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Abstract—Intelligent opponent behavior helps make video
games interesting to human players. Evolutionary computation
can discover such behavior, especially when the game consists of
a single task. However, multitask domains, in which separate
tasks within the domain each have their own dynamics and
objectives, can be challenging for evolution. This paper proposes
two methods for meeting this challenge by evolving neural
networks: 1) Multitask Learning provides a network with
distinct outputs per task, thus evolving a separate policy for
each task, and 2) Mode Mutation provides a means to evolve
new output modes, as well as a way to select which mode
to use at each moment. Multitask Learning assumes agents
know which task they are currently facing; if such information
is available and accurate, this approach works very well, as
demonstrated in the Front/Back Ramming game of this paper.
In contrast, Mode Mutation discovers an appropriate task
division on its own, which may in some cases be even more
powerful than a human-specified task division, as shown in the
Predator/Prey game of this paper. These results demonstrate the
importance of both Multitask Learning and Mode Mutation for
learning intelligent behavior in complex games.

I. INTRODUCTION

Video games often feature computer controlled opponents,
Non-Player Characters (NPCs), which human players must
defeat to do well in the game. Creating intelligent behavior
for such NPCs traditionally requires extensive hand-coding
and troubleshooting by programmers. However, there has
been much interest, and some success, in the academic com-
munity in evolving NPC behavior for games [1, 9, 16, 20].
These approaches each treat the game as a single task, and
optimize the NPC behavior for that task.

However, many entertaining games consist of multiple
tasks. Even the classic game of Pac-Man involves two tasks:
the NPC ghosts chase after Pac-Man and try to catch him,
but as soon as he eats a power pellet the task switches, and
the ghosts must run from Pac-Man or be eaten.

Recently, the multitask nature of games has been noted,
and a few methods have been developed to deal with them.
One such approach is interactive evolution, as demonstrated
in NERO [12], a game in which agents can learn many
different behaviors because a user constantly interacts with
the system by adjusting the fitness function and changing
the agents’ environment. However, this approach is prone to
forgetting old behaviors when learning new tasks, which is a
problem requiring considerable user effort to overcome [4].

Another approach to dealing with multiple tasks is evo-
lution of a subsumption architecture composed of neural
networks [15, 17]. This approach requires the programmer
to divide a domain into its constituent tasks, and develop
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effective training scenarios to evolve separate network con-
trollers for each task. These controllers are combined into a
hierarchical controller which is also evolved.

A third approach, Multitask Learning [2], is similar in
that the task division must be known, but different in that
only a single network controller is learned. This controller
has separate output modes corresponding to each task, and
uses knowledge of the current task to choose which mode
to use in a given situation. This approach is typically used
in a supervised learning setting; Multitask Learning is rarely
combined with evolution, and so far has not been aimed at
evolving agent behavior. Therefore, multitask evolution for
games is one approach evaluated in this paper.

While it may be easy to divide a game into its constituent
tasks in some cases, games are typically complex enough
that an appropriate division is difficult to achieve. Not all
games have a clear task division like Pac-Man. One approach
to multitask domains that addresses this problem directly
is Mode Mutation, introduced in [10], which lets evolution
decide how many modes to have and when to use them.
Unlike the subsumption and Multitask Learning approaches,
Mode Mutation can be used without knowledge of the
domain’s task division. Interestingly, as shown in this paper,
even if such a division is available, Mode Mutation may
sometimes discover one that is better. In this paper, the
original Mode Mutation is evaluated, as well as an enhanced
version that makes such discovery possible.

Both Multitask Learning and Mode Mutation create mul-
timodal networks, i.e. networks with access to multiple
modes of behavior. These approaches are evaluated in two
multitask games designed for this paper. After these games
are reviewed, the evolutionary method is described, along
with specific details on Multitask Learning and Mode Mu-
tation. The method section is followed by a description of
experiments, results, and ideas for future work.

II. MULTITASK GAMES

This section defines multitask games and describes two
such games designed for the experiments of this paper.

A. Definition

In multitask games, NPCs perform two or more separate
tasks, each with their own measures of performance. In
the extreme case, performance in one task is unrelated to
performance in other tasks. This extreme view makes it easy
to analyze task performance independent of other tasks, and
is therefore the basis of the domains in this paper. However,
multitask games are only interesting if it is desirable to have
NPCs capable of performing all tasks. Therefore, all tasks
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presented are related in that they place NPCs in the same
environment with the same sensors.

