
Evolving Multimodal Networks for Multitask Games

Jacob Schrum and Risto Miikkulainen

Abstract—Intelligent opponent behavior h elps m ake video
games interesting to human players. E volutionary computation
can discover such b ehavior, especially when the game consists of
a single task. However, multitask domains, i n which separate
tasks within the domain each h ave their own dynamics and
objectives, can be challenging for evolution. This paper proposes
two methods for meeting this challenge by evolving neural
networks: 1) Multitask Learning provides a network w ith
distinct outputs per task, thus evolving a separate policy for
each task, and 2) Mode Mutation provides a means t o evolve
new output modes, as well as a way to select which mode
to use at each moment. Multitask Learning assumes agents
know which task they are currently facing; if such i nformation
is available and accurate, this approach works very well, a s
demonstrated in the Front/Back Ramming game of this paper.
In contrast, Mode Mutation discovers an appropriate task
division on its own, w hich may i n some cases be even more
powerful than a human-specified task division, as shown in the
Predator/Prey game of this paper. These results demonstrate the
importance of both Multitask Learning and Mode Mutation for
learning intelligent behavior in complex games.

I. INTRODUCTION

Video games often feature computer controlled opponents,

Non-Player Characters (NPCs), which human players must
defeat to do well i n the game. Creating intelligent behavior

for such NPCs traditionally requires extensive hand-coding
and troubleshooting b y programmers. However, there has
been much interest, and some success, in the academic com-
munity in evolving NPC behavior for games [1, 9, 16, 20].
These approaches each treat the game as a single task, and
optimize the NPC behavior for that task.

However, many entertaining games consist of multiple
tasks. Even the classic game of Pac-Man involves two tasks:
the NPC ghosts chase after Pac-Man and try to catch h im,
but as soon as h e eats a power p ellet the task switches, and
the ghosts must run from Pac-Man or b e eaten.

Recently, the multitask nature of games has been noted,
and a few methods have b een developed to deal with them.
One such approach is interactive evolution, as demonstrated
in NERO [12], a game in which agents can l earn many
different behaviors because a u ser constantly interacts with
the system by adjusting the fitness function and changing
the agents’ environment. However, this approach is prone to
forgetting old b ehaviors when learning new tasks, which is a
problem r equiring considerable user effort t o overcome [4].

Another approach t o dealing with multiple tasks is evo-
lution of a subsumption architecture composed of neural
networks [15, 17]. T his approach requires the p rogrammer
to divide a domain into its constituent tasks, and develop

Jacob Schrum and Risto Miikkulainen are with the Department of
Computer Science, University of T exas at Austin, Austin, TX 7 8712 USA
(email: {s chrum2 ,rist o} @ c s .utexa s .edu)

978-1-4577-0011-8/11/$26.00 ©2011IEEE
effective training scenarios to evolve separate network con-
trollers for each task. These controllers are combined into a
hierarchical controller which is also evolved.

A third approach, Multitask Learning [2], is similar in
that the task division must be k nown, but different i n that
only a single network controller is learned. This controller
has separate output modes corresponding to each task, and
uses knowledge of the current task to choose which mode
to use in a given situation. This approach is typically used
in a supervised learning setting; Multitask Learning is rarely
combined with evolution, and so far has not b een aimed at
evolving agent b ehavior. T herefore, multitask evolution for
games is one approach evaluated in this paper.

While i t may be easy to divide a game into its constituent
tasks in some cases, games are typically complex enough
that an appropriate division is difficult to achieve. Not all
games have a clear task division like Pac-Man. One approach
to multitask domains that addresses this problem directly
is M ode Mutation, introduced in [10], which lets evolution
decide how many modes to h ave and when to use them.
Unlike the subsumption and M ultitask Learning approaches,
Mode Mutation can b e used without knowledge of the
domain’s task division. Interestingly, as shown i n this p aper,
even if such a division is available, Mode Mutation may

sometimes discover one that is better. In this p aper, the
original Mode Mutation is evaluated, as well as an enhanced
version that makes such discovery p ossible.

Both Multitask Learning and M ode Mutation create mul-
timodal networks, i.e. networks with access to multiple
modes of b ehavior. These approaches are evaluated in two
multitask games designed for this paper. After these games
are reviewed, the evolutionary method is described, along
with specific details on Multitask Learning and M ode Mu-
tation. The method section is followed by a description of
experiments, results, and ideas for future work.

