
Evolutionary Computation

Dirk Thierens

Universiteit Utrecht
The Netherlands

Dirk Thierens (D.Thierens@uu.nl) 1 / 40

Course organization

Part 1: lectures) Dirk Thierens + 2 guest lectures Peter Bosman
Part 2: seminar) papers & presentation (student groups)
Part 3: practical assignment) report (groups of 1 or 2 students)

I Specific discrete benchmark functions
I Graph Bipartitioning

Dirk Thierens (D.Thierens@uu.nl) 2 / 40

Course grading

1 Written exam = 40%
2 Paper presentation = 20%
3 Practical assignment report = 40%

Dirk Thierens (D.Thierens@uu.nl) 3 / 40

Evolutionary Computation: introduction

Evolutionary Computation

= Population-based, stochastic search algorithms

inspired by mechanisms of natural evolution

EC part of Computational Intelligence
Evolution viewed as search algorithm
Natural evolution only used as metaphor for designing
computational problem solving systems
No modelling of natural evolution (6= evolutionary biology)

Dirk Thierens (D.Thierens@uu.nl) 4 / 40

Evolutionary Computation: introduction

Evolutionary algorithm

1 P(0) Generate-Random-Population()

2 P(0) Evaluate-Population(P(0))
3

while Not-Terminated? do

1 Ps(t) Select-Mates(P(t))
2 Po(t) Generate-Offspring(Ps(t))
3 Po(t) Evaluate-Population(Po(t))
4 P(t+1) Select-Fittest(Po(t) [P(t))
5 t t + 1

4
return P(t)

Dirk Thierens (D.Thierens@uu.nl) 5 / 40

Evolutionary Computation: introduction

Key concepts of a Darwinian system

1 Information Structures
2 Copies
3 Variation
4 Inheritance
5 Competition

Dirk Thierens (D.Thierens@uu.nl) 6 / 40

Genetic Algorithm

Darwinian process characteristics) GA

1 Structures
) e.g. binary strings, real-valued vectors, programs, ...

2 Structures are copied
) selection algorithm

3 Copies partially vary from the original
)mutation & crossover operators

4 Structures are competing for a limited resource
) selecting fixed sized parent pool

5 Reproductive success depends on environment
) user defined fitness function

Dirk Thierens (D.Thierens@uu.nl) 7 / 40

Genetic Algorithm

Neo-Darwinism

organism
*

...AUUCGCCAAU...

Genetic Algorithm

f: <
*

...0101001111...

* user: string representation and function f

* GA: string manipulation
I

selection: copy better strings
I

variation: generate new strings

Dirk Thierens (D.Thierens@uu.nl) 8 / 40

Genetic Algorithm

selection: copy better strings
I tournament selection
I truncation selection
I proportionate selection

variation: generate new strings
1 crossover

2-point crossover:
⇢

1111111111
0000000000)

⇢
1111000011
0000111100

uniform crossover:
⇢

1111111111
0000000000)

⇢
1001110101
0110001010

2 mutation
{1111111111) {1111111011

Dirk Thierens (D.Thierens@uu.nl) 9 / 40

Genetic Algorithm

Toy example

x ✏ [0, 31] : f (x) = x2

binary integer representation: xi ✏ {0, 1}
x = x1 ⇤ 24 + x2 ⇤ 23 + x3 ⇤ 22 + x4 ⇤ 21 + x5 ⇤ 20

Initial Random Population:
10010 : 182 = 324
01100 : 122 = 144
01001 : 92 = 81
10100 : 202 = 400
01000 : 82 = 64
00111 : 72 = 49

population mean fitness f̄ (0) = 177

Dirk Thierens (D.Thierens@uu.nl) 10 / 40

Genetic Algorithm

Generation 1:
tournament selection, 1-point crossover, mutation

Parents Fitness Offspring Fitness
100!10 324 10100 400
101!00 400 10111 529
01!000 64 00010 4
10!010 324 10010 324
0110!0 144 11100 784
1010!0 400 10000 256