There is an important distinction between the multitask
games of this paper and other games with multiple tasks. In
a multitask game, tasks are isolated and it is always clear
what the current task is. In Pac-Man, the task division is
clear because eating a power pellet causes a task switch, but
the tasks are not isolated because the positions of agents at
the task switch affect the performance in the next task. A
game like Unreal Tournament also has multiple tasks, but
there is no strict separation between them; NPCs choose
which task to perform when, such as gathering items and
fighting, and may even do multiple tasks simultaneously.
Note that an NPC’s internal state is irrelevant for determining
whether the game has separable tasks; the multitask nature
of a game is a property of the game, and not of the NPCs
programmed to play it. This paper concerns itself solely with
games where the task division is clear and performance in
each task is unaffected by behavior in other tasks, though it
will be possible to apply the methods in this paper to games
with less strict task divisions in the future.

Although the task division is clear, the NPCs may not
have access to this knowledge. Therefore, this paper deals
both with agents that have a priori knowledge of the task
they face, and agents that must figure out how to behave
despite not knowing which task they face.

To assure that these domains are challenging, they are
designed to involve tasks in which good behavior in one task
is bad behavior in another task. The separate tasks still have
underlying similarities, but different behaviors are needed
across tasks to be effective NPCs in the game as a whole.

All tasks in this paper are multiagent tasks designed using
the simulation environment BREVE [6]. In each task, evalua-
tion begins with a team of NPCs surrounding the player. Task
evaluations have limited duration and are independent from
each other. All agents can move forward and backward and
can turn left and right with respect to their current heading.

Although the player stands for a human player in principle,
a scripted, task-dependent agent was used in the experiments
instead to make a large number of evaluations possible. This
“player” agent will be referred to as the “enemy” throughout
this paper. The initial heading of the enemy is random in each
evaluation to make evaluation noisy, which requires NPCs to
learn situational behavior and prevents blind memorization
of enemy trajectories from succeeding. Informal experiments
show that NPC behavior evolved against the scripted enemy
is still interesting and challenging for humans to overcome.

The multitask games designed for this work are Front/Back
Ramming (FBR), which requires NPCs to be alternately
aggressive with and protective of different parts of their
body depending on the task, and Predator/Prey (PP), which
contrasts attacking the enemy with running away from it.
Each domain is explained in full detail next.

B. Front/Back Ramming Game

This game requires both offensive and defensive behavior
from NPCs in each task to be successful, but these behaviors

(a) Front Ramming task (b) Back Ramming task

Fig. 1: Front/Back Ramming. Fig. 1a shows the start of a Front
Ramming task and Fig. 1b shows the start of a Back Ramming task.
In both tasks the NPCs start pointed at the enemy in the center. The
rams are depicted by white orbs attached to the NPCs. In the Front
Ramming task, NPCs can start attacking the enemy immediately,
but in the Back Ramming task they must turn around first. Learning
which behavior to exhibit is difficult because different behavior is
needed in the different tasks, even though the NPCs’ sensor readings
would be the same in each of the above situations.

are needed under different circumstances in each task.
Each NPC is equipped with a battering ram, and is

therefore called a rammer (Fig. 1). If a ram hits the enemy,
then the enemy is damaged, but if the enemy hits a rammer,
then the rammer takes damage. All agents start with 50 hit
points, and every hit removes 10 hit points. If the enemy
dies, all agents are reset to their starting locations around the
enemy before the enemy comes back to life, thus giving the
evolving NPCs a chance to accrue additional fitness. When
NPCs die, they are dead for the rest of the evaluation.

This game consists of Front Ramming and Back Ramming
tasks, the only difference being where on the rammer the
ram is located. When Front Ramming, rammers start with
their rams pointed at the surrounded enemy. When Back
Ramming, the rams start facing away from the enemy, and
rammers must first turn in order to ram the enemy.

Enemy behavior is essentially the same in both tasks: It
will try to circle around the rammers to hit them from the
unprotected side if possible, but if threatened by the rams, it
will prefer to run and avoid damage.

This game has six objectives. Each task has its own
instance of the same three objectives: deal damage to the
enemy, avoid damage from the enemy, and stay alive as
long as possible. Damage dealt to the enemy is a group
score shared by NPCs on a team. The damage avoidance
and staying alive objectives are assessed individually, and
the average across team members is assigned to the team.

