I I
Course organization

Evolutionary Computation

@ Part 1: lectures = Dirk Thierens + 2 guest lectures Peter Bosman

Dirk Thierens @ Part 2: seminar = papers & presentation (student groups)
@ Part 3: practical assignment = report (groups of 1 or 2 students)
Universiteit Utrecht » Specific discrete benchmark functions
The Netherlands » Graph Bipartitioning

Dirk Thierens (D.Thierens@uu.nl) 1/40 Dirk Thierens (D.Thierens@uu.nl) 2 /40

_ Evolutionary Computation: introduction
Course grading Evolutionary Computation

= Population-based, stochastic search algorithms
inspired by mechanisms of natural evolution

@ Written exam = 40%

@ Paper presentation = 20% @ EC part of Computational Intelligence
= 0

@ Evolution viewed as search algorithm

@ Practical assignment report = 40%
@ Natural evolution only used as metaphor for designing

computational problem solving systems

@ No modelling of natural evolution (# evolutionary biology)

Dirk Thierens (D.Thierens@uu.nl) 3/40 Dirk Thierens (D.Thierens@uu.nl) 4/40

Evolutionary Computation: introduction

Evolutionary Computation: introduction

Evolutionary algorithm Key concepts of a Darwinian system

@ P(0) < Generate-Random-Population ()

Q@ P(0) « Evaluate-Population (P (0)) @ Information Structures
© while Not-Terminated? do @ Copies

@ P°(t) < Select-Mates(P(t)) @ Variation

@ P°(t) < Generate-Offspring (P°(t)) .

@ P°(t) <+ Evaluate—Population (P°(t)) © Inheritance

@ P(t+l) < Select-Fittest (P°(t) U P(t)) © Competition

Q@ t+t+1

©Q return P (t)

Dirk Thierens (D.Thierens@uu.nl) 5/ 40 Dirk Thierens (D.Thierens@uu.nl) 6 /40

Genetic Algorithm

Genetic Algorithm

Darwinian process characteristics = GA .
@ Neo-Darwinism

f

@ Structures

: : |..AUUCGCCAAU...|
= e.g. binary strings, real-valued vectors, programs, ...
@ Structures are copied @ Genetic Algorithm
= selection algorithm
@ Copies partially vary from the original .TT
= mutation & crossover operators
© Structures are competing for a limited resource ’ - 0101001111... ‘
= selecting fixed sized parent pool
@ Reproductive success depends on environment * user: string representation and function f
= user defined fitness function * GA: string manipulation

» selection: copy better strings
» variation: generate new strings

Dirk Thierens (D.Thierens@uu.nl) 7 / 40 Dirk Thierens (D.Thierens@uu.nl) 8 /40

Genetic Algorithm

@ selection: copy better strings
» tournament selection
» truncation selection
» proportionate selection
@ variation: generate new strings

@ crossover

. { 1111111111 { 1111000011
2-point crossover:

0000000000 0000111100
y (1111111111 1001110101
UnIoTm Crossover:1 - 6000000000 0110001010

@ mutation

{1111111111 = {1111111011

Dirk Thierens (D.Thierens@uu.nl)

Genetic Algorithm

@ Generation 1:
tournament selection, 1-point crossover, mutation

Parents | Fitness || Offspring | Fitness
100!'10 324 10100 400
101'00 400 10111 529
01!000 64 00010 4
10!010 324 10010 324
0110!0 144 11100 784
1010!0 400 10000 256

Parent population mean fitness f(1) = 383

Dirk Thierens (D.Thierens@uu.nl)

9 /40

11/ 40

Genetic Algorithm

Toy example

xe[0,31] : f(x) = x?
binary integer representation: x; € {0,1}
x=2x1 %2 + 200 %23 + a3 %22 4 x4 %21 4+ x5 %20

@ Initial Random Population:
10010 : 18% =324
01100 : 122 =144
01001 : 9% =381
10100 : 20 = 400
01000 : 8% =64
00111 : 72 =49
population mean fitness f(0) = 177

Dirk Thierens (D.Thierens@uu.nl) 10 / 40

Genetic Algorithm

@ Generation 3:

Parents | Fitness || Offspring | Fitness
1'1111 961 11110 900
1!1100 784 11011 729
11000 576 11110 900
111!10 900 11101 841
1101!1 729 11111 961
1100!1 625 01001 81

Parent population mean fitness f(0) = 762

Dirk Thierens (D.Thierens@uu.nl) 12 / 40

Genetic Algorithm

Schema = similarity subset

eq. : 11#4#0 = {11000, 11010, 11100, 11110}

gen. || L | OfHHE || #HHHEL | #HEH0
0 2 4 2 4
1 5 1 1 5
2 6 0 2 4
3 6 0 3 3
4 6 0 3 3
5 5 1 4 2

Dirk Thierens (D.Thierens@uu.nl)

Genetic Algorithm

Schema growth by selection

@ Reproduction ratio ¢(h,)

p(h,t) = erg;f:))

@ proportionate selection

i

f®

» Expected number of copies that are member of schema / after
selection:

» probability individual i selected:

f(h,t)
m(h,t°) = m(h,t)p(h, t) = m(h, t)—=
f(®)
@ tournament selection

» tournamentsizes: 0 < ¢(h,t) <s

Dirk Thierens (D.Thierens@uu.nl)

13 / 40

15/ 40

Genetic Algorithm

Schema

@ definitions:
» o(h): schema order o(11##0) =3
» 0(h): schema defining length §(11##0) = 4
» m(h,t): number of schema h instances at generation t
> f(h,t) = > icpfi: schema fitness is average fitness of individual
members

@ key issue: changing number of schemata members in population

@ fit schemata increase in proportion

e mutation and recombination destructive operators !

