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a b s t r a c t

Bus terminal assignment with the objective of maximizing public transportation service is known as
bus terminal location problem (BTLP). We formulate the BTLP, a problem of concern in transportation
industry, as a p-uncapacitated facility location problem (p-UFLP) with distance constraint. The p-UFLP
being NP-hard (Krarup and Pruzan, 1990), we propose evolutionary algorithms for its solution. According
to the No Free Lunch theorem and the good efficiency of the distinctive preserve recombination (DPX)
operator, we design a new recombination operator for solving a BTLP by new evolutionary and memetic
volutionary algorithm
emetic algorithm

ransportation
imulated annealing

algorithms namely, genetic local search algorithms (GLS). We also define the potential objective function
(POF) for the nodes and design a new mutation operator based on POF. To make the memetic algorithm
faster, we estimate the variation of the objective function based on POF in the local search as part of
an operator in memetic algorithms. Finally, we explore numerically the performance of nine proposed
algorithms on over a thousand randomly generated problems and select the best two algorithms for
further testing. The comparative studies show that our new hybrid algorithm composing the evolutionary

utper
algorithm with the GLS o

. Introduction

Consider n nodes (representing bus stations, metro stations,
tc.) with known number of passengers. The aim is to locate a
re-specified number of locations (nodes) from among m ter-
inals with known reachable neighborhoods so that the public

ervice is maximized. This is called a bus terminal location problem
BTLP). It is clear that a BTLP is a special facility location prob-
em; the reader is referred to Mirchandani and Francis [1], Korte
nd Vygen [2], Krarup and Pruzan [3], and Drezner and Hamacher
4]. There are several algorithms in the literature to solve differ-
nt kinds of FLPs; e.g., exact algorithms, approximation algorithms,
euristics and metaheuristics. Many kinds of FLPs are NP-hard [5],
nd thus the exact algorithms (see [1,6], for comprehensive sur-
eys) can only solve small instances of an FLP in a practical time.
s approximate algorithms, Shmoys et al. [7] presented the first
olynomial-time algorithm with a constant approximation factor.
fter 1997, other approximation algorithms have been developed

see [8–10]). Unfortunately, Guha and Khuller [11] established

lower bound for the approximation factor. Local searches and

euristics in all categories of FLP are active areas in combinato-
ial optimization. The first local search was introduced by Kuhen
nd Hamburger [12]. Several authors developed local searches and
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forms the multistart simulated annealing algorithm.
© 2010 Elsevier B.V. All rights reserved.

heuristics on FLP (see [13]). Other algorithms on FLP are dual-based
methods (see [14–16]), hybrid multistart heuristics [17], variable
neighborhood search [18] and others ([19,20] and [21]).

Since the early years of operations research studies, metaheuris-
tics have been widely used to solve a variety of practical problems in
multi-objective optimization (see [22,23]) or single objective opti-
mization (see [24,25]). Many authors showed that metaheuristics
are more efficient than other existing algorithms on other cate-
gories of FLP; e.g., simulated annealing by Alves and Almeida [26]
and genetic algorithm by Kratica et al. [27].

Evolutionary algorithms, that is, genetic based algorithms using
specialized data structures, have been successfully used to provide
optimal or near optimal solutions for different optimization prob-
lems [28]. Genetic local search (GLS), sometimes named memetic
algorithm, is a hybrid heuristic approach that combines the advan-
tages of population-based search and local optimization. GLS is
widely used in combinatorial optimization problems (see [29–32]).
Based on the No Free Lunch (NFL) theorem [33] and global convexity
property of combinatorial optimization discussed by Jaszkiewicz
and Kominek [32], proper definitions of the genetic operators have
critical influence on the performance of evolutionary algorithms
and genetic local search for combinatorial optimization problems.

Here, we describe new evolutionary algorithms for solving a real

life problem, the so-called bus terminal location problem, an impor-
tant problem in transportation industries which can be formulated
as a p-UFLP with distance constraint.

Based on the efficiency of the distance preserving recombina-
tion operator used in [30–32], we construct a new recombination

dx.doi.org/10.1016/j.asoc.2010.01.019
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
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perator. On the other hand, we define a property of each facility
amed as potential objective function (POF) and then construct a
ew mutation operator based on the POF. In GLS, local searches
re costly; therefore, we use the special stopping criteria in local
earch. Since, in local search, we must calculate value variations
�F) of the objective function, to select better solutions, we use
n approximation of �F based on POF. We will save time in local
earch, if we can approximate �F.