II. MULTITASK GAMES

This section defines multitask games and describes two
such games designed for the experiments of this p aper.

A. D efinition

In multitask games, N PCs perform two or more separate
tasks, each with their own measures of performance. In
the extreme case, p erformance in one task is u nrelated to
performance in other tasks. This extreme view makes it easy
to analyze task p erformance independent of other tasks, and
is therefore the basis of the domains in this p aper. However,
multitask games are only interesting if it is desirable to have
NPCs capable of p erforming all tasks. Therefore, all tasks

102
presented are related in that they p lace NPCs in the same
environment with the same sensors.

There is an important distinction between the multitask
games of this paper and other games with multiple tasks. In
a multitask game, tasks are isolated and it is always clear
what the current task is. In Pac-Man, the task division is
clear because eating a power pellet causes a task switch, but
the tasks are not isolated because the positions of agents at
the task switch affect the p erformance in the next task. A
game like Unreal Tournament also has multiple tasks, but
there is no strict separation between them; NPCs choose
which task to perform when, such as gathering items and
fighting, and may even do multiple tasks simultaneously.
Note that an NPC’s internal state is irrelevant for determining
whether the game has separable tasks; the multitask nature
of a game is a property of the game, and not of the NPCs
programmed to p lay it. This paper concerns itself solely with
games where the task division is clear and performance in
each task is unaffected by behavior in other tasks, though it
will b e possible to apply the methods in this paper to games
with less strict task divisions in the future.

Although the task division is clear, the NPCs may not
have access to this k nowledge. Therefore, this paper deals
both with agents that have a priori knowledge of the task
they face, and agents that must figure out how to b ehave

despite not knowing which task they face.
To assure that these domains are challenging, they are

designed to involve tasks in which good behavior in one task
is bad behavior in another task. The separate tasks still have
underlying similarities, but different b ehaviors are needed
across tasks to be effective NPCs in the game as a whole.

All tasks in this p aper are multiagent tasks designed using
the simulation environment BREVE [6]. In each task, evalua-
tion b egins with a team of NPCs surrounding the player. Task
evaluations have limited duration and are independent from
each other. All agents can move forward and backward and
can turn left and r ight with respect to their current heading.

Although the player stands for a human player in p rinciple,
a scripted, task-dependent agent was used in the experiments
instead to make a large number of evaluations possible. This
“player” agent will b e referred to as the “enemy” throughout
this paper. The initial heading of the enemy is r andom in each
evaluation to make evaluation noisy, which requires NPCs to
learn situational behavior and prevents b lind memorization
of enemy trajectories from succeeding. Informal experiments
show that NPC behavior evolved against the scripted enemy
is still interesting and challenging for humans to overcome.

The multitask games designed for this work are Front/Back
Ramming (FBR), which requires NPCs to be alternately
aggressive with and p rotective of different p arts of their
body depending on the task, and Predator/Prey (PP), which
contrasts attacking the enemy with running away from it.

Each domain is explained in full detail next.

B. F ront/Back Ramming Game

This game requires both offensive and defensive behavior

from NPCs in each task to b e successful, but these b ehaviors

(a) F ront Ramming task (b) Back Ramming task

Fig. 1: Front/Back Ramming. Fig. 1a shows the start of a Front
Ramming task and Fig. 1b shows the start of a Back Ramming task.
In b oth tasks the NPCs start pointed at the enemy in the center. The
rams are depicted b y white orbs attached to the N PCs. In the Front
Ramming task, N PCs can start attacking the e nemy immediately,
but in the B ack Ramming t ask they must turn around first. Learning
which behavior to exhibit is difficult because different behavior is
needed in the different tasks, even though the NPCs’ sensor readings
would b e the same in each of the above situations.

are needed u nder different circumstances in each task.

Each NPC is equipped with a b attering ram, and is
therefore called a rammer (Fig. 1). If a ram hits the enemy,
then the enemy is damaged, but if the enemy h its a rammer,
then the r ammer takes damage. All agents start with 50 hit
points, and every hit removes 10 hit points. If the enemy
dies, all agents are r eset to their starting locations around the
enemy b efore the enemy comes back to life, thus giving the
evolving NPCs a chance to accrue additional fitness. When
NPCs die, they are dead for the rest of the evaluation.

