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Evolving Multi-modal Behavior in NPCs

Jacob Schrum and Risto M iikkulainen, Senior Member, I EEE

Abstract—Evolution is often successful in generating complex
behaviors, but evolving agents that exhibit distinctly different
modes of behavior under different circumstances (multi-modal
behavior) is both difficult and time consuming. This paper
presents a method for encouraging the evolution of multi-modal
behavior in agents controlled by artificial neural networks: A
network mutation i s i ntroduced that adds enough output nodes
to the network to create a new output mode. Each output mode
completely defines the behavior of the network, but only one
mode is chosen at any one time, based on the output values
of preference n odes. With such structure, networks are able
to produce appropriate outputs for several modes of behavior
simultaneously, and arbitrate between them using preference
nodes. This mutation makes it easier to discover interesting
multi-modal behaviors i n the course of neuroevolution.

I. INTRODUCTION

A means for automatically discovering effective b ehaviors
would b e useful to game developers. Game designers could

use such methods to train non-player characters (NPCs), or

they could train agents against scripted behaviors to discover

weaknesses in the scripts. The ultimate goal is to train NPCs
against the player, thus requiring the player to constantly

adapt to changing opponents. Such an environment would



provide a challenging and entertaining experience.
In today’s complex games, NPCs have to exhibit multiple

different b ehaviors in order to b e successful and believable
to human players. Multi-modal behavior means exhibiting
distinctly different modes of behavior at different times
under different circumstances. Although there are several
examples of learning methods that h ave discovered multi-
modal b ehaviors in games and other complex environments
[1][2][3], it is generally difficult to generate such b ehaviors
reliably, particularly as the number of modes grows.

This p aper presents a method for encouraging the devel-
opment of such b ehaviors using neuroevolution (evolution
of artificial neural networks). Neuroevolution has already
proven u seful in developing interesting behaviors in many
challenging control tasks [4][5] and games [6][7].

Furthermore, p olicy-based reinforcement learning (RL)
methods, of which neuroevolution is an example, have
been shown to have an advantage over traditional temporal-
difference RL in Partially-Observable Markov Decision Pro-
cess (POMDP) domains [8]. The advantage is particularly
significant when networks support recurrent connections,
since they provide a mechanism for remembering previous
states as part of an internal state. The environment used in
this paper, as in many complex games, is a POMDP.

This paper shows how the performance of neuroevolution
can b e improved in multi-modal domains by allowing the
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evolved neural networks to h ave several different sets of
output neurons, where each individual set completely defines
a p otential mode of behavior for the agent. W hen combined
with a method for arbitrating between output modes, this
method speeds up neuroevolution, and results in better NPC
behaviors in a test game developed for t his p aper.

First the details of the game are explained, with emphasis
on why the game requires multi-modal b ehavior. Then the
details of the evolutionary method used to evolve NPC be-
haviors are described, along with a discussion of the m ethod
that enables multiple output modes. Experimental results are
presented next, followed b y discussion and conclusion.

II. FIGHT OR FLIGHT GAME

In order to challenge evolution to develop multi-modal
behavior, a game called Fight or Flight (Fig. 1) was designed
in which the player faces two distinct tasks:

• Fight: The Fight task is modelled on the B attle Domain
presented in [1], but uses a smaller NPC t eam of only
four opponents, thus making the task harder for the
NPCs. The p layer starts in the center of four NPC
opponents, which can b e attacked with a b at. Striking
the NPCs with the bat k nocks them b ack and depletes
their health. NPCs can withstand a total of five hits
before dying. Similarly, if an NPC comes into contact



with the player, the p layer will b e knocked b ack and
will receive damage. The p layer can also only sustain
five hits before dying

• Flight: The Flight task shares the same game dynamics
as the Fight task, but the p layer no longer has a b at.
Therefore, the four NPCs can damage the player, but
are themselves impervious to damage. The player is
initially surrounded b y four NPCs and must escape
without dying. NPCs and the p layer move at the same
speed, so as soon as the player is no longer surrounded
by N PCs, the N PCs will not b e able to catch it. For this
reason, F light trials end as soon as the player escapes a
bounding box defined by the four NPC positions.

NPCs are controlled via artificial n eural networks with
several input sensors, such as the angles to the player and
each teammate, the differences in headings from the p layer
and each of the teammates, an indicator of when the NPC is
in front of the player, as well as very b rief signals whenever
a teammate is injured or the player is damaged. Additionally,
each NPC has an array of five sensors spread out in front of
it that can detect the player, other N PCs, and the bat. Two
network outputs define the agent’s b ehavior: one controls
the forward/backward impulse, and a second controls the
left/right turning.