Although damage received and time alive are both affected
by taking damage, each one provides valuable feedback when
the other does not: if all NPCs die, then time alive indicates
how long each avoided death, but if no NPCs die, then
damage received indicates which team performed better.

The need to be alternately offensive and defensive in each
task and the large number of fitness objectives makes this
game very challenging. The next game has fewer objectives,
but is nonetheless challenging in its own right.
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(a) Predator task (b) Prey task

Fig. 2: Predator/Prey. Both the Predator and Prey tasks look the
same. Fig. 2a has an arrow showing the movement path of the
enemy in the Predator task: It tries to escape through the nearest
gap between two NPCs. Fig. 2b shows how the enemy would
behave in the same situation in the Prey task: It pursues the nearest
NPC prey in front of it. Both situations are the same to the NPCs,
but because the environmental dynamics and enemy behavior are
different, different behavior is needed to succeed.

C. Predator/Prey Game

In contrast to FBR, offensive and defensive behaviors
are needed in separate tasks within this game. NPCs are
either predators or prey depending on the task, and the
enemy takes on the opposite role (Fig. 2). The dynamics
of the environment and the behavior of the enemy change
depending on the task.

In the Predator task, NPCs are predators and the enemy is
prey (Fig. 2a). The enemy tries to escape by moving through
a gap between two predators. When a predator hits the
enemy, the enemy sustains damage and is flung away from its
attacker. All agents move at the same speed, which means
predators must avoid crowding the enemy, since hitting it
can knock it so far away that it is impossible to catch.
Therefore, evaluation ends prematurely if the enemy is no
longer surrounded. This task is the same as the “Flight” task
in [10], but the enemy’s escaping behavior is more intelligent
because it explicitly seeks gaps through which it can escape.

The Prey task reverses the dynamics of the Predator task,
such that the enemy deals damage to NPCs, who are now the
prey (Fig. 2b). This task is fairly simple since NPCs still start
surrounding the enemy, and can avoid it by just running away.
The enemy’s behavior consists of moving forward towards
the closest NPC. Thus, the PP game is challenging because a
single evolved controller must be able to execute essentially
opposite behaviors depending on the task.

PP has three objectives. In the Predator task, the only
objective is to maximize damage dealt to the enemy. This
amount is shared across NPCs as in FBR. The Prey task has
two objectives: minimize damage received, and maximize
the time spent alive. As in FBR, these amounts are averaged
across team members to get the team score.

As in FBR, the amount of damage per hit is 10 hit points,
and all agents have 50 hit points. Furthermore, the domain is
reset to starting conditions if the enemy dies (only possible
in Predator task). The next section explains the evolutionary
methods used to handle these games.

III. EVOLUTIONARY METHODS

Evolutionary multiobjective optimization was used to han-
dle the many objectives across tasks. The evolved individuals
were neural networks, and special methods were used to
evolve them for multitask games.

A. Evolutionary Multiobjective Optimization

Multitask games are by their very nature multiobjective,
since at least one objective is needed in each task. The
above domains have multiple objectives per task, which
makes evolving in them even more challenging. Therefore a
principled way of dealing with multiple objectives is needed.
The concepts of Pareto dominance and optimality provide
such a framework1:
Pareto Dominance: Vector ~v = (v1, . . . , vn) dominates
~u = (u1, . . . , un), i.e. ~v � ~u, iff

1. ∀i ∈ {1, . . . , n} : vi ≥ ui, and
2. ∃i ∈ {1, . . . , n} : vi > ui.

Pareto Optimality: A set of points A ⊆ F is Pareto optimal
iff it contains all points such that ∀~x ∈ A: ¬∃~y ∈ F such
that ~y � ~x. The points in A are non-dominated, and make
up the non-dominated Pareto front of F .

The above definitions indicate that one solution is better
than (i.e. dominates) another solution if it is strictly better
in at least one objective and no worse in the others. The
best solutions are not dominated by any other solutions, and
make up the Pareto front of the search space. The next best
individuals are those that would be in a recalculated Pareto
front if the actual Pareto front were removed first. Layers
of Pareto fronts can be defined by successively removing
the front and recalculating it for the remaining individuals.
Solving a multiobjective optimization problem involves ap-
proximating the first Pareto front as best as possible; In this
paper this goal is accomplished using the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II [3]).