The remainder of our work is organized as follows: Section 2
escribes a mathematical model of BTLP. In Section 3, we explain
he genetic algorithm and genetic local search. In Section 4, we
escribe, in detail, the adaptation of our algorithms to BTLP. Con-
truction of test problems and computational experiments are
eported in Section 5. Section 6 gives the concluding remarks.

. Mathematical model

Consider J as a set of nodes (specified with their coordinates) in a
ity. Suppose that the number of entrances and exits of passengers
n every node (potential of node) is available. Also, suppose I is the
et of candidate nodes for bus terminals where each terminal, if
stablished, can service nodes being in its reachable neighborhood.
he setup costs of bus terminals are assumed to be equal, and thus,
ithout loss of generality, we consider the setup costs as zero. The

bjective is to select p terminals to maximize the service function,
here the service function is defined as in Definition 2.2 below.

efinition 2.1. For i ∈ I, the neighborhood of node i is shown by J∗
i

nd defined by

∗
i =

{
j ∈ J : cij ≤ r

}
, (1)

here r is a constant and cij is the distance between node j and
erminal i.

et

∗ = ∪
i ∈ S

J∗i ,
here S ⊆ I.
The service function is defined next.

efinition 2.2. Assume that the potential of node j is shown by
j, the distance between node j and terminal i is shown by cij and f

Fig. 1. A genetic
oft Computing 11 (2011) 991–999

is a decreasing function. For S ⊆ I, the service function is defined to
be:

F(S) =
∑
j ∈ J∗

dj × f (min
i ∈ S

{cij}). (2)

Definition 2.3. Potential of object function (POF) for i ∈ I is defined
to be:

POF(i) =
∑
j ∈ J∗

i

dj × f (cij). (3)

The combinatorial formulation of BTLP can now be specified as
follows.

Problem: Bus terminal location problem.
Instance: I = {i1,i2,. . .,im}, the set of candidate nodes (terminals)

and J = {j1,j2,. . .,jn}, the set of nodes in the city, C = [cij], the distance
matrix, f, a decreasing function, p, number of terminals to be set up,
and D = {d1,d2,. . .,dn}, the set of potential nodes corresponding to J.

Output: arg max

⎧⎨
⎩F(S) =

∑
j ∈ J∗

dj × f (min
i ∈ S

{cij}) : S ⊆ I,
∣∣S∣∣ = p

⎫⎬
⎭.

3. Genetic/evolutionary algorithm and genetic local search

3.1. Genetic/evolutionary algorithm

Genetic algorithms are search algorithms based on the mechan-
ics of natural selection and natural genetics [34]. Evolutionary
algorithms (EAs) are genetic algorithms with special data struc-
tures or special encodings of solutions or genetic operator based
on the problem [28]. In Fig. 1, a genetic/evolutionary algorithm is
given in general.
Fig. 1 is a general template for genetic/evolutionary algorithms.
Based on NFL theorem (see [33]), for an optimization problem, oper-
ators and parameters of genetic/evolutionary algorithm must be
carefully defined (determined). In the next section, we adapt the
genetic/evolutionary algorithm for solving the BTLP.

algorithm.
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.2. Genetic local search

The idea of combining a genetic algorithm and heuristics to
olve combinatorial optimization problems has been investigated
y many researchers in the past two decades.

Genetic local search, sometimes named memetic algorithm, is
hybrid heuristic that combines the advantages of genetic algo-

ithm and local search. GLS is used for solving many combinatorial
ptimization problems [29–32]. In GLS, the local search finds good
olutions (not generally local optimal; e.g., [35]), and then genetic
lgorithm works on improving the solutions. In some cases, local
euristics or extensions of local search are used instead of local
earch; e.g., Taillard [36] used tabu search as a local heuristic. In
ig. 2, a GLS is given in detail.

Here, we assume that the local search procedure gives a good
olution with no necessity to stop at a local optimal point. We use
ome stopping criterion in local search as described in Section 4. GA
EA) and GLS need to be adapted to the BTLP. For adaptation, encod-
ng of solutions, producing the initial population, genetic operators
nd local search algorithm (in GLS) are clearly defined.

