stream → Stream
mapS f (Stream 8n→e xt s n) = →StrS eatrmea mnex→ t? s n

where
next? s = case next s of

Done → Done
Yield x s? → YDioenlde (f x) s?
Skip s? → Skip ds(?

With these definitions we can already fuse simple map pipelines:

map f · map g
= mwraipteUf Up · mapS f · readUp · {inline map ×2}

wwrriitteeUU Up · mmaappSS g · readUp
= wwrriitteeUU Up · mapS f · mapS g · readUp {readUp/writeU Up fusion}

Here, eliminating the readUp · writeU Up has brought the two stream transformers
tHoegreet,he elirm. Oinnaet nmgig thhet expect th ·a wtr a separate rreowurgihtet rhuele t wiso rs etqrueairmedt faonr tfhorem tewros
applications of mapS to be fused, however, as the definition of mapS is non-
recursive, the standard optimisations performed by GHC are sufficient2 .

Indeed, it is precisely the desire to avoid recursion in stream transformers
which has led us to allow stepper functions to return a new seed without pro-
ducing a new element. Consider the following definition of filter:

filter :: (Word8 → Bool) → ByteString → ByteString
filter p = worridte8U Up · filterS p · readUp

and the corresponding stream transformer:

2 This is quite similar to destroy/unfoldr fusion where the compiler is expected to
automatically eliminate temporary Maybe values.
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filterS :: (Word8 → Bool) → Stream → Stream
filterS p (Stream 8n→ extB s n) = S Sttrreeaamm n →ex tS?t s n

where
next? s = case next s of

Done → Done
Yield x s? | p x → YDioenlde x s?

| optxh erwise → Skip dsx?
Skip s? → Skip ss?

Note how next? yields Skip s? for each deleted element. The alternative —  re-

cursively skipping to the next element satisfying the predicate — would prevent
pipelines involving f ilter from being optimised satisfactorily.

3.4 Folding

Pure consumers, such as folds, are similarly easy to implement in the stream
fusion framework. These algorithms only have a reading and a processing phase,
so, for instance, f oldl? is implemented as:

foldl? :: (a → Word8 → a) → a → ByteString → a
foldl? f z = →f o lWdlSor?d f z · readUp

where foldlS? folds a stream from left to right:
foldlS? :: (a → Word8 → a) → a → Stream → a
foldlS? f z (Stream nrdex8t s n) = loop z s

where
loop z s = case next s of

Done → z
Yield x s? → loop (f z x) s?
Skip s? →→ loop z fsz?

Some fold-like algorithms can produce a result without necessarily traversing
the entire array. A prime example is f ind which searches for the first element
satisfying a given predicate. We would like such computations to terminate as
soon as possible while still being fusible. With f oldr/build fusion this can only be
done by employing laziness while with streams (and destroy/unfoldr) it can be
done directly and efficiently. As before, we split the algorithm into two phases:

find :: ( Word8 → Bool) → ByteString → Maybe Word8
find p = f indS p · readUp



In contrast to the algorithms presented so far, f indS does not consume the entire
stream. Instead, it returns as soon as it encounters an element which satisfies
the predicate:

findS :: ( Word8 → Bool) → Stream → Maybe Word8
findS p (Stream 8n→ extB s n) = loop s

where
loop s = case next s of

Done → Nothing
Yield x s? | p x → JNuostth x

| optxh erwise → loop sx?
Skip s? → loop ss?
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3.5 Fusing Pipelines

We are now in the position to demonstrate how the program presented in Sec-
tion 1is transformed by GHC using our fusion framework. For simplicity, let us
just consider the inner pipeline, omitting I/O-related functions:

foldl? f z · map g · f ilter h
= foldlS?f f z · readUp · werri hteU Up · mapS g {inline foldl?, map

· readUp · wwrriitteeUU Up · filterS gh · readU Up nanlidne filter}
= foldlS? f z · mapS g · filterS ph · readUp {readUp/writeU Up fusion}

Note how the original code, which used three loops and two intermediate arrays,
has been automatically t ransformed into a single array traversal. Moreover, GHC
is able to further optimise the code by inlining and combining the stream trans-
formers and, thus, eliminating intermediate Step values. Overall, stream fusion
improves the performance of this example by a factor of around 2.4.