NSGA-II uses (µ+λ) elitist selection favoring individuals
in higher Pareto fronts over those in lower fronts. Within
a given front, individuals that are more distant from others
in objective space are favored by selection for the sake of
exploring diverse trade-offs.

Applying NSGA-II to a problem results in a population
containing an approximation to the true Pareto front. This
approximation set potentially contains multiple solutions,
which must be analyzed in order to determine which so-
lutions fulfill the needs of the user. However, NSGA-II is
indifferent as to how these solutions are represented. For all
domains in this paper, NSGA-II was used to evolve artificial
neural networks to control the NPCs. The process of evolving
these networks is called neuroevolution.

B. Neuroevolution

Neuroevolution is the application of evolution to neural
networks. All evolved behavior in this paper was learned via
constructive neuroevolution, meaning that networks start with

1These definitions assume a maximization problem. Objectives to be
minimized can simply be multiplied by −1.
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minimal structure and become more complex from mutations
across several generations. The initial population consists of
networks with no hidden layers, i.e. only input and output
neurons. Furthermore, these networks are sparsely connected
in a style similar to Feature Selective Neuro-Evolution of
Augmenting Topologies (FS-NEAT [19]). Initializing the
networks in this way allows them to ignore any inputs that
are not, or at least not yet, useful.

Three mutation operators were used to change network
behavior. Weight mutation perturbs the weights of existing
network connections, link mutation adds new (potentially
recurrent) connections between existing nodes, and node
mutation splices new nodes along existing connections. Re-
current connections transmit signals that are not processed
by the network until the following time step, which makes
them particularly useful in partially observable domains. An
environment is partially observable if the current observed
state cannot be distinguished from other observed states
without memory of past states [14]. Recurrent connections
help in these situations because they encode and transmit
memory of past states; a property that could help a network
determine which of several tasks it currently faces.

These mutation operators are similar to those used in
NEAT [13]. Though NEAT provides a method for performing
crossover on these arbitrary topology networks, crossover
is not used in this paper because preliminary experiments
showed that it often had no effect, and in some cases even
decreased performance.

The form of neuroevolution described so far has been used
to solve many challenging problems [5, 8, 11, 13], but this
approach does not directly target multitask domains. The next
section describes some enhancements to neuroevolution for
dealing with multitask domains.

C. Multitask Evolution

Two approaches to dealing with multitask games are evalu-
ated: Multitask Learning, which translates work from [2] into
a neuroevolution framework, and Mode Mutation, which was
introduced in [10], but is enhanced in this work.

1) Multitask Learning: Multitask Learning assumes that
evolving agents are always aware of the task they currently
face. Each network controller is equipped with a complete
set of output neurons per task (Fig. 3a). Therefore, if two
outputs are required to define the behavior of an NPC in any
task, and the NPC is required to solve two tasks, then the
controlling networks would have two outputs for each task,
for a total of four outputs. When performing a given task,
the NPC bases its behavior on the outputs corresponding to
the current task, and ignores the other outputs.

2) Mode Mutation: Mode Mutation does not provide
NPCs with knowledge of the current task. It is a mutation
operator that adds a new output mode to a network. As a
result, networks can have many different output modes, often
even exceeding the number of tasks in the domain.

There is no mode-to-task mapping, therefore a way of
choosing a mode to define NPC behavior each time step is
needed. Mode arbitration depends on output neurons called

preference neurons. Each mode has one preference neuron
in addition to enough neurons to define agent behavior, i.e.
policy neurons. Every time step, the output mode whose
preference neuron value is highest is the mode that defines
agent behavior. So if two neurons are needed to define agent
behavior, Mode Mutation adds three neurons to the output
layer: two policy neurons and one preference neuron. Two
methods of Mode Mutation are evaluated.

The first method is Mode Mutation Previous (MM(P);
Fig. 3c), the original version from [10]. Neurons for new
modes start with one input synapse each. Each input comes
from the corresponding neuron of the previous output mode.
These connections are lateral, from left to right in the same
layer, but are treated as feed-forward connections (they trans-
mit on the same time step). The weights of these connections
are set to 1.0, thus assuring that newly created modes start
out similar to a preexisting mode, making them unlikely to
cause a large drop in fitness. However, future mutations can
differentiate the new mode from its source mode such that
both modes exhibit distinct behavior.