This game consists of Front Ramming and Back Ramming
tasks, the only difference b eing where on the r ammer the
ram is located. When Front Ramming, rammers start with
their r ams pointed at the surrounded enemy. When Back
Ramming, the rams start facing away from the enemy, and
rammers must first turn in order t o ram the enemy.

Enemy behavior is essentially the same in b oth tasks: It
will try to circle around the rammers to hit them from the
unprotected side if possible, but if threatened by the r ams, it
will prefer to run and avoid damage.

This game has six objectives. Each task has its own
instance of the same three objectives: deal damage to the
enemy, avoid damage from the enemy, and stay alive as
long as possible. Damage dealt to the enemy is a group
score shared by NPCs on a team. The damage avoidance
and staying alive objectives are assessed individually, and
the average across team members is assigned to the team.

Although damage received and time alive are both affected

by taking damage, each one provides valuable feedback when
the other does not: if all NPCs die, then time alive indicates

how long each avoided death, but if no NPCs die, then

damage received indicates which team p erformed better.

The need to be alternately offensive and defensive in each

task and the large number of fitness objectives makes this

game very challenging. The next game has fewer objectives,

but is nonetheless challenging in its own r ight.

103 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

(a) Predator t ask (b) Prey task

Fig. 2: Predator/Prey. Both the Predator and Prey tasks look the
same. F ig. 2a has an arrow showing the movement path of the
enemy i n the Predator task: It tries to escape through the nearest
gap between two N PCs. F ig. 2b shows how the enemy would
behave in the same situation in the Prey task: It pursues the nearest
NPC p rey in front of it. Both situations are the same to the N PCs,

but because the environmental dynamics and enemy behavior are
different, different behavior is needed to succeed.

C. P redator/Prey Game

In contrast to FBR, offensive and defensive b ehaviors
are n eeded in separate tasks within this game. N PCs are
either predators or prey depending on the task, and the
enemy takes on the opposite role (Fig. 2). The dynamics
of the environment and the behavior of the enemy change
depending on the task.

In the Predator t ask, N PCs are predators and the enemy is
prey (Fig. 2a). The enemy tries to escape b y moving through
a gap between two p redators. When a predator hits the
enemy, the enemy sustains damage and is flung away from its
attacker. All agents move at the same speed, which means
predators must avoid crowding the enemy, since hitting it
can knock it so far away that it is impossible to catch.
Therefore, evaluation ends p rematurely if the enemy is no
longer surrounded. This task is the same as the “Flight” task
in [10], but the enemy’s escaping behavior is more i ntelligent
because it explicitly seeks gaps through which it can escape.

The Prey task reverses the dynamics of the Predator task,
such that the enemy deals damage to N PCs, who are now the
prey (Fig. 2b). This task is fairly simple since NPCs still start
surrounding the enemy, and can avoid it b y j ust running away.
The enemy’s behavior consists of moving forward towards

the closest NPC. Thus, the P P game is challenging because a
single evolved controller must be able t o execute essentially
opposite b ehaviors depending on the task.

PP has three objectives. In the Predator t ask, the only
objective is to maximize damage dealt to the enemy. This
amount is shared across NPCs as in FBR. The P rey task has
two objectives: minimize damage r eceived, and maximize
the time spent alive. As in FBR, these amounts are averaged
across team members to get the team score.

As in FBR, the amount of damage per hit is 10 hit points,
and all agents have 50 hit points. Furthermore, the domain is
reset to starting conditions if the enemy dies (only possible
in Predator task). The next section explains the evolutionary
methods u sed to handle these games.

III. EVOLUTIONARY METHODS

Evolutionary multiobjective optimization was u sed to han-
dle the many objectives across tasks. The evolved individuals
were neural networks, and special methods were used to
evolve them for multitask games.

A. E volutionary M ultiobjective Optimization

Multitask games are by their very nature multiobjective,
since at least one objective is needed in each task. The
above domains h ave multiple objectives per task, which
makes evolving in them even more challenging. Therefore a
principled way of dealing with multiple objectives is needed.

The concepts of Pareto dominance and optimality provide
such a framework1 :
Pareto Dominance: Vector v = (v1, . . . , vn) dominates
u= (u1, . . . , un), i.e. v ? u, iff

1. ∀ i ∈ {1, . . . ,n} : vi ≥ ui, fand
12.. ∀∃ii ∈ {{11,, . . . , nn}} : vi >≥ ui.