Parent population mean fitness f (1) = 383

Dirk Thierens (D.Thierens@uu.nl) 11 / 40

Genetic Algorithm

Generation 3:
Parents Fitness Offspring Fitness
1!1111 961 11110 900
1!1100 784 11011 729
110!00 576 11110 900
111!10 900 11101 841
1101!1 729 11111 961
1100!1 625 01001 81

Parent population mean fitness f (0) = 762

Dirk Thierens (D.Thierens@uu.nl) 12 / 40

Genetic Algorithm

Schema = similarity subset

eg. : 11##0 = {11000, 11010, 11100, 11110}

gen. 1#### 0#### ####1 ####0
0 2 4 2 4
1 5 1 1 5
2 6 0 2 4
3 6 0 3 3
4 6 0 3 3
5 5 1 4 2

Dirk Thierens (D.Thierens@uu.nl) 13 / 40

Genetic Algorithm

Schema

definitions:
I o(h): schema order o(11##0) = 3
I �(h): schema defining length �(11##0) = 4
I m(h,t): number of schema h instances at generation t
I f (h, t) =

P
i2P fi: schema fitness is average fitness of individual

members

key issue: changing number of schemata members in population

fit schemata increase in proportion
mutation and recombination destructive operators !

Dirk Thierens (D.Thierens@uu.nl) 14 / 40

Genetic Algorithm

Schema growth by selection

Reproduction ratio �(h, t)

�(h, t) = m(h,ts)
m(h,t)

proportionate selection

I probability individual i selected: fi
f (t)

I Expected number of copies that are member of schema h after
selection:

m(h, ts) = m(h, t)�(h, t) = m(h, t)
f (h, t)
f (t)

tournament selection

I tournament size s: 0  �(h, t)  s

Dirk Thierens (D.Thierens@uu.nl) 15 / 40

Genetic Algorithm

Schema disruption by mutation

probability bit flipped: pm

schema h survives iff all the bit values are not mutated

psurvival = (1� pm)
o(h)

for small values pm << 1

(1� pm)
o(h) ⇡ 1� o(h).pm

disruption factor ✏(h, t) by mutation:

✏(h, t) = o(h).pm

Dirk Thierens (D.Thierens@uu.nl) 16 / 40

Genetic Algorithm

Schema disruption by recombination

probability crossover applied pc

1-point crossover

I schema h survives iff cutpoint not within defining length �:

psurvival = 1� �(h, t)
l� 1

uniform crossover (bit swap probability: px)
I schema h survives iff none or all bits swapped together

psurvival = po(h)
x + (1� px)

o(h)

disruption factor ✏(h, t) by recombination:

✏(h, t) = pc.(1� psurvival)

Dirk Thierens (D.Thierens@uu.nl) 17 / 40

Genetic Algorithm

Schema Theorem

Selection, mutation, and recombination combined:
m(h, t + 1) � m(h, t)�(h, t)[1� ✏(h, t)]

net growth factor: �(h, t) = m(h,t+1)
m(h,t)

�(h, t) � �(h, t)[1� ✏(h, t)]

schemata with �(h, t) > 1 increase in proportion
schemata with �(h, t) < 1 decrease in proportion

Dirk Thierens (D.Thierens@uu.nl) 18 / 40

Genetic Algorithm

Schema Theorem cont’d

low order, high performance schemata receive exponentially
(geometrically) increasing trials! building blocks

according to the k-armed bandit analogy this strategy is near
optimal (Holland, 1975)
happens in an implicit parallel way

! only the short, low-order schemata are processed reliably

enough samples present for statistically reliable information
enough samples survive the disruption of genetic operators

Dirk Thierens (D.Thierens@uu.nl) 19 / 40

Genetic Algorithm

Building Blocks

Building block hypothesis

= building blocks can be juxtaposed

to form near optimal solutions

Consequences

1 schema sampling is a statistical decision process:
variance considerations

2 building blocks must be juxtaposed before convergence:
mixing analysis

3 low order schemata might give misleading information:
deceptive problems

Dirk Thierens (D.Thierens@uu.nl) 20 / 40

Permutation Representation

Permutation problems

Goal

Design suitable representations and genetic operators for
permutation or sequencing problems
Examples

I scheduling
I vehicle routing
I queueing
I ...