3.6 Down Loops

Unlike lists, arrays provide O(1) indexing, making left-to-right and right-to-left
tUrnalviekresa llisst esq, uaarrllayy sef pfircoivenidt.e SO e(v1er)ai ln dimepxionrgt,an mta fkuinncgtl ieonfts-t, om-roigsth tpra onmdir neignhttly-t o fo-lldefrt
and its strict version foldr?, are best implemented as down loops. Fortunately, we
can easily extend our framework with functions for reading and writing arrays
from right to left:

readDn :: ByteString → Stream
wrearidteDDnn :: SBtyrteeaSmtr → ByteString



Adding a fusion rule for these is straightforward:

?readDn/writeDn fusion? readDn · writeDn → id

We are thus able to fuse both up and down loops equally well.

3.7 Bidirectional Loops

Combinations of up and down loops are more problematic. It is clear that it is
not generally possible to directly combine up and down traversals into a single
traversal. However, there are several important special case functions for which
it would be valid to do so. Consider:

foldr? f z · map g
= foldrS?f f z · raeapd gDn · writeU Up · mapS g · readUp {inline f oldr? and map}

and we can fuse no further. However, map is able to generate the same result
traversing either up or down, so a valid optimisation would be instead to map
the stream in reverse, enabling fusion:

foldrS? f z · readDn · writeDn · mapS g · readDn
= foldrS? f z · mapS g · rweraidteDDnn {readDn/writeDn fusion}

We need a way to specially tag functions whose semantics allow them to be
safely applied to either up or down streams. There is a difficulty though, as
any change in stream direction, to fuse one readDn/writeU Up pair, will require

Rewriting Haskell Strings 59

flipping other readUps into readDns. To deal with this we define wrappers over
functions categorised by their direction and result type. We define:

producerDn :: Stream → ByteString
consumerDn :: (Stream → a) → (ByteString → a)
transformerDn :: (Stream → aS)tr e→am( B) → S(tBryitnegS t→rina g) → ByteString)

producerDn f = writeDn f
consumerDn f = f · readDn
transformerDn f = fwr ·iter eDandD D· f · readDn

and matching Up versions. From these definitions, and the existing read/write
fusion rules, we can derive:

?consumerDn/producerDn fusion? ∀ f g .
coonnssuummeerrDDnn f (producerDn g) →sio f g



?consumerDn/transformerDn fusion? ∀ f g .
coonnssuummeerrDDnn f · transformerDn g → cno?ns∀ uf m egr.D n (f · g)

?transformerDn/producerDn fusion? ∀ f g .
transformerDn f (producerDn g) → p roducerDn (f g)

?transformerDn/transformerDn fusion? ∀ f g .
transformerDn f · transformerDn g → transformerDn (f · g)

The rules for up loops follow the same pattern. We can now tag our traversal-
independent functions as bidirectional, with special loop primitives:

producerBi :: Stream → ByteString
consumerBi :: (Stream → a) → (ByteString → a)
transformerBi :: (Stream →→ Stream) y→te (ByteString → ByteString)

Their implementation are that of the Up or Down versions; here we will use the
Up definition. Their use however must satisfy these side conditions:

∀ f .producerBi f = reverse · producerBi f
∀∀ f . cporondsuucmeerrBBiif f = rcoevnesrusmee· rBp rio f · reverse
∀∀ f . transformerBi f = reverse · transformerBi f · reverse

Traversals that do satisfy these conditions include:

replicate x n = producerBi (replicateS x n)
sum = consumerBi (foldlS? (+) 0)
map f = transformerBi (mapS f )