. Adaptations

.1. Coding and selection

We use a special coding of solutions. We describe coding of a
olution with an example. Suppose m = 5 and p = 2 and terminals
o. 1 and No. 4 are located. Then, the chromosome of this solution

s:

We select two parents by the standard roulette wheel with lin-
ar ranking [23], in the generation step of the genetic/evolutionary
lgorithm and GLS. In each iteration of genetic/evolutionary algo-

ithm and GLS, we construct the new population by:

ewP = TP ∪ {e percent of elites in P}, (4)

here e is a predefined parameter.
ocal search.

4.2. Initial population

Authors usually use a random population for the initial popu-
lation but the efficiency of the genetic/evolutionary algorithm and
GLS is usually increased if the quality of the initial population is bet-
ter than the average of the random population. To achieve better
solutions in the initial population, we use potential objective func-
tion for each i ∈ I. We construct a solution by selecting p different
nodes from I using the roulette wheel on POF of each node.

On the other hand, in evolutionary algorithms, we prefer to dis-
tribute the initial population in the search space in order for the
evolutionary algorithm to reach the global optimum. Therefore, we
select half of the initial population randomly. Using these consider-
ations, we generate the initial population by procedure GLP given
in Fig. 3.

4.3. Genetic operator

4.3.1. Recombination operator
Recombination combines good properties of parents to create

better offsprings. In other words, recombination determines the
regions of search space where better solutions exist. According
to the global convexity, the good solutions have many common
properties; for example, the good solutions of TSP instances have
common arcs. Based on the global convexity, Merz and Freisleben
[30,31], and Jaszkiewicz and Kominek [32] designed many types
of the distinctive preserve (DPX) recombination operator for TSP,
vehicle routing and QAP. We assume that BTLP has global convex-
ity based on specifications of Merz and Freisleben [31] and design
a new DPX operator for BTLP as given in Fig. 4 below.

4.3.2. Mutation operator
Merz and Freisleben [31] pointed out that the mutation opera-

tor should attempt to focus the search on randomly chosen regions

so that the algorithm would be able to identify solutions that are
hard to find by the DPX operator. On the other hand, the efficiency
of genetic algorithm can be increased by the existence of more
consistency between the mutation operator and the recombina-
tion operator. We design two mutation operators for solving BTLP
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Fig. 3. A procedure for generating the initial population.

erve re

a
o
b

t
t
o

4

l
[
h

Fig. 4. Distinctive pres

nd compare their efficiencies with the standard 2-swap mutation
perator. In Mutation 1 described in Fig. 5, we expect to achieve a
etter solution.

In Mutation 2, we consider y as a binary string such that its i-
h bit will be one if i ∈ I is open and zero otherwise. We note that
his mutation operator has a similar version in other combinatorial
ptimization problems [28,31]. Fig. 6 shows Mutation 2 in detail.

.4. Local search
Many local searches are reported in the literature for facility
ocation problems. According to the good results reported by Ghosh
21], we choose the 2-swap local search. We define the neighbor-
ood in BTLP for the 2-swap as follows.

Fig. 5. Muta
combination for BTLP.

Definition 4.1. Assume that S ⊂ I and |S| = p. The set of neighbor-
hoods of S is:

N(S) =
{

T |T ⊂ I, |T | = p, |S − T | = 1
}

. (5)

Usually, local search is implemented in two ways: the first
approach makes use of the first improvement encountered, and
the second approach uses the best neighborhood algorithm [25].
Our numerical experiments show that the best neighborhood algo-
rithm does not necessarily produce better solutions as compared

to the first approach while requiring longer CPU time. So, we use
the first improvement approach as the local search for 2-swap.

In addition, in our numerical experiments we found out that
the local search was the most time consuming part of the GLS
algorithm. Therefore, to control the CPU time being used, we use

tion 1.
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umber of iterations, number of improvements and maximum run
ime as the stopping criteria in local search as a component of GLS
25].

On the other hand, since the GLS algorithm is a combination of
enetic algorithm and local search, we stop the local search when a
ood improvement in proportion to the initial solution is at hand. In
his case, genetic algorithm works on the good solutions achieved
y the local search.