However, such differentiation is not guaranteed to occur.
The second method of Mode Mutation, new in this paper,
was invented to address this problem. With Mode Mutation
Random (MM(R); Fig. 3d), each neuron in a new mode
receives one input with a random synaptic weight from a
random source in either the hidden or input layer. This
approach is risky since a new mode could cause fitness
scores to plummet, but it has the advantage of more quickly
introducing distinct modes of behavior.

MM(R) also makes it feasible to delete output modes.
Deleting a mode when using MM(P) is often infeasible,
because the modes are tightly interconnected and a deletion
would often disconnect output modes from the network.
However, modes can be safely deleted in MM(R) networks
without modes becoming disconnected. In fact, preliminary
experiments indicated that the ability to delete modes is
very important to the success of MM(R), so whenever using
MM(R), the following mode-deletion mutation is also used.

Throughout evaluation, the number of times each mode
is used is tracked. If a mode-deletion mutation occurs on
a network with multiple modes, then this data is used to
choose for deletion the output mode that was used the least
in the previous evaluation. If multiple modes are tied for
least usage (usually meaning they were not used at all), then
the oldest of these modes is deleted. This procedure removes
unimportant, dead-end modes and allows the other mutation
operators to focus on refining the remaining useful modes.

IV. EXPERIMENTS

These approaches to solving multitask games were applied
to the games from Section II. Experiments in both games
were run in a similar manner. All experiments used con-
structive neuroevolution with a weight-mutation rate of 0.4,
link-mutation rate of 0.2, and node-mutation rate of 0.1.
These and other parameters used are similar to those used in
previous works [9–11].
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(a) Multitask network (b) One-mode network (c) Network after MM(P) (d) Network after MM(R)

Fig. 3: Networks for playing multitask games. Fig. 3a shows a multitask network with two modes, each consisting of two outputs. The
network always knows which of the two tasks it is performing, and picks the appropriate outputs accordingly. Fig. 3b shows a network
with only one output mode containing a grey preference neuron. Fig. 3c shows how this network would be modified by MM(P) to create
a network whose new output mode receives inputs from the previous mode. The new lateral connections all have weights of 1.0 to assure
similarity to the previous mode. Fig. 3d shows how the one-mode network would be modified by MM(R). In this case, the new mode
is connected by randomly weighted synapses to random nodes in the hidden and input layers, thus making the new mode likely to be
very different from preexisting modes. For both types of Mode Mutation, further mutations can change the behavior of these new modes,
and result in the addition of more modes beyond the two shown. The benefit of these architectures is that they allow networks to have
multiple policies for different tasks, while still allowing shared information about underlying task similarities in the hidden layer.

In the results below, Control represents networks in
which a single output mode was used in both tasks of each
game. Multitask represents networks with one mode for
each task in the given game. These networks always knew
which task they were facing, and used the appropriate output
mode accordingly. Both Mode Mutation conditions, MM(P)
and MM(R), had initial populations containing networks with
only a single mode each. New modes could be added by the
appropriate Mode Mutation, whose rate was 0.1 in each case.
These networks chose which mode to use based on the values
of their preference neurons, as described in Section III-C2.
Additionally, MM(R) made use of a mutation to delete the
least-used output mode at a rate of 0.1.

NPCs were evolved 20 times for 500 generations for each
experimental condition in each game. NSGA-II was used
with a population size of µ = λ = 52 to evolve neural
network controllers. Each controller earned scores by being
evaluated in multitask games. To earn scores for a single
task, a network was copied into each of the four members
of a team of NPCs. Such homogeneous teams tend to be
better at producing teamwork because the altruistic behavior
of individuals is not punished if it contributes to greater
team scores [18]. Because of random starting conditions,
evaluations are noisy. Therefore every network was evaluated
three times in each task, and their final scores in each
objective were the averages across evaluations. The maximal
evaluation time for each task was 600 time steps. Networks
were evaluated separately in each task, and since the games
in this paper consist of two tasks each, each network was
evaluated a total of six times.

On each time step of the simulation, the enemy acts
according to scripted behavior (Section II), and the evolving
agents act according to their neural networks. On each time
step, the NPCs’ sensors provide inputs to the network, which
are then processed to produce outputs, which then define the
behavior of the NPC for the given time step.