Pa2re.t ∃oi Optimality: }A: vset of p oints A ⊆ F is Pareto optimal
Piffa rite coo Ontpaitnims aallilt points tsuo cfhp othinatts ∀ A x~ ⊆∈ FAi: s¬P ∃a ~yre t∈o oFp siumcahl
ithffait tyc o?n ax.i sTha el points i snu cAh are tn ∀oxn ~-d ∈omA in:a¬ t∃ed~y , a∈nFd m suakche
up tth~y e ?noxn ~ .-d Tomheinp aoteindt sPi anreAt o a frroennt oofn dFo.

T thhee anbonov-deo dmeifninatietidonP sa rinetdoicf artoen ttho aft one solution is better
than (i.e. dominates) another solution if it is strictly better
in at least one objective and no worse in the others. The
best solutions are not dominated b y any other solutions, and
make u p the Pareto front of the search space. The next b est
individuals are those that would be in a recalculated Pareto
front if the actual Pareto front were removed first. L ayers
of Pareto fronts can be defined by successively removing
the front and r ecalculating it for the remaining individuals.
Solving a multiobjective optimization problem involves ap-
proximating the f irst Pareto front as best as possible; In this
paper this goal is accomplished using the N on-Dominated
Sorting Genetic Algorithm II (NSGA-II [3]).

NSGA-II uses (µ+ λ) elitist selection favoring individuals
in higher Pareto fronts over those in lower fronts. W ithin
a given front, individuals that are more distant from others
in objective space are favored b y selection for the sake of

exploring diverse trade-offs.
Applying NSGA-II to a problem results in a population

containing an approximation to the true Pareto front. This
approximation set potentially contains multiple solutions,
which must b e analyzed in order to determine which so-
lutions fulfill the needs of the user. However, NSGA-II is
indifferent as to how these solutions are r epresented. For all
domains in this p aper, NSGA-II was used to evolve artificial
neural networks to control the NPCs. The process of evolving
these networks is called neuroevolution.

B. N euroevolution

Neuroevolution is the application of evolution to neural
networks. All evolved behavior in this paper was learned via
constructive neuroevolution, meaning that networks start with

1These definitions assume a maximization problem. Objectives to b e
minimized can simply be multiplied by −1.

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 104

minimal structure and become more complex from mutations
across several generations. The initial p opulation consists of
networks with no hidden layers, i.e. only input and output
neurons. Furthermore, these networks are sparsely connected
in a style similar to Feature Selective N euro-Evolution of
Augmenting Topologies (FS-NEAT [19]). Initializing the
networks in this way allows them to ignore any inputs that
are n ot, or at least not y et, useful.

Three mutation operators were u sed to change network
behavior. Weight mutation perturbs the weights of existing
network connections, link mutation adds new (potentially
recurrent) connections between existing n odes, and node
mutation splices new nodes along existing connections. Re-
current connections transmit signals that are not processed
by the network until the following time step, which makes
them particularly useful in partially observable domains. A n
environment is p artially observable if the current observed
state cannot b e distinguished from other observed states
without memory of p ast states [14]. Recurrent connections
help in these situations because they encode and transmit
memory of past states; a property that could h elp a network
determine which of several tasks it currently faces.

These mutation operators are similar to those used in
NEAT [13]. T hough N EAT provides a method for p erforming
crossover on these arbitrary topology networks, crossover
is not used in t his p aper because p reliminary experiments
showed that it often had no effect, and in some cases even
decreased performance.

The form of neuroevolution described so far has been used
to solve many challenging problems [5, 8, 11, 13], but this
approach does not directly target multitask domains. The next
section describes some enhancements to neuroevolution for
dealing with multitask domains.

C. M ultitask E volution

Two approaches to dealing with multitask games are evalu-
ated: M ultitask Learning, which translates work from [2] into
a neuroevolution framework, and M ode Mutation, which was
introduced in [10], but is enhanced in this work.

1) M ultitask Learning: M ultitask Learning assumes that
evolving agents are always aware of the t ask they currently
face. Each network controller is equipped with a complete
set of output neurons per task (Fig. 3a). T herefore, if two
outputs are required to define the behavior of an NPC in any
task, and the NPC is required to solve two tasks, then the
controlling networks would have two outputs for each task,
for a total of four outputs. When performing a given task,
the NPC b ases its behavior on the outputs corresponding to
the current task, and ignores the other outputs.