Dirk Thierens (D.Thierens@uu.nl)

Genetic Algorithm

Schema disruption by mutation

@ probability bit flipped: p,
@ schema h survives iff all the bit values are not mutated

Psurvival = (1 - pm)o(h)
o for small values p,, <<'1
(1 - Pm)o(h) ~1-— O(h)'pm
e disruption factor e(h, t) by mutation:

[e(h,t) = o(h).pu |

Dirk Thierens (D.Thierens@uu.nl)

14 / 40

16 / 40

Genetic Algorithm

Schema disruption by recombination

@ probability crossover applied p.
@ 1-point crossover
» schema h survives iff cutpoint not within defining length ¢:

S(h,t
Psurvival = 1- l(— 1)

@ uniform crossover (bit swap probability: py)
» schema h survives iff none or all bits swapped together

Psurvival = p?c(h) + (1 - px)o(h)

e disruption factor €(h, t) by recombination:

E(h, t) = Pc~(1 - psurvival> ‘

Dirk Thierens (D.Thierens@uu.nl)

Genetic Algorithm

Schema Theorem cont’d

@ low order, high performance schemata receive exponentially
(geometrically) increasing trials — building blocks

@ according to the k-armed bandit analogy this strategy is near
optimal (Holland, 1975)

@ happens in an implicit parallel way

— only the short, low-order schemata are processed reliably

@ enough samples present for statistically reliable information

@ enough samples survive the disruption of genetic operators

Dirk Thierens (D.Thierens@uu.nl)

17 / 40

19 / 40

Genetic Algorithm

Schema Theorem

@ Selection, mutation, and recombination combined:

m(h,t+1) > m(h, o,)1 — e(h,)] |

@ net growth factor: (I, t) = m,(nh(}i)l)

(1) = é(h, 1)1 = e(h,1)]|

schemata with v(h, t) > 1 increase in proportion
schemata with v(h,t) < 1 decrease in proportion

Dirk Thierens (D.Thierens@uu.nl)

Genetic Algorithm

Building Blocks

Building block hypothesis

= building blocks can be juxtaposed
to form near optimal solutions

Consequences

© schema sampling is a statistical decision process:
variance considerations

@ building blocks must be juxtaposed before convergence:
mixing analysis

@ low order schemata might give misleading information:
deceptive problems

Dirk Thierens (D.Thierens@uu.nl)

18 / 40

20 / 40

Permutation Representation

Permutation problems

e Goal
Design suitable representations and genetic operators for
permutation or sequencing problems

@ Examples

scheduling
vehicle routing
queueing

vVYyVvVvyy

Dirk Thierens (D.Thierens@uu.nl) 21 /40

Permutation Representation

Insert mutation

randomly select one element from the sequence and insert it at some
other random position in the sequence

ABCDEFGH

U
ABDEFCGH

Dirk Thierens (D.Thierens@uu.nl) 23 /40

Permutation Representation

Permutation problems

e travelling salesman
@ non-binary strings
» pl=12345678
» p2=46217853
» simple crossover = illegal tours
» c1=123]17853
» 2=462|45678

@ alternative search space representation

@ alternative genetic operators

Dirk Thierens (D.Thierens@uu.nl)

Permutation Representation

Swap mutation

randomly select two elements from the sequence and swap their
position

BCDEFGH

A
ABGDEFC

Dirk Thierens (D.Thierens@uu.nl)

22 /40

24 /40

Permutation Representation

Scramble mutation

randomly select a subsequence and scramble all elements in this
subsequence

AB|CDEF|GH

U
AB|DFEC|GH

very destructive !

— efficiency is problem dependent !

Dirk Thierens (D.Thierens@uu.nl) 25 /40

Permutation Representation

Mutation operators

@ TSP: adjacency of elements in permutation is important
— 2-opt only minimal change

@ scheduling: relative ordering of elements in permutation is
important
— 2-opt large change
e.g.: priority queue: line of people waiting for supply of tickets for
different seats on different trains

mutation principle: “small” moves in search space should be more
likely than “large” moves

Dirk Thierens (D.Thierens@uu.nl) 27 / 40

Permutation Representation

Mutation operator: 2-opt

= randomly select two points along the sequence and invert one of
the subsequences

AB|CDEF|GH

U
AB|FEDC|GH

2-opt can be applied to @ pairs of egdes: if none of these gives an

improvement a local optimum has been reached.