Finally, we use the algorithm given in Fig. 7 with little change
n the standard 2-swap as a local search for the GLS algorithm. In

his algorithm, we consider OpenT and CloseT as arrays also, and for
onvenience, we use operator +c as in Definition 4.2 below.

efinition 4.2. Suppose a,b ∈ N
⋃

{0} and c ∈ N–{1}. Then, opera-
or +c is defined by:

Fig. 7. A local
tion 2.

a+cb =
{

(a + b) −
⌊

(a + b)/c
⌋

× c, a + b > c

a + b o.w.
(6)

It is necessary to note that computing the objective function is
a hard work and uses expensive time. Thus, we use an estimate of
the value of �F(OpenT, Temp) = �F = F(Temp) − F(OpenT) in the local
search procedure (see Fig. 7) by POF of each terminal.

Definition 4.3. Assuming S,T ⊂ I, |T| = |S| = p and |S–T| = 1, there

exist s ∈ S and t ∈ T such that s /∈ T and t /∈ S, and the estimation of
�F(S,T) = F(T) − F(S) is defined by:

�̃F = �̃F(S, T) = POF(t) − POF(s). (7)

Remark. s and t in Definition 4.3 are unique.

search.
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Table 1
Groups of test problems.

Group No. Coordinates of the square dmax Scale of neighborhood radius (Sr)

xmin ymin xmax ymax

1 −100 −100 100 100 2
√

2 × 100 100
2 −10 −10 10 10 2

√
2 × 10 10√
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For each algorithm, we solved 1080 test problems 5 times.
Table 5 shows the average of the results. We summarize the results
in Table 5 by noting the sum of average of the results on all test
problems.

Table 2
Parameers of genetic/evolutionary algorithm on BTLP.
3 −1 −1 1
4 −10 −10 10
5 −100 −100 100
6 −1 −1 1

In the calculation of �F(S,T) = F(T)–F(S), when s ∈ S is closed
nd t ∈ T is open, nodes are divided into four groups as fol-
ows here:Nodes with serving center not changed (like node 3 in
ig. 8).Nodes served before but not being served now (like node 1
n Fig. 8).Nodes not served before but being served now (like node

in Fig. 8).Nodes with serving center changed (like nodes 2 and 4
n Fig. 8).

Thus, �̃F is an approximation of �F(S,T), because in the calcula-
ion of �̃F , we may not have a proper designation of serving centers
o nodes (specially for nodes in groups 1 and 4).

. Computational experiments

.1. Medium sized problems

To select representative evolutionary and GLS algorithms we
enerated 6 groups of test problems testing the efficiency of our
lgorithms. We considered and implemented nine versions of our
olution method in MATLAB 7.0 software environment. All imple-
entations were run on a PC 3 GHz with 1 GB of RAM.
In constructing the test problems, we considered distance

etween nodes and terminals, scale of distances, density of nodes
n area, the size of neighborhoods and scale of node potentials rel-
tive to the scale of distance between nodes. So, for each group
f the test problems we considered a square in the plant with all
he coordinates of the nodes and terminals created randomly using
uniform distribution. Each node’s potential had a random value
etween zero and dmax with a uniform distribution, where dmax

as defined specifically for each group of the test problems. Table 1
pecifies 6 groups of test problems used in our experiments.

To obtain the optimal solution for these test problems, we first
sed complete enumeration of the feasible solutions. We then ran
ur proposed algorithms (based on GA and GLS) for p = m/4, m/2,

m/4, because the number of feasible solutions of BTLP is

(
m
p

)
nd we know that for the case p = m/2, the problem is at its worst
ase. On the other hand, p = m/4 can be a good test to determine the
fficiency of the algorithms and estimation of function variations
s defined in Definition 4.3. The value of p = 3m/4 is interesting in
omparison with p = m/4, because the number of feasible solutions
n both cases are approximately equal. In other words, we have

m
m/4

)
≈

(
m
3m/4

)
, and so it is expected that the algorithms

ave competitive efficiencies. But in the case p = 3m/4, the density
f terminals is more than the case p = m/4, and we can explore the
fficiency of our proposed algorithms and estimation of function
ariations given by (7).
On the other hand, we solved each medium sized problem using
arious values of r in Definition 2.1 (values of r equal to 0.2 × Sr,
.5 × Sr and 1 × Sr) and n = 100, 200, 300, 500 and 1000. This way,
e could study the effect of the size of the neighborhood of one

erminal in the CPU Time and the quality of (7).
1 2 2 × 10 1
10 2

√
2 × 100 10

100 2
√

2 × 1000 100
1 2

√
2 × 0.1 1

Our criteria for the efficiency and comparison of the algorithms
are CPU Time and suboptimality as defined below:

suboptimality (S) = F(S∗) − F(S)
F(S∗)