In order for the N PCs to be successful, they must exhibit
different behaviors in the Fight and Flight tasks. In the





Fig. 1. Fight or F light Domain: (a) In the Fight task the NPCs (yellow) surround the player (green). The player has a bat that it swings
at the NPCs to deal damage. The NPCs must stay alive and avoid damage, and also inflict damage on the player by colliding with it.
(b) In the Flight task the goal of the NPCs (red) is to keep the player surrounded so they can deal damage to it. This image also displays
the sensor array used b y the NPCs in both tasks. I n the image, sensor colors change to m atch the colors of objects with which they come
in contact. T hese two tasks take place in the same environment, and share many sensors, but are different enough that distinct b ehaviors
are required for each task. Therefore, this game is an ideal environment for studying multi-modal b ehavior.

Fight task they must outmaneuver the player’s bat while

still finding openings to deal damage. In the Flight task they



must k eep the p layer surrounded u ntil they are able to k ill
it. Multi-modal behavior is also useful within each of these
tasks. For example, in the Fight task, the optimal behavior
for an NPC when it is in front of the p layer being attacked
vs. b ehind it should be different. Likewise, in the F light task,
there are different modes of optimal NPC behavior depending
on which team m ember is closest to the player.

The multiple modes of behavior required of the N PCs
come about in p art because there are multiple objectives in
the domain that they must simultaneously optimize. In the
Fight task the NPCs must deal damage, avoid damage, and
stay alive as long as possible, and in the Flight task the N PCs
must also deal damage. T o evolve NPCs in this domain, these
objectives are measured in the following manner.

1) Fight - Maximize D amage D ealt: Every t ime an NPC
contacts the player, the p layer loses 10 h ealth points.
The amount of damage dealt is attributed to the team,
regardless of which individual dealt the damage.

2) F ight - Minimize D amage R eceived: Every time the
player strikes an NPC with its b at, the NPC takes 10
points of damage, making for a r esulting change i n
health of -10. The fitness attributed to the team is the
average change in health across all individuals.

3) Fight - Maximize Time A live: There are 1000 time
steps i n each Fight trial. For each individual NPC, this
objective measures the number of time steps that the



NPC is alive. The team score in this objective is the
average across team members.

4) F light - Maximize D amage D ealt: The damage dynam-
ics are the same in the Flight case as in the Fight case
(10 damage p oints per collision), but this objective is
distinct, i.e. the score i s k ept separately.

The objectives for the Fight task are similar to those
in [1], except the intuitive Maximize D amage D ealt objective
replaces the comparatively convoluted A ttack A ssist B onus
used in that study. A ttack A ssist B onus assigned fitness to
individuals near the player whenever any NPC dealt damage
to it. This measure was u sed to overcome the team c redit
assignment problem that results from evolving heterogeneous
teams with individual-level selection for a task that requires
teamwork. This work uses homogeneous teams with t eam-
level selection since this overcomes the team credit assign-
ment problem and has been shown to be better for tasks
requiring teamwork and altruism [9]. Because of team-level
selection, all the objectives described above are team-centric.

The Maximize D amage D ealt objective for the Flight task
is included despite its similarity to the like-named objective
in the Fight task because the behavior needed to maximize
damage dealt in one task is expected to be different from the
behavior needed to accomplish the same goal in a different
task. T herefore, the objectives are distinct, and could even
potentially b e at odds with each other.



Given these multiple objectives, most evolutionary al-
gorithms would require them to be reduced to a single
scalar fitness measure, which is t ypically done using a linear
weighted sum. However, there is a class of evolutionary
algorithms called Pareto-based Multi-Objective E volutionary
Algorithms (MOEAs) that are specifically designed to deal
with multiple objectives without reducing them to a single
objective. The main result of [1], which used a domain on
which the Fight task of this paper is b ased, is that multi-
objective evolution performs b etter t han the linear weighted
sum approach, so it makes sense to r etain multi-objective
evolution when adding another task and objective to the mix.
The next section describes this evolutionary method.

III. EVOLUTIONARY METHOD

Evolutionary algorithms depend p rimarily on a means of
selecting fit individuals and a means of modifying existing
individuals to create new ones. In this paper, a MOEA is used
for selection, and Topology & W eight Evolving Artificial
Neural Networks (TWEANNs) for modification.