Using the side conditions we can derive the fusion rules for bidirectional loops.
For the derivations we will make use of a reverse lemma: that readUp · reverse
=o r tehaedDd ner iavandti orneasdw Den w ·i lrem vearksee u=s r oeafda Ur pev. eTrsheerl ee marme many d reeraivdeUdp f·u s rioevne rrsue-

le=s; raesa daDn nexa anmdpr leea, d tDo nfu· ser eav ef orlsder?= =wr iteah map Tweh wreo aulrde hmaavne:y

consumerDn f · transformerBi g
= ccoonnssuummeerrDDnn f · reverse ·

transformerBi g e· reverse {bidirection side condition}
= f · readtrDanns · reverse · {definition nosf cdoen csounmdeirtDionn and

dwDritne Up · g · readUp · reverse ddeeffiinniittiioonn ooff transformerBi}
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= f · readUp · writeU Up · g · readDn {reverse lemma ×2}
= f · g · rUepad D·nw { Up/ Up fusion}
= cfo ·nsg um· er eraDdnD (f · g) {definition soiof consumerDn}



giving us the rule:

?consumerDn/transformerBi fusion? ∀ f g .
coonnssuummeerrDDnn f · transformerBi g → nco?n∀ suf m ger. Dn (f · g)

and allowing us to fuse our example:

foldr? f z · map g
= consumfez rD· nm (afopl dgrS? f z) · transformerBi (mapS g) {inline f oldr? and map }
= consumerDn (foldrS? f z · mapS g) {fusion}

Being able to fuse bidirectional functions, such as map, f ilter and length, with
such simplicity, is a great advantage: there is no penalty for using either up
or down loops. The programmer can switch between f oldl? and f oldr? as their
program requires. In contrast, f oldr/build, and other fusion systems designed for
inductive structures, have much greater difficulty with direction changes.

4 Implementation

4.1 ByteString

We implement a complete list-like interface to the ByteString type. To support
an inductive view of strings we need a representation that supports head and
tail efficiently. The simplest representation would be to use an array of unboxed
bytes. However, such a structure cannot directly support head or tail without
copying. The addition of offset and length fields is required. A zero-copy substring
can then be constructed by simply modifying the length and offset fields.

For pragmatic reasons, instead of using Haskell’s native unboxed arrays, we
use a ForeignPtr to a contiguous block of bytes. The advantage is that this allows
memory for the string to be allocated either on the Haskell GC-managed heap,
or outside of Haskell (with a finaliser function to control deallocation) . We can
thus share ByteStrings with libraries written in foreign languages, such as C,
without copying. For example, it is possible to memory-map a file directly to a
ByteString, and to attach a finaliser to unmap the file when the garbage collector
determines it is no longer in use. The concrete representation of ByteStrings is
thus merely the pointer, offset and length:

data ByteString = BS !(ForeignPtr Word8) !Int !Int

GHC is able to optimise this representation by unboxing the ForeignPtr and
the two integers into the ByteString constructor. There is therefore only a single
indirection to access the string data.



4.2 Lazy ByteString

Lazy ByteStrings are represented as a list of strict ByteString chunks. There is
some redundancy in this representation as zero-sized chunks might appear in the
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list, yet have no semantic value. To avoid this redundancy, empty list elements
are disallowed, simplifying the logic required to manipulate lazy ByteStrings.

Profiling was used to find an optimal chunk size: too small, and performance
approaches that of a [Char] structure, too large (larger than the L2 cache) and
performance also falls away. In practice, a chunk size that allows the working set
to fit comfortably in the L2 cache has been found to be best.

There are some additional advantages to the chunked representation: some
operations requiring copying in the strict ByteString case only need manipulation
of the spine of the lazy ByteString structure. For example, append runs in O(n/c)
otifm the (f sporin ceh oufnt kh esl izaez ycB) , versus Ogs (tnr)u fcotru rteh.eF ostrr eicxta version, pwenitdh rsuinmsili anrO Ore(nsu/lcts)
ftiomr concat, cons sainzed snoc. Fsuosr Oth(ense) gains, we iwctilliv nerglsyio pay a hsms imalli aovrer rehseualtds:
the extra indirection from the list spine and the extra cases to consider when
processing the more-complex representation.