Dirk Thierens (D.Thierens@uu.nl) 21 / 40

Permutation Representation

Permutation problems

travelling salesman
non-binary strings

I p1 = 1 2 3 4 5 6 7 8
I p2 = 4 6 2 1 7 8 5 3
I simple crossover) illegal tours
I c1 = 1 2 3 | 1 7 8 5 3
I c2 = 4 6 2 | 4 5 6 7 8

alternative search space representation
alternative genetic operators

Dirk Thierens (D.Thierens@uu.nl) 22 / 40

Permutation Representation

Insert mutation

randomly select one element from the sequence and insert it at some
other random position in the sequence

A B C D E F G H
+

A B D E F C G H

Dirk Thierens (D.Thierens@uu.nl) 23 / 40

Permutation Representation

Swap mutation

randomly select two elements from the sequence and swap their
position

A B C D E F G H
+

A B G D E F C H

Dirk Thierens (D.Thierens@uu.nl) 24 / 40

Permutation Representation

Scramble mutation

randomly select a subsequence and scramble all elements in this
subsequence

A B | C D E F | G H
+

A B | D F E C | G H

very destructive !

! efficiency is problem dependent !

Dirk Thierens (D.Thierens@uu.nl) 25 / 40

Permutation Representation

Mutation operator: 2-opt

) randomly select two points along the sequence and invert one of
the subsequences

A B | C D E F | G H
+

A B | F E D C | G H

2-opt can be applied to n(n�1)
2 pairs of egdes: if none of these gives an

improvement a local optimum has been reached.

Dirk Thierens (D.Thierens@uu.nl) 26 / 40

Permutation Representation

Mutation operators

TSP: adjacency of elements in permutation is important
! 2-opt only minimal change
scheduling: relative ordering of elements in permutation is
important
! 2-opt large change
e.g.: priority queue: line of people waiting for supply of tickets for
different seats on different trains

mutation principle: “small” moves in search space should be more
likely than “large” moves

Dirk Thierens (D.Thierens@uu.nl) 27 / 40

Permutation Representation

Recombination operators

’standard’ crossover operators generate infeasible sequences

A B C D E | F G H
b f d h g | e a c

+
A B C D E | e a c
b f d h g | F G H

different aspects
I adjacency
I relative order
I absolute order

)whole set of permutation crossover operators proposed !

Dirk Thierens (D.Thierens@uu.nl) 28 / 40

Permutation Representation

Order crossover

p1: A B | C D E F | G H I
p2: h d | a e i c | f b g

+
ch: a i C D E F b g h

1 randomly select two crosspoints
2 copy subsequence between crosspoints from p1
3 starting at 2nd crosspoint: fill in missing elements retaining

relative order from p2

Dirk Thierens (D.Thierens@uu.nl) 29 / 40

Permutation Representation

Partially mapped crossover

p1: A B | C D E F | G H I
p2: h d | a e i c | f b g

+
ch: h i C D E F a b g

1 randomly select two crosspoints
2 copy p2 to child
3 copy elements between crosspoints from p1 to child while placing

the replaced element from p2 at the location where the replacer is
positioned

Dirk Thierens (D.Thierens@uu.nl) 30 / 40

Permutation Representation

Position crossover

p1: A B C D E F G H I
p2: h d a e i c f b g

* * * *
+

ch: A h C d E F b g I

1 randomly select k positions
2 copy unmarked elements from p1 to child
3 scan p2 from left to right and fill in missing elements