A. M ulti-Objective E volution

To evolve with multiple objectives, a modified version
of the well-known multi-objective evolutionary algorithm
NSGA-II (Non-Dominated Sorting Genetic Algorithm [10])
is used. The algorithm works by sorting the population into
non-dominated Pareto fronts in terms of each individual’s



fitness scores, in order to select those that are “dominated”
by the fewest individuals.
Definition of Domination: Vector v = (v1, . . . , vn) domi-
nates u= (u1, . . . , un) iff

1) ∀ i ∈ {1, . . . , n} : vi ≥ ui, and
12)) ∀∃ii ∈∈ {{11,, . . . , nn}} : vi >≥ ui.

The expression v ? u denotes that v dominates u. Vector
v wTihtehine x population ?F uisd seaniodt etos th bea tnv ~ on d-odmominianteasteu ~d .iVf tehcetroer
vdow esi nhiont epxoipstu any xn ∈F F is s saucidh tthoa bt exn ?o v-.d oTmhien vateecdtori sf ithne r Fe
tdhoaets are tne oxnis-dtoa mnyinx ~ ate∈ d are ccahll ethda tP~xa  r? etov ~ optimal, catondrs mi nakF e
up the non-dominated Pareto front of F.

Tt ho get new offspring, a simplified (µ + λ) Evolution
Strategy [11] is used: Each parent creates a clone of itself that
is then modified via mutations with some small p robabili-
ties (each mutation type with a different fixed probability). T o
progress, elitist selection takes the best half of the combined
parent and clone p opulation to b e the next parent population,
and the r est are thrown away.

With NSGA-II, elitist selection is implemented by first de-
termining which NPCs are in the non-dominated Pareto front.
NSGA-II then removes these individuals from consideration
momentarily and forms a second non-dominated Pareto front
based on the remaining members of the p opulation. This
process repeats u ntil the whole p opulation is sorted into
successive Pareto fronts.

NSGA-II selects the members from the highest ranked
Pareto fronts to be the next p arent generation. A cutoff is



often reached such that the Pareto front under consideration
holds more individuals than t here are remaining slots in the
next parent p opulation. The original NSGA-II selected the
remaining individuals from t his front b ased on a metric called
crowding distance. However, the version of NSGA-II used
in this p aper, as in [1], is modified to simply re-sort these
bottom layers with one less objective each time until the next
generation is full.

For example, if 10 more individuals are needed but the
current front under consideration contains 20 individuals, one
objective will be dropped from consideration and these 20
individuals will b e sorted into Pareto fronts using all but the
dropped objective. I ndividuals will b e selected and objectives
dropped until the needed 10 individuals are selected. I f the
selection process is reduced to u sing only one objective, and
all individuals h ave equal scores in this objective, then the
last few individuals needed are choosen randomly.

The p riorities between objectives are, from most important
to least important: Fight-DamageDealt, Flight-DamageDealt,
Fight-DamageReceived, and Fight-TimeAlive. The least im-
portant objectives are dropped first.

Selection is also improved in this paper by making use
of goal information. There is a goal (a numeric level as
described later under “Experimental Approach”) for each
objective that the evolving population must achieve, though
it may achieve some at the expense of others. To assure
that no subset of objectives takes precedence over the rest,



an objective whose goal has already b een achieved by the
population is dropped from consideration until the popula-
tion is no longer achieving the goal. The purpose of this
mechanism is to prevent the population from b eing stuck in
a situation where certain objectives’ scores stay low because
performance in the other objectives comes at their expense.

For example, if all members of the p opulation run away
from the player during a Fight trial, they will maximize
the objectives of avoiding damage and staying alive, but
minimize the objective of dealing damage. Despite the fact
that any individual in such a p opulation that damages the
player will b e selected to go to the next generation b y
NSGA-II, there is a r isk of the population stagnating in such
a state. Therefore, the objectives for avoiding damage and
staying alive are dropped from consideration until such a
time that the p opulation is n o longer performing well in the
corresponding goals for these objectives.

Successive generations will still t end to accomplish goals
that previous generations could h andle despite dropping
objectives for achieved goals, but selection pressure will b e
focused solely on those objectives whose goals the popula-
tion is having trouble achieving. Thus stagnation is avoided,
and evolution can focus on the m ost challenging objectives.