In each game, evolving NPCs had the following 31 sen-
sors: a constant bias, difference between NPC and enemy
headings, angle between the NPC’s current heading and

enemy’s location, brief signals whenever the NPC deals
or receives damage, signals for when any teammate deals
or receives damage, a sense for when the enemy is being
knocked back from being hit, a sense for whether the NPC
is in front of the enemy, differences in headings between
the NPC and each of its teammates, angles between the
NPC heading and each of its teammate’s locations, indi-
vidual signals for when each teammate deals damage to
the enemy, as well as an array of five ray sensors in front
of the agent that provide different signals for when the
enemy or other teammates are sensed. Though each team
member is controlled by a copy of the same network, each
member senses the environment differently, and can therefore
take action in accordance with its particular circumstances.
Additionally, each NPC’s network has its own recurrent
state corresponding to its history of senses and actions. The
recurrent states of all NPCs are reset whenever the enemy
respawns. This list may seem long, but recall that a feature
selective approach [19] is used to evolve the networks, which
allows for some of these inputs to be ignored or incorporated
later if necessary.

In contrast to the long list of inputs, the list of outputs
(per mode for multimodal approaches) is short: One output
for the degree of forward vs. backward thrust, and another
for left vs. right turning. However, complex behaviors can
be produced from these outputs, as the results show.

V. RESULTS

Performance in multiobjective domains is measured very
differently from performance in single-objective domains.
Therefore, methods for multiobjective performance assess-
ment are discussed before moving on to the results.

A. Multiobjective Performance Assessment

A run of NSGA-II creates an approximation to the true
Pareto front, i.e. an approximation set. Multiobjective per-
formance metrics compare approximation sets from different
runs. Individual objective scores and statistics based on them
are misleading because high scores in one objective can be

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 106



combined with low scores in other objectives. Comparing
approximation sets directly reveals whether one dominates
another, but this approach does not scale to a large number
of comparisons. Furthermore, if different approximation sets
cover non-intersecting regions of objective space, it is still
unclear which one is better. Multiobjective performance
metrics help by reducing an approximation set to a single
number that gives some indication of its quality.

The primary performance measure in this paper is the
hypervolume indicator [21]. Hypervolume measures the re-
gion dominated by all points in an approximation set with
reference to some point that is dominated by all points in the
set. For example, if an approximation set consisted of a single
solution with all positive scores, and the reference point
were the zero vector, its hypervolume would be the product
of all objective scores, i.e. the volume of the hypercube
between the solution and the reference point. When more
points are in the approximation set, hypervolume measures
the size of the union of the hypercubes between each solution
and the reference point. The actual reference points used
were (0,−50,0) for PP and (0,0,−50,−50,0,0) for FBR,
where the zeroes are for the various damage dealt and time
alive objectives, and each −50 is for one of the damage
received objectives. Basically, each reference point was a
vector of minimum scores for each objective.

Hypervolume is particularly useful because it is Pareto-
compliant [21], meaning that an approximation set that
completely dominates another approximation set will have
a higher hypervolume. The opposite is not true: an approx-
imation set with higher hypervolume does not necessarily
dominate one with lower hypervolume, since each set could
dominate non-intersecting regions of objective space.

In fact, it is provably impossible to construct a unary
indicator that tells when one approximation set dominates
another [22]. Despite this limitation, hypervolume is one
of the best metrics available for multiobjective performance
assessment. Other Pareto-compliant metrics are the mul-
tiplicative and additive unary epsilon indicators [7]. All
hypervolume-based comparisons discussed below were also
done using these epsilon indicators as well. The results of
statistical tests using epsilon indicators tell the same story as
tests performed using the hypervolume indicator. Therefore
the analysis below will focus only on hypervolume.

B. Front/Back Ramming Results

The results for FBR conform to expectations of how the
different methods should perform: Control performed the
worst, both MM(P) and MM(R) are better, and Multitask
is the best. The hypervolumes (Fig. 4) support these conclu-
sions. The differences in hypervolume between Control
and both forms of Mode Mutation, as well as the differences
between the Mode Mutation methods and Multitask, are
significant (p < 0.05). There is no significant difference
between the two forms of Mode Mutation.