Dirk Thierens (D.Thierens@uu.nl) 31 / 40

Permutation Representation

Maximal preservative crossover

p1: A B | C D E F | G H I
p2: h d | a e i c | f b g

+
ch: i a C D E F b g h

1 randomly select two crosspoints
2 copy subsequence between crosspoints from p1
3 add successively an adjacent element from p2 starting at last

element in child
4 if already placed: take adjacent element from p1

Dirk Thierens (D.Thierens@uu.nl) 32 / 40

Permutation Representation

Cycle crossover

p1: A B C D E F G H I
p2: f c d a e b h i g
cy: 1 1 1 1 2 1 3 3 3

+
ch: A B C D E F h i g

1 mark cycles
2 cross full cycles

) emphasizes absolute position above adjacency or relative order

Dirk Thierens (D.Thierens@uu.nl) 33 / 40

Permutation Representation

edge recombination

parent tours [ABCDEF] & [BDCAEF]

edge map:

city edges
A B F C E
B A C D F
C B D A
D C E B
E D F A
F A E B

Dirk Thierens (D.Thierens@uu.nl) 34 / 40

Permutation Representation

edge recombination algorithm:

1 choose initial city from one parent
2 remove current city from edge map
3 if current city has remaining edges

goto step 4
else
goto step 5

4 choose current city edge with fewest remaining edges
5 if still remaining cities, choose one with fewest remaining cities

Dirk Thierens (D.Thierens@uu.nl) 35 / 40

Permutation Representation

1 random choice) B
2 next candidates: A C D F

choose from C D F (same edge number)) C
3 next candidates: A D

(edgelist D < edgelist A)) D
4 next candidate: E) E
5 next candidates: A F

tie breaking) A
6 next candidate: F) F

resulting tour: [BCDEAF]

Dirk Thierens (D.Thierens@uu.nl) 36 / 40

Permutation Representation

Fitness correlation coefficients

genetic operators should preserve useful fitness characteristics
between parents and offspring
calculate the fitness correlation coefficient to quantify this
k-ary operator: generate n sets of k parents
apply operator to each set to create children
compute fitness of all individuals
{f (pg1), f (pg2), ..., f (pgn}
{f (cg1), f (cg2), ..., f (cgn}

Dirk Thierens (D.Thierens@uu.nl) 37 / 40

Permutation Representation

Fitness correlation coefficients

Fp : mean fitness of the parents
Fc : mean fitness of the children
�(Fp) = standard deviation of fitness parents
�(Fc) = standard deviation of fitness children
cov(Fp, Fc) =

Pn
i=1

(f (pgi)�Fp)(f (cgi)�Fc)
n

covariance between fitness parents and fitness children
operator fitness correlation coefficient ⇢op:

⇢op =
cov(Fp, Fc)

�(Fp)�(Fc)

Dirk Thierens (D.Thierens@uu.nl) 38 / 40

Permutation Representation

Traveling Salesman problem: mutation operators

various mutation operators applicable
I 2opt mutation (2OPT)
I swap mutation (SWAP)
I insert mutation (INS)

performance: 2OPT > INS > SWAP
mutation fitness correlation coefficients ⇢mutate :

⇢2OPT 0.86
⇢INS 0.80
⇢SWAP 0.77

Dirk Thierens (D.Thierens@uu.nl) 39 / 40

Permutation Representation

Traveling Salesman problem: crossover operators

various crossover operators in applicable
I cycle crossover (CX)
I partially matched crossover (PMX)
I order crossover (OX)
I edge crossover (EX)

performance: EX > OX > PMX > CX
crossover correlation coefficients ⇢cross :

⇢EX 0.90
⇢OX 0.72
⇢PMX 0.61
⇢CX 0.57

Dirk Thierens (D.Thierens@uu.nl) 40 / 40