B. N euroevolution

Neuroevolution is the application of an evolutionary al-
gorithm to artificial neural n etworks. In the Fight or Flight
game, these networks are used to control the behavior of



NPCs by mapping sensor inputs t o NPC actions.
The initial population of networks consists of individuals

with no hidden layers, i.e. only input and output nodes.
Furthermore, these networks are sparsely connected i n a style
similar to Feature Selective Neuro-Evolution of Augmenting
Topologies (FS-NEAT [12]). I nitializing the networks in this
way allows them to easily ignore any inputs that are not, or
at least not y et, useful.

After the cloning stage of NSGA-II, m utations are proba-
bilistically applied to the cloned neural networks (crossover
is not used). There are mutations t o perturb the weights of
existing network connections, add new (potentially r ecurrent)

merged. The dashed lines indicate connections that will be deleted
by the merge, and the solid lines are connections that will persist.



The r esult of the merge is seen in (b). The mutation reduces
network structure without drastically modifying the connectivity of
the surrounding nodes.

connections between existing nodes, and splice new nodes
along existing connections. T hese mutation operators are
similar to those used in NEAT [13].

An additional mutation operation is introduced in this
paper to reduce network structure (Fig. 2). This operator
performs a merge: A hidden node A is randomly choosen,
apnerdf a mdifsfe arem nte rrgaend:oA m hhiiddddeenn nnooddee BA Atoi s swr ahnicdho Am lhya sc a odoisreecnt,
caondnna ed ctiifofenr eisn tar lsano randomly nchn ooodseen B. tAol lw choinchn Aect ihoanssa in ditore cBt
are nreedcitrioenctei sd tlsoo Ar a, udnolmeslsy c Ah already ltalk ceosn input nfrso imnt othB e
given ndoiredcet, adnt do oaAl l outputs fA rom al rBe bdeyco tmakee outputs froromm tAhe,
gunivleenss nsoudceh, outputs already ef rxoimst. BAsb tehceo mlaset step btsot fhr oBm a And,
tuhnel csosns nuecchtioo nut pbuettwsa elerena dAy ae nxdis tB. are hdeel leatsetds .

eTc heon purpose oetfw theeen merge m But aarteio dne eist to prevent bloat
while damaging fitness as little as possible. T here are several
neuroevolution algorithms that simplify structure b y deleting
connections and/or nodes from the network [14][15][16].
This simplifying mutation is unique in that it is less likely
to drastically alter network behavior in comparison with a
simple deletion, because all nodes to which the merged node
connected will receive inputs that should b e similar, but
slightly different from what t hey received before.

Preliminary experiments indicate that the merge mutation
improves the performance of the algorithm, and leads to more
compact solutions.



C. Encouraging M ulti-Modal Behavior

The algorithm described in the previous section is modified
to encourage multi-modal b ehavior. However, this proposed
methodology can potentially be applied to any neuroevolu-
tion method, not j ust the one p resented in this p aper.

For a typical neural network to produce multi-modal
behavior, it must b oth detect the need for alternate modes
based on the inputs, and use t his k nowledge to produce
optimal (or as good as p ossible) outputs for each mode.
To perform well at a multi-modal task, a network could
potentially require the same output n odes t o produce very
different outputs given inputs t hat may not b e significantly
different. For example, in the Fight or Flight game, given that
NPCs can sense the player’s b at, two nearly identical states,
differing only in whether the bat is present or absent, would
likely require totally different responses from the N PCs.

In a sense, a domain r equiring multi-modal behavior
is one that i s f ractured as defined by Kohl and Miikku-
lainen [17][18]. However, whereas they attack this problem
by modifying the types of nodes and connectivity allowed in
the hidden layer, in this paper the network is instead provided
with several m odes of behavior in the output layer. That
is, instead of expecting a network to drastically modify its
outputs across similar inputs, the network is provided with
several sets of output nodes, ideally one corresponding to
each mode of behavior. Every output mode consists of a set



of output (or policy) nodes capable of completely defining
the behavior of the agent. In order to arbitrate between these
modes, there is an extra output node for each mode that
represents the preference for the given mode. The actions of
an agent using such a neural network are defined b y first
determining which mode has the preference node with the
highest value. The policy nodes for the given output mode
are then used to define the agent’s b ehavior.