2) M ode M utation: Mode Mutation does not provide
NPCs with k nowledge of the current task. It is a mutation
operator that adds a new output mode to a network. As a
result, networks can h ave many different output modes, often
even exceeding the number of tasks in the domain.

There is no mode-to-task mapping, therefore a way of
choosing a mode to define NPC behavior each t ime step is
needed. Mode arbitration depends on output neurons called
preference neurons. Each mode has one p reference neuron
in addition to enough neurons to define agent b ehavior, i.e.
policy neurons. E very time step, the output mode whose
preference neuron value is highest is the mode that defines
agent behavior. So if two neurons are needed t o define agent

behavior, M ode Mutation adds three neurons to the output
layer: two p olicy neurons and one preference neuron. Two
methods of Mode Mutation are evaluated.

The first method is Mode Mutation Previous (MM(P);
Fig. 3c), the original version from [10]. Neurons for new
modes start with one input synapse each. Each input comes
from the corresponding neuron of the previous output mode.
These connections are lateral, from left to r ight in the same
layer, but are treated as feed-forward connections (they trans-
mit on the same time step). The weights of these connections
are set to 1.0, thus assuring that newly created modes start
out similar to a preexisting mode, making them unlikely t o
cause a large drop in fitness. However, future mutations can
differentiate the new mode from its source mode such that
both modes exhibit distinct behavior.

However, such differentiation is not guaranteed to occur.
The second method of Mode Mutation, new in this p aper,
was invented to address this problem. W ith M ode Mutation
Random (MM(R); Fig. 3d), each neuron in a new mode
receives one input with a random synaptic weight from a
random source in either the h idden or input layer. T his
approach is risky since a new mode could cause fitness
scores to plummet, but it has the advantage of more quickly
introducing distinct modes of b ehavior.

MM(R) also makes it feasible to delete output modes.
Deleting a mode when using MM(P) is often infeasible,
because the modes are tightly interconnected and a deletion

would often disconnect output modes from the network.
However, modes can b e safely deleted in MM(R) networks
without modes becoming disconnected. In fact, preliminary
experiments indicated that the ability to delete modes is
very important t o the success of MM(R), so whenever using
MM(R), the following mode-deletion mutation is also used.

Throughout evaluation, the number of times each mode
is used is tracked. If a mode-deletion mutation occurs on
a network with multiple modes, then this data is used to
choose for deletion the output mode that was used the least
in the previous evaluation. If multiple modes are tied for
least usage (usually meaning they were not used at all), then
the oldest of these modes is deleted. This procedure removes
unimportant, dead-end modes and allows the other mutation
operators to focus on refining the r emaining useful modes.

IV. EXPERIMENTS

These approaches to solving multitask games were applied
to the games from Section II. E xperiments in both games
were run in a similar manner. All experiments used con-
structive neuroevolution with a weight-mutation r ate of 0.4,
link-mutation rate of 0.2, and node-mutation rate of 0.1.
These and other p arameters used are similar to those used in
previous works [9–1 1].

105 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

(a) Multitaskn etwork(b)O ne-moden etwork(c)N etworka fterM M(P)(d)N etworka fterM M(R)
Fig. 3: Networks for playing multitask games. Fig. 3a shows a multitask network with two modes, each consisting of two outputs. The
network always knows which of the two t asks it i s performing, and picks the appropriate outputs accordingly. Fig. 3b shows a network
with only one output mode containing a grey p reference neuron. Fig. 3c shows how this network would be modified b y M M(P) to c reate
a network whose new output mode receives inputs f rom the previous mode. The new lateral connections all h ave weights o f 1.0 to assure
similarity t o the previous m ode. Fig. 3d shows how the one-mode network would b e modified by MM(R). In this case, the new m ode
is connected by randomly weighted synapses to random nodes in the h idden and input layers, thus making the new mode likely to b e
very different from preexisting modes. For b oth types of Mode Mutation, further mutations can change the behavior o f these new m odes,
and result in the addition of more modes beyond the two shown. The benefit of t hese architectures i s t hat t hey allow networks to have
multiple policies for different tasks, while still allowing shared information about u nderlying task similarities i n the hidden layer.

In the results b elow, Control represents networks in

which a single output mode was used in b oth t asks of each

game. M ult itask represents networks with one mode for

each task in the given game. T hese networks always k new

which task they were facing, and used the appropriate output

mode accordingly. Both M ode Mutation conditions, MM((P)

and MM((R) ,had initial p opulations containing networks with

only a single mode each. New modes could