Dirk Thierens (D.Thierens@uu.nl) 26 / 40

Permutation Representation

Recombination operators

@ ’'standard’ crossover operators generate infeasible sequences

ABCDE|FGH
bfdhgleac
4
ABCDE|eac
bfdhg|FGH

o different aspects

» adjacency
» relative order
» absolute order

= whole set of permutation crossover operators proposed !

Dirk Thierens (D.Thierens@uu.nl) 28 /40

Permutation Representation

Order crossover

p:AB|CDEF|GHI

p22hd | aeic| fbg
4

ch ai CDEF bgh

Q@ randomly select two crosspoints
@ copy subsequence between crosspoints from p1

@ starting at 2nd crosspoint: fill in missing elements retaining
relative order from p2

Dirk Thierens (D.Thierens@uu.nl) 29 /40

Permutation Representation

Position crossover

pl

A
p2:h

tABCDEFGHI
th daeicfbg
*

* * X

N8
ch: AhCdEFbgl

© randomly select k positions
@ copy unmarked elements from p1 to child

@ scan p2 from left to right and fill in missing elements

Dirk Thierens (D.Thierens@uu.nl) 31/ 40

Permutation Representation

Partially mapped crossover

pAB|CDEF|GHI

p22hd | aeic | fbg
4

ch: hi CDEF ab g

@ randomly select two crosspoints
@ copy p2 to child

@ copy elements between crosspoints from p1 to child while placing
the replaced element from p2 at the location where the replacer is
positioned

Dirk Thierens (D.Thierens@uu.nl) 30 / 40

Permutation Representation

Maximal preservative crossover

p:AB|CDEF|GHI

p22hd | aeic | fbg
U

ch: ia CDEF bgh

Q@ randomly select two crosspoints
@ copy subsequence between crosspoints from p1l

@ add successively an adjacent element from p2 starting at last
element in child

© if already placed: take adjacent element from p1

Dirk Thierens (D.Thierens@uu.nl) 32/40

Permutation Representation

Cycle crossover

pLABCDEFGHI

p2:fcdaebhig

cy: 111121333
¢

c: ABCDEFhig

@ mark cycles

@ cross full cycles

= emphasizes absolute position above adjacency or relative order

Dirk Thierens (D.Thierens@uu.nl)

Permutation Representation

edge recombination algorithm:

© choose initial city from one parent
@ remove current city from edge map

@ if current city has remaining edges
goto step 4
else
goto step 5

@ choose current city edge with fewest remaining edges

@ if still remaining cities, choose one with fewest remaining cities

Dirk Thierens (D.Thierens@uu.nl)

33 /40

35/ 40

Permutation Representation

edge recombination

parent tours [ABCDEF] & [BDCAEF]

edge map:

city | edges
A |BFCE
B |[ACDF
C |[BDA
D
E
F

CEB
DFA
AEB

Dirk Thierens (D.Thierens@uu.nl) 34 /40

Permutation Representation

@ random choice = B

@ next candidates: A C D F
choose from C D F (same edge number) = C

@ next candidates: A D
(edgelist D < edgelist A) == D

© next candidate: E = E

@ next candidates: A F
tie breaking = A

@ next candidate: F = F

resulting tour: [BCDEAF]

Dirk Thierens (D.Thierens@uu.nl) 36 /40

Permutation Representation

Fitness correlation coefficients

@ genetic operators should preserve useful fitness characteristics
between parents and offspring

calculate the fitness correlation coefficient to quantify this
k-ary operator: generate n sets of k parents
apply operator to each set to create children

compute fitness of all individuals

{f(Pgl)vf(PgZ)v ~~~af(Pgn}
{f(cgl)vf(cg2)> -~~af(an}

Dirk Thierens (D.Thierens@uu.nl)

Permutation Representation

Traveling Salesman problem: mutation operators

@ various mutation operators applicable

» 2opt mutation (20PT)
» swap mutation (SWAP)
» insert mutation (INS)

performance: 20PT > INS > SWAP

@ mutation fitness correlation coefficients pytate

p2opr | 0.86
pins | 0.80
pswap | 0.77

Dirk Thierens (D.Thierens@uu.nl)

37 /40

39 /40

Permutation Representation

Fitness correlation coefficients

@ F,: mean fitness of the parents
F. : mean fitness of the children
o(F,) = standard deviation of fitness parents
o(F;) = standard deviation of fitness children
COZ)(FP,PC) _ Z?:l (f(pgi)_FPL(f(Cgi)_Ff)
covariance between fitness parents and fitness children

@ operator fitness correlation coefficient poy:

B cov(Fy, F¢)
Por = 5 (Fy)o(Fe)

Dirk Thierens (D.Thierens@uu.nl) 38 /40

Permutation Representation

Traveling Salesman problem: crossover operators

@ various crossover operators in applicable
» cycle crossover (CX)
» partially matched crossover (PMX)
» order crossover (OX)
» edge crossover (EX)

performance: EX > OX > PMX > CX

@ crossover correlation coefficients pcross

PEX 0.90
pox | 0.72
prmx | 0.61
PCx 0.57

Dirk Thierens (D.Thierens@uu.nl) 40/ 40