This architecture allows the network to generate outputs
for each mode of behavior regardless of which mode is
currently the b est to execute. Now, in order to act in accor-
dance with the correct mode, only the relative magnitudes of
the preference nodes needs to be learned, which should b e
simpler than h aving one set of output nodes tuned for every
possible mode of behavior. Another benefit of this architec-
ture is that any abstract features about the environment that
are discovered within the h idden layer can be shared across
multiple output modes, eliminating the need t o rediscover
useful configurations of hidden nodes more than once.

A p otential problem with the algorithm as described thus
far is that the number of output modes n eeds to b e known
a priori. Even with the k nowledge that we have of the Fight
or Flight game, it is unclear whether there should b e two
modes (one per task), four modes (one per objective) or even
more. Therefore a method was devised to allow evolution to
determine the number of output modes needed.

A mutation is added to the evolutionary method that adds a



mode. This mutation adds enough policy nodes to fully define
an output behavior, as well as an extra preference node for
the new mode. Because mode mutation is potentially a drastic
change to the network structure, care needs to b e taken to
minimize the initial change in network b ehavior.

To carry out a new mode mutation, the nodes of the
last (right-most) output mode M are first identified, and an
equal nguhtm-mbeors o)fo new n moodedse Mfor tarhee new output dm,o andde a  Nn
are athle nnu cmrbeeatredo fton ethwe right sof fo Mrt .h Feon re ewaco hu tnpoudte mino dMe ,N a
afereedt -hfeornwc arerda ceodn tnoect thieonr gwhittho a weight roe fa 1c hisn aoddedei dn t Mo t,hae
corresponding new node inN (feed-forward connections are
aclolrorwesepdo wndiithnignn tehwe same layer provided they go nfreocmtio lnesft a rtoe
right). The outputs of the new mode will thus b e similar to
those of a p re-existing m ode (Fig. 3).

Using the new node mutation, i t is possible to learn
the optimal number of output modes incrementally while
learning how to solve the task.



policy nodes and one p reference node (in gray). For each of these
nodes a new node is created to the r ight that receives feed-forward
input from it along a connection with weight 1 (dashed lines).
The r esulting network is (b). Future mutations can now create
connections to the nodes of the new output mode, and refine it
into a distinct and u seful b ehavior.

IV. EXPERIMENTAL APPROACH

The NPCs are evolved in homogeneous teams using team-
level selection. A homogeneous team is created b y taking
a single neural network to be evaluated, copying it four
times, and assigning one copy to each of the four NPCs.
Homogeneous teams t end t o b e better at evolving teamwork
because every individual implicitly knows what to expect
of its teammates [9]. However, such implicit awareness of



one’s teammates has also b een developed in h eterogeneous
populations, often b y representing the entire team b y a single
genome [19] or b y h aving each teammember come from a
separate subpopulation [20].

With team-level selection the fitness scores are calculated
for the team as a whole, and assigned to the genome. Such
selection makes sense in environments r equiring teamwork,
particularly if altruism is necessary [9], since team-level
selection will tolerate the suffering of individuals when it
serves the greater good of the team.

Neuroevolution combined with the modified version of
NSGA-II is used to evolve N PCs using the four NPC objec-
tives listed in the domain description above. A single parent
population contains 50 neural networks. Fitness evaluation is
noisy, so each neural network is evaluated five times in the
domain. A network’s final fitness scores are averages of the
results from the five evaluations. Participating in five trials
means that each network is involved in five Fight trials and
five Flight trials, though the agents are not explicitly aware
of which type of trial they are facing. Five trials was found
to be a reasonable trade-off in terms of reducing n oisiness
and reducing overall evaluation time.

In order to evolve the NPCs, opponents are necessary.
Because h uman interest cannot be maintained for the many
game trials in takes evolution to learn interesting b ehaviors,
the NPCs are evolved against a computer-controlled player.
To make this distinction clear, this computer-controlled entity



will b e referred to as a bot.
The bot u ses a separate strategy for each of the two tasks

of the Fight or F light game:
• Fight: The strategy is the same as the Chasing strategy

used in [1]: The bot moves forward and t urns towards
the nearest NPC in front of it. The bot swings its bat
constantly while moving.

• Flight: The bot’s goal is to escape the NPCs, so it moves
backwards away from the nearest NPC that is in front of
it (that it can see). A n advantage of moving backward
is that the bot will always end up facing its attacker
every time it is knocked back b y contact with an NPC.
Facing the source of the attack makes it easy for the bot
to avoid its most recent attacker by continuing t o move
backwards after b eing involuntarily knocked backwards.
This bot behavior makes the task h arder for the NPCs:
they should only hit the bot if doing so will k nock it
into the midst of other NPCs.