(100), (8)

where S* is the optimal solution of the problem.
Initially, an initial population of a fixed size was produced and

fixed for all the algorithms. If an algorithm started with an ini-
tial population with size less than the fixed population, then we
selected its corresponding initial population from the fixed initial
population randomly. We used f(x) = e−x a decreasing function, for
the Definition 1.2. The most important part of the implementa-
tion of a metaheuristic algorithm on a problem is the setting of its
parameters. We implemented the genetic/evolutionary algorithm
on test problem No. 1 with m = 20, n = 100, r = 20, Pc ∈ {0.9,0.95,0.98}
Pm ∈ {0.02,0.05,0.1} and e ∈ {5,10,20,30}, with e an percentage of
the elites of the old population that was used in constructing the
new population. We ran the algorithm 10 times and averaged the
results. The best results were obtained with Pc = 0.95, Pm = 0.1 and
e = 20.

In the genetic/evolutionary algorithm, we used the number of
generations as the stopping criterion. We implemented GA/EA for
different sizes of population and number of generations on test
problem of group 1 with m = 20, 25, 50, 75, n = 100, r = 20, p = m/2 and
ran the program 10 times. Then, we chose the best size of the pop-
ulation and the best number of generations in our implementation
(see Table 2).

In GLS, we used improvement percentage, maximum CPU time,
maximum number of improvements and number of iterations in
addition to the size of population and number of generations. We
considered 5 values for each parameter and ran each algorithm 5
times for the test problems in group No. 1 with m = 20, 25, 50, 75,
n = 100, r = 20, and p = m/2. According to the results obtained, we set
the parameters of GLS in our implementation (see Table 3).

Remark. To select the best parameters of GA/EA and GLS, we used
the following approach to compute efficiency of the algorithms. Let
a be an algorithm, s be the best solution obtained by algorithm a
and t be the average CPU time for algorithm a. Then, the efficiency
of algorithm a is defined to be:

efficiency(a) = e1−Suboptimality(s) × e−t .
m

20 25 50 75

Size of population 15 15 40 60
Number of generations 10 10 20 50
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Table 3
Parameters of GLS on BTLP.

m Size of population Number of
generations

Improvement
percentage

Maximum No. of
iterations

Maximum No. of
improvements

Maximum
CPU time (s)

20 8 4 0.01
25 8 4 0.01
50 20 10 0.01
75 50 50 0.01

Table 4
Algorithms implemented for testing.

Name Description Mutation operator

EA1 Evolutionary algorithm (Fig. 1) Mutation 1
EA2 Evolutionary algorithm (Fig. 1) Standard 2-swap
EA3 Evolutionary algorithm (Fig. 1) Mutation 2
GLS1 Genetic local search (Fig. 2) Mutation 1
GLS2 Genetic local search (Fig. 2) Standard 2-swap
GLS3 Genetic local search (Fig. 2) Mutation 2
AGLS1 Genetic local search using (7) Mutation 1

R

e
w

our proposed algorithms. To take advantage of both algorithms,

T
A

AGLS2 Genetic local search using (7) Standard 2-swap
AGLS3 Genetic local search using (7) Mutation 2
emark. Our implemented algorithms are listed in Table 4 below.

Table 5 shows that the AGLS algorithms based on �̃F are more
fficient in comparison with the GLS algorithms. We also see that
hile AGLS algorithms produce better solutions in comparison

able 5
verage results of all 1080 test problems for various algorithms.

EA1 EA2 EA3 GLS1

CPU time(s) 17.07 17.1 17.08 26.05
Suboptimality 0.00006 0.00007 0.00007 0.00059

Fig. 8. In (a), the nodes s and n are open an

Fig. 9. Multistart simulated
1 × (m − p) 5 0.001
1 × (m − p) 5 0.001
1 × (m − p) 5 1
1 × (m − p) 5 0.01

with the GLS algorithms (the required CPU times in AGLS algo-
rithms are about 0.2 of the GLS algorithms), it is not easy to compare
AGLS and EA algorithms, because the solutions of EA algorithms
are mostly more accurate than AGLS algorithms, but the CPU time
used for EA algorithms are more than AGLS algorithms. According
to the results obtained for both GLS and AGLS algorithms, the type
of the mutation operator has no significant effect on suboptimality
of solutions and CPU times, while for EA algorithms, the mutation
operator is very decisive.

5.2. Large sized problems

Based on the results obtained for the nine algorithms on medium
sized problems, we choose EA1 and AGLS1 as the representative of
we implemented a hybrid algorithm combining EA1 and AGLS1.
The hybrid algorithm is based on EA1 and uses genetic local search
using (7) in 20% of the population. This way, we will achieve accu-
rate solutions in shorter times. We call this composite algorithm as

GLS2 GLS3 AGLS1 AGLS2 AGLS3

26.03 26.04 5.68 5.69 5.67
0.00059 0.00059 0.0005 0.0005 0.00051

d in (b), the nodes n and t are open.

annealing algorithm.
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Fig. 10. Simulated annealing algorithm for maximization.

Table 6
Average results for EA1, HAGLS and MSSA on large sized problems.

m(=n) p Solution costs CPU time (in minutes) No. of best solutions found

EA1 HAGLS MSSA EA1 and MSSA HAGLS EA1 HAGLS MSSA

250
64 119220.4 119188.3 118381.5 0.132604 0.132167 2 2 0

125 124017.6 124045.8 123513.6 0.134167 0.129583 2 2 0
187 124328.9 124300.2 124148.2 0.130833 0.123333 3 1 0

500
125 375074.4 377094 374902.8 1.329233 1.161525 1 3 0
250 406949.1 407848.9 407819.6 1.325 1.14 0 2 2
375 411095.5 411231.2 410947.5 1.291667 1.083333 0 4 0

750
187 873507.7 887684.2 875874.4 3.967917 3.282758 0 4 0
375 980485.4 983936.2 979982.4 3.88625 3.154167 0 4 0
562 995181.2 995704 995092.3 3.829167 3.033333 0 4 0

2
2
4

H
t
t

e
fi
p
F
m
fi

T

w

u
p
o
a

1000
250 1361313 1398179 138002
500 1601572 1611487 160314
750 1644308 1646697 164493

AGLS. We set the parameters of EA1 and HAGLS to be the same as
he ones for the case m = 75. The number of iterations for EA1 is set
o 0.8m and for HAGLS is set to 0.64m.

To compare the efficiency of the algorithms for each m, we gen-
rated four problems (using the same conditions as the ones in the
rst group of Table 1). The performance of our algorithms was com-
ared with the multistart simulated annealing (MSSA) (as given in
ig. 9), using r = 20. For SA (Fig. 10), after some numerical experi-
ents, we set the initial temperature to 1400, ˛ = 0.9 and L = 5. The

nal temperature (Tf) is set to:

f = ε

ln([|S| − 1]/�)
,

ith ε = 0.1, � = 0.9 and |S| = number of feasible solutions [37].

We also used the neighborhood defined by (5) in the SA. We

se the amount of the execution time spent by EA1 as the stop-
ing criterion for MSSA. Table 6 shows the average cost solutions
btained for the algorithms, the average execution times for the
lgorithms on the four test problems, and number of the best solu-
9.252917 7.405417 0 4 0
9.258333 7.291667 0 4 0
8.9625 6.958333 0 4 0

tions found by each algorithm. It is evident that the new hybrid
algorithm HAGLS outperforms both EA1 and MSSA algorithms in
term of both execution times and number of best solutions found,
specially on large sized problems (in 40 of the 48 problems, HAGLS
found better solutions in shorter times).

6. Conclusions

We proposed algorithms, based on evolutionary and memetic
algorithms, for solving the bus terminal location problem. We also
defined a potential objective function for the nodes and used it
in the proposed mutation operator and for estimating the varia-
tion of objective function in the local search as part of an operator
in memetic algorithms. We proposed and tested a variety 9 algo-

rithms on a collection of over a thousand medium sized problems
and identified two representative algorithms, one being an evo-
lutionary algorithm producing more accurate solutions and the
other being a memetic algorithm performing a local search needing
less execution time. Finally, for large sized problems, we proposed
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[35] N.J. Radcliffe, D.D. Surry, Formal memetic algorithms, in: T. Fogarty (Ed.), Evo-
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[36] É.D. Taillard, Comparison of iterative searches for quadratic assignment prob-
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hybrid algorithm, composing the evolutionary algorithm with
he local search applied to 20% of the population. The numerical
est results on large sized problems showed the superiority of the
ybrid algorithm over both the simple evolutionary algorithm and
ultistart simulated annealing on most problems.
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