The behaviors of NPCs from each condition are in line
with these results. Movies of FBR behavior from each
condition can be seen at http://nn.cs.utexas.edu/?multitask.
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Fig. 4: Average hypervolumes in Front/Back Ramming game.
For each experimental condition, average hypervolumes across 20
runs are shown by generation, along with the corresponding 95%
confidence intervals. The figure indicates that Multitask quickly
outpaces the other methods by achieving and maintaining ap-
proximation sets with significantly higher hypervolumes. Beneath
Multitask are MM(R) and MM(P), which are roughly equal to
each other, but both significantly better than Control, thus demon-
strating that multimodal networks have a significant advantage over
generic neuroevolution in this multitask game.

In general, Control networks easily learn to perform
well in one of the two tasks, but are rarely capable of per-
forming both well. These networks often perform behavior
that is successful for Front Ramming in the Back Ramming
task (or vice versa), in which such behavior is detrimental.

In contrast, Multitask networks are almost always
capable of performing both tasks well. Such behaviors are
easy to learn since the networks have completely different
policies for each task. In the Front Ramming task NPCs rush
forward to ram the enemy, and in Back Ramming the same
NPCs immediately turn around at the start of the trial so they
can attack the enemy with the rams on their rears.

Mode Mutation networks, though lacking information
available to Multitask networks, are significantly differ-
ent from Control networks in an important way: they are
capable of solving both tasks instead of just one. However,
since Mode Mutation networks need to overcome the chal-
lenge of not knowing which task they are facing, their scores
tend to be lower than Multitask networks.

Though in terms of performance metrics there is no sig-
nificant difference between MM(P) and MM(R), observation
of evolved behaviors indicates that MM(R) networks tend
to more clearly associate particular modes with particu-
lar behaviors, i.e. MM(R) behaviors are more transparent.
MM(P) mode usage is often confusing, in that more thrashing
between modes occurs, or multiple behaviors seem to be
exhibited by a single mode. This confusion is likely caused
by the interconnectedness of MM(P) modes; since each mode
leads into the next, the behavior of a given mode might
actually be more representative of one of the modes that
precedes it. The resulting networks usually have the majority
of hidden-layer connections leading into the oldest output
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Fig. 5: Average hypervolumes in Predator/Prey game. For each
experimental condition, average hypervolumes across 20 runs are
shown by generation, along with the corresponding 95% confidence
intervals. In contrast to the FBR task, MM(R) outperforms all other
methods. Those other methods are roughly equal with overlapping
confidence intervals, with MM(P) slightly below Multitask
and Control. This domain demonstrates how evolving a task
division with MM(R) outperforms the obvious task division used
by Multitask and the lack of a task division used by Control.

modes, even though there are usually several newer output
modes in the network as well (their only connection to the
network is through previous modes).

One method that Mode Mutation networks found of over-
coming their lack of task awareness is to start by turning the
NPC backs towards the enemy. In the Back Ramming task,
this strategy is effective. In the Front Ramming task, this
behavior will cause the NPCs to be hit, but this hit does two
things: 1) when hit, NPCs are flung backwards with their
front ram facing the enemy, and 2) NPCs sense being hit,
and as a result switch network modes so they now attack
with their front rams. Preference for the new attack mode
is maintained by internal recurrent state. This multimodal
behavior is a good example of how Mode Mutation networks
can learn to overcome the challenges of a multitask game.

Though the results in FBR make sense given the resources
and information available to each method, these results are
clearly domain-dependent, as demonstrated via contrast with
the results from PP, explained next.

C. Predator/Prey Results

The results in PP are unexpected, in that neither
Multitask nor MM(P) performs better than Control,
but MM(R) greatly outperforms all of these conditions. The
hypervolumes (Fig. 5) support this conclusion: MM(R) is
significantly better than all other conditions (p < 0.05).

The insights gleaned from the hypervolume values are
further supported by observing the evolved behaviors of the
NPCs. Movies of behavior from each condition can be seen
at http://nn.cs.utexas.edu/?multitask.
Control networks tend to be good in only one of the

two tasks, but because the Prey task is so easy, there are
also Control networks that are successful at both tasks.
The Predator task is the more challenging task. Sometimes

NPCs that take damage and die in the Prey task make it into
the Pareto front because they deal a large amount of damage
in the Predator task.

What is surprising is that Multitask networks do not
do better in the Predator task. Multitask networks always
master the Prey task because they start running from the
Predator as soon as evaluation starts; not a single individual
in any of the 20 Pareto fronts for Multitask networks in
PP fails to get perfect scores in the Prey task. It is easy for
Multitask networks to have one policy that makes the
NPCs run away. However, it is unclear why Multitask
networks do not always do well in the Predator task.