These are challenging strategies for the NPCs. In fact,
an initially random p opulation does not have much of a
chance to evolve interesting behavior against a bot using
these strategies and moving at full speed. Therefore, the bot
is initially handicapped b y h aving its speed reduced, and
incremental evolution [21] is used to gradually increase the
speed whenever the NPC population demonstrates that it is
able to handle the bot at the current speed.

Progression is b ased on goals; there is one goal for each



objective. These are the same goals that the modified NSGA-
II uses to drop objectives whenever their goals are achieved.
A goal is simply a numeric value for an objective that should
be attained b y an average performing member of the popula-
tion. Throughout the course of evolution, the average value
of each objectve across the successive parent p opulations is
tracked. Additionally, for each objective a recency-weighted
average of these average values is maintained.

The purpose of the recency-weighted average is to t rack
the average performance of the population over the most
recent evaluations. When the value of a recency-weighted
average has surpassed its objective’s goal value, the goal
is considered achieved. Once all goals are achieved, the
difficulty of the task is increased by increasing the speed
of the bot. The goals for each objective are:

1) Fight - Maximize D amage D ealt: 50: The bot has 50
health points, so this goal requires the NPCs to k ill the
bot at least once per trial. The bot respawns after death,
giving the NPCs a chance to inflict more damage.

2) Fight - Minimize D amage R eceived: -20: Bat strikes
deal 10 damage points each, so each NPC should take
no more than 2 hits on average. However, because this
value is averaged across team members, it is possible
to achieve this goal even i f one t eam member dies
(50 damage), since the average across the four team
members could still b e above -20.

3) Fight - Maximize Time A live: 800: On average, team



members must survive throughout 80% of the trial.
This number is an average across team members as
well, so it is still possible to achieve this goal if some
NPCs die in fewer than 800 iterations.

4) Flight - Maximize D amage D ealt: 100: T his goal
requires the NPCs to k ill the bot twice per F light
trial. This amount is greater than the amount for the
similar goal for the Fight task because without the b at,
the N PCs should b e able t o deal a greater amount of
damage in the same time.

Using averages is b etter than using the generation-to-
generation values themselves because these values fluctuate
significantly. The recency-weighted average is b etter than a
regular average because it does not p unish the p opulation for
bad performance in distant earlier generations. The particu-
lar α weight used for the recency-weighted average was 0.15,
meaning that every update to the average moves it 0.15D
towards the most recent data p oint, where D is the difference
between the data point and the previous average.

At the start of the simulation, and whenever the popula-
tion achieves all goals, thus causing the speed of the bot
to change, the recency-weighted averages are r eset to the
minimum values of the corresponding objectives, which are
zero for all objectives except Fight-DamageReceived, which
has a minimum of -50.

Two different experimental conditions with labels 1Mode
and ModeMutation are compared. The 1Mode experiments



use neural networks with a single output mode (two nodes).
No preference node is needed because there is only one
mode. The ModeMutation experiments start with networks
that have only one output mode, but that can gain more via
the mode mutation. For the M odeMutation trials, a single
output mode requires three output nodes (two p olicy nodes
and one preference node).

Each condition is evaluated in 10 separate trials for 300
generations or until all goals are achieved when the bot
speed is 100%, whichever comes first. The bot speed starts
at 0% which allows for no movement other t han turning.
When all goals are achieved at this speed, the speed is
increased to 4 0%, then 80%, and finally 100%. Preliminary
experiments were done with other speed sequences, and this
sequence was found to allow for a reasonably good trade-off
between differences and similarities of consecutive speeds.

V. RESULTS

The Fight or Flight game proved challenging for b oth
experimental conditions, but the ModeMutation method was
twice as successful as the 1Mode method in that four of the
ten trials defeated the bot at 100% speed whereas only two
of the 1Mode trials defeated the bot at 100% speed. The
number of generations spent b y each trial against the bot at
each speed is shown in F ig. 4.

However, to fully understand the performance of these
methods, the b ehaviors of the r esulting NPCs must b e ob-



served. The main theme is that individuals in M odeMutation
populations tend to perform well in all objectives, whereas
individuals in 1Mode trials tend to focus on certain objectives
at the expense of the others (Fig. 5).