5 Results

Comparing Haskell Lists and ByteStrings. Figure 2 compares standard
[ Char] library functions to their equivalent lazy ByteString implementations,
applied to a 5M input string. Care is taken to explicitly force the evaluation of
lazy lists, ensuring the cost of their construction is measured. As expected the
lazy ByteString type is dramatically faster than [Char] . Memory usage of the
fused ByteString is also 95% less than that of the [Char] version.

Comparative Fusion Strategies. In order to quantify the effect of stream
fusion, we implemented the complete functional array fusion described by Chak-
ravarty and Keller [3,4] . The original formulation, based on the loop combinator,
only fuses functions that make “up” traversals of arrays. We extended this sys-
tem to also support fusion of down and bidirectional array traversals. In Figure 3
we compare the running time of a range of fusible strict ByteStrings expressions,



implemented either via streams or loop. Each column represents a fusible expres-
sion, and we test all array traversal combinations. Results are averaged over 10
runs, with the cache dirtied between runs. The stream-based implementation of
ByteStrings runs on average 41% f aster than the loop-based implementation,
and up to 88% f aster in the best case. W e believe this is because the loop sys-
tem needs more glue code to construct the fused versions. It appears that this
glue code cannot always be fully eliminated and this may also interfere with
additional optimisations.

Effect of Fusion. Figure 4 measures the effect fusion has on strict ByteStrings,
by measuring running time with and without the stream fusion rule enabled.
When stream fusion occurs it greatly improves the running time of array code.
Over the micro benchmark suite the average speed increase due to fusion is 74%,
and 89% in the best case. The memory usage decreases by around 85% when
fusion is enabled, due to the deforestation of intermediate arrays.
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Fig. 2. [Char] and lazy ByteString : running time
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Fig. 3. Fusion strategies: loop versus stream fusion
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Fig. 4. Effect of fusion: streams with and without fusion
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Fig. 5. Comparative results for C, ByteString and [Char] Unix t ools

Rewriting Haskell Strings 63

Comparing with C. Performance was measured against a range of standard
Unix tools implemented in C in Figure 5. W e measure both ByteString and
[ Char] implementations (one line Haskell programs) against their C equivalent.



Although the C programs use a wide variety of optimisations (such as seek) , the
ByteString implementations are certainly competitive.

6 Further Work

More remains t o be done, and this work has highlighted some promising direc-
tions for improving the performance of various aspects of Haskell.

Haskell lists. Adapting the polymorphic Haskell [a] type to use stream fusion,
as a potential solution to the limitations of f oldr/ build fusion, seems a fruitful
area to pursue.

Code generation. The object code GHC produces from stream combinators is
fast enough that several low level issues become significant. For example, im-
proving GHC’s ability to arrange code blocks to make best use of the branch-
prediction behaviour of modern CPUs is one area we w ish t o investigate.

Multiple traversals. A range of common functions traverse two or more streams
simultaneously: for example, append or zip. Developing efficient stream fusion
techniques for such functions is ongoing work.

7 Conclusion

By exploiting equational transformations via rewrite rules, it is possible to au-
tomatically fuse a wide range of array-based functions. This work goes beyond
previous functional array fusion techniques by enabling fusion of bidirectional
traversals and short-circuiting loops. Stream fusion is not limited to a single
concrete type, but provides a general fusion mechanism for arbitrary data types
expressible as streams. To demonstrate the application of stream fusion we have
implemented a high-performance string processing library for Haskell, providing
C-like speed, yet retaining idiomatic Haskell brevity and clarity. The source code
for the ByteString library, all examples and a list of applications are available
online [1] .
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