A possible explanation is that giving equal attention to
each task, as Multitask networks do as a result of their
architecture, is unnecessary and even detrimental in this
game, because the relative challenge of the two tasks is so
different. Good Prey behavior thus becomes over-optimized
at the expense of good Predator behavior.

This trade-off in evolutionary search might also explain
why MM(R) does so well: Evolution with Mode Mutation
chooses how many modes to make, and how often to use
each of them. This result indicates that the “obvious” task
division may hinder evolution, but MM(R) overcomes this
problem by finding its own task division.

However, this conclusion does not explain why MM(P)
behavior is so erratic; sometimes mediocre in both tasks, and
sometimes spectacular in both tasks. Success with MM(P)
seems to depend strongly on luck in this domain. When
MM(P) succeeds, it tends to use few of its modes. It seems
that the interconnectedness and similarity of MM(P)’s output
modes make it difficult for networks to specialize modes for
either task, so success for MM(P) mainly comes about when
multiple modes are ignored. Successful MM(R) networks
often, though not always, use only one mode as well.

Since the few quality MM(P) networks and the many
quality MM(R) networks tend to favor only one mode,
perhaps one mode is the ideal number for this game. Then
why does MM(R) do so well? The mode-deletion mutation is
likely the key. If a single quality mode is all that is necessary,
then MM(R) is ideal because it both creates new, novel modes
via mode mutation and deletes pointless, unused modes via
mode deletion. In other words, MM(R) helps evolution find
the right one mode for this game. In fact, modes found early
on can serve as crutches until better modes are found, at
which point the old modes are deleted. Switching behavior in
this way is easier for evolution than incrementally changing
the behavior of existing modes, as in the Control and
Multitask cases.

VI. DISCUSSION AND FUTURE WORK

Interestingly, although Multitask Learning and Mode Mu-
tation generally work well in the multitask games of this
paper, results were very different for the two games. In order
to best exploit these methods in more challenging games
with less extreme task divisions, some idea of when a given
method will be successful is needed.
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First, Multitask is restricted by needing to know the
current task, whereas MM(R) is not. Since MM(R) does great
in PP and better than Control in FBR, it is the ideal
choice for multitask games in which the task division is not
known. However, since games are artificial environments,
programmers will usually be able to tell agents what the
current task is. Therefore, in these cases the Multitask
approach could be used.

However, Multitask Learning is only powerful when the
task division properly splits the challenges of the game. As
was shown by the PP game, when tasks are not equally dif-
ficult, separate dedicated modes may actually be detrimental
to evolution. In such cases it is better to let MM(R) discover
a good division into modes. Furthermore, MM(R) may also
be applied to games where the task division is more dynamic
or overlapping. For instance, MM(R) should work well even
when the agents choose which task they perform, as in the
Unreal Tournament example discussed in Section II.
MM(R) could be further improved by controlling bloat

more intelligently, while still allowing new modes to take
hold in the network. The delete-mode mutation helps control
bloat, but MM(R) networks still contain unused modes. In
this paper, a Mode Mutation rate equal to the mode-deletion
rate was used, which may not do a good enough job of
pruning seldom used modes. Furthermore, it may be the case
that new modes need some protection from deletion for a
certain number of generations after being created. Exploring
these and other ways of improving Mode Mutation is an
interesting direction for future work.

VII. CONCLUSION

Two multitask games, Front/Back Ramming and Preda-
tor/Prey, were used to evaluate two methods of evolving mul-
timodal networks: Multitask Learning and Mode Mutation.

Multitask Learning uses knowledge of the current task to
pick which of a set number of output modes will control an
NPC for an entire task. Mode Mutation, in contrast, does not
know about the current task. Instead, it discovers a suitable
task division by adding new output modes to a network, any
of which can be used on any given time step depending on
preference-node values.

In the Front/Back Ramming game, Where the task division
is both obvious and balanced, Multitask Learning is the
most effective, and Mode Mutation is second best. Both ap-
proaches are better than using networks with just one mode.
In Predator/Prey a form of Mode Mutation, named MM(R),
proved to be the most effective method by discovering a task
division that is not obvious to a human designer. Multitask
Learning and Mode Mutation thus allow evolving agents
to have multiple policies to fit different situations, which
will make these approaches useful in developing intelligent
behaviors for challenging games consisting of multiple tasks.
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