More specifically, in order to perform well, evolution
should discover multi-modal behavior. For instance, in the
Fight task, an established [1] good behavior is a baiting tactic,

Generations Spent Facing Each Speed

Fig. 4 . Generations Spent Facing the Bot at Each Speed: For
the ten 1Mode trials and ten ModeMutation trials, the generations
spent facing the bot at 0%, 40%, 80% and 100% speed are shown
in a stacked bar chart. Four ModeMutation trials and two 1Mode
trials finished b efore reaching the 300 generation cutoff.



by which one NPC is chased b y the bot and the others follow
behind. At 100% speed, i t would b e impossible for the bot to
catch the bait, and the other NPCs to catch the b ot, because
no one agent would be able to overtake any of the others.
However, if the baiting NPC learns to turn slightly t o the side
while running away from the bot, the bot will turn to chase
it, which allows the chasing NPCs to catch up and attack the
bot. The b ait often suffers some damage as a result of b eing
chased, but the behavior ultimately benefits the t eam enough
to offset this loss.

A good behavior in the Flight task is a corralling t actic
in which the NPCs surround the bot and r epeatedly knock it
towards the center. NPCs must be careful to spread out so
that none of t hem knocks the bot outside of the corral.

Such successful behavior emerged reliably in the four
ModeMutation t rials that achieved all goals within the al-
lotted 300 generations. One example is illustrated in F ig. 5a;
movies can b e seen at http://nn.cs.utexas.edu/?multimodal09.
In the Fight task, t here are at least two modes of behavior
being demonstrated: baiting and chasing. The NPCs are
using one set of output modes to perform baiting, and then
a different output mode to perform chasing. One evolved
output mode corresponds to chasing, and two modes are
associated with the baiting b ehavior.

In the r ight side of Fig. 5a, the exact same team of
agents is p ortrayed in a F light trial. They now demonstrate
the corralling behavior. To prevent escape, the NPCs only



knock the bot towards the center. B y moving t o b lock the

bot, they sometimes trick it into moving b ack into b eing

surrounded. Interestingly, this behavior depends on the same

output mode that gives r ise to the chasing behavior in F ight

trials. E volution adapted the common aspects of one output

mode into two different tasks, and evolved extra modes to

handle the additional behaviors needed by the Fight task.

In contrast, individuals from 1Mode trials, even though

deemed successful, tend to be narrowly focused. None of

the individuals developed through the 1Mode method excel

Fight Task Flight Task

from a Flight trial (right) faced by the same network. These examples can b e seen as animations at http://nn.cs.utexas.edu/?multimodal09.
The texture of the floor has b een removed to increase visibility in the static display above. (a) A M odeMutation trial in which the N PCs
do well in b oth the Fight task and the Flight task. In the Fight t ask the NPCs exhibit the baiting strategy, and in the Flight task the NPCs
knock the bot to the center whenever it is about to escape. (b) A 1Mode trial in which the N PCs deal no damage to the p layer in the Fight
task. Three NPCs (two of which are visible in the frames) chase the bot while the other r uns away from it off screen, and n o damage
occurs. However, the NPCs do perform well in the Flight trial b y knocking the bot b ack i nto the center whenever i t i s about to escape.
(c) A 1Mode trial in which the NPCs exhibit a strategy similar to the baiting tactic, but less effective in that they wind up in front of the
bot, where they are repeatedly struck with the bat (last two frames of Fight task). These N PCs achieve the goal of killing the bot once,
but are so inefficient that all of them die as well. The NPCs also exhibit poor behavior in the Flight task b y letting the bot e scape after
three hits. In the successful trials, ModeMutation discovers networks that perform well across all objectives in b oth t asks, in contrast t o
the 1Mode trials that r esult in networks that only do well i n particular objectives by p erforming p oorly i n others.

at all objectives. Instead, there is always an imbalance.

For example, the team of 1Mode NPCs p ortrayed in

Fig. 5b ignore the objective to damage the bot in order

to do well in the other objectives. In the Fight trial, the



NPCs develop a simple behavior that avoids all contact with
the b ot. They do no damage to it, though they also take
no damage and manage to live through the whole trial.
However, the NPCs do well in the Flight trial that follows
and exhibit corralling behavior. Doing damage in the F ight
trial is sacrificed for the sake of the other objectives.

In another 1Mode team (Fig. 5c), N PCs use a strategy like
the baiting behavior described above, except that it results in
the deaths of all the N PCs. They meet the goal of dealing 50
points of damage to the b ot, but do poorly at avoiding damage
and staying alive. In the Flight trial the NPCs let the bot
escape after j ust three hits.

Thus, the individuals in the 1Mode trials tend to have
extreme scores, but rarely have high scores across all ob-
jectives. Because the goal-based progress mechanism used
in this p aper is b ased on the average scores of individual
objectives, it does not care whether there are any agents
doing well in all objectives. Therefore the same goals can
be met both in the case where all agents do reasonably well
in all objectives (as with the ModeMutation results) and in
the case where different agents do extremely well in certain
objectives but very poorly in others (as with the 1Mode
trials). In fact, the final maximum, minimum and average
scores for the successful 1Mode trials are similar to scores
for the successful ModeMutation trials. The difference is at
the level of individuals rather than the level of the p opulation.

Since we do not know the shape of the true Pareto front



for the Fight or Flight game, we cannot know which of these
outcomes most accurrately matches the true front. Given that
MOEAs are designed to produce a p opulation that is spread
across the trade-off surface between objectives, the 1Mode
method may b e b etter at this than ModeMutation. However,
if the ultimate purpose is to design agents that exhibit multi-
modal behavior, then ModeMutation is clearly preferable.

VI. DISCUSSION AND FUTURE WORK

The experiments in this p aper have demonstrated that
the ModeMutation method is b etter suited than the 1Mode
method to evolving agents that exhibit multi-modal behav-
ior. One problem with multi-objective evolution is that it
considers a p opulation with individuals occupying extreme
edges of the trade-off surface to b e b eneficial. Individuals that
maximize some objectives while doing very p oorly in others
do b elong in the Pareto front, but are usually not very good as
game NPCs. A way needs t o be developed to take advantage
of the benefits of multi-objective evolution while focusing on
solutions that do well across all objectives. ModeMutation
biases evolutionary search towards these solutions.

However, many MOEAs besides NSGA-II exist, and some
of them may b e able to address this problem as well. For
example, instead of p erforming selection b ased on which
Pareto front a solution occupies, it could be p erformed
based on how many individuals a candidate solution Pareto-
dominates, as is done in the Strength Pareto E volutionary



Algorithm [22]. T his selection method would b ias selection
towards solutions that did well in many objectives, and away
from solutions near the extreme edges of the Pareto front.

One possible way to improve the current approach would
be to change how incremental evolution progresses. Progress
goals that are b ased on average values for each objective
allowed the undesirable solutions of the 1Mode method to b e
considered successful. It might be b etter to increase difficulty
only when individuals within the p opulation simultaneously
meet several objective goals. Such goals would likely p re-
vent bad solutions like those of the 1Mode method from
progressing to harder challenges.

However, it might be possible to take advantage of di-
verse p opulations with specialized individuals b y treating
the p opulation as an ensemble. For any given situation, at
least one member of such a diverse p opulation would likely
exhibit suitable b ehavior. By learning to arbitrate between
the outputs of all members of the population (as in [5]) a
single agent could b e designed t hat would exhibit appropriate
behaviors in different situations.

There is also room for improvement of ModeMutation
itself. For example, the M odeMutation network depicted in
Fig. 5a had seven output modes, but only three of these
were ever selected t o define agent behavior. Some successful
ModeMutation networks had as many as ten total modes.
In some cases these seemingly superfluous modes do serve
a purpose, because they h ave recurrent outputs and/or feed



forward outputs to other modes. It is also not certain whether
these unused modes are simply evolutionary baggage (never
been used) or if they are vestigial (once useful, but no longer
so). There are likely ways to apply ModeMutation more
intelligently to prevent this k ind of bloat, and assure that
new modes only arise if they are actually useful.

In the meantime, the ModeMutation used in this p aper is
a simple and effective method to learn multi-modal behavior.
In the future, it should be possible to scale it up to h arder
domains and more objectives. Furthermore, the method could
be used to facilitate transfer learning. A n agent could evolve
new output modes on top of old modes in order t o accom-
plish new tasks. Such applications constitute an interesting
direction for future work.

VII. CONCLUSION

A mutation operator was proposed for neuroevolution
algorithms that aims at producing multi-modal b ehavior. This
operator adds new modes by adding to the output layer of
the network.

The approach was applied to a game with two separate
tasks and four competing objectives, resulting in NPCs
that excel in b oth tasks. The method is thus a p romising
starting p oint for discovering multi-modal behavior and for
developing complex agents in challenging tasks in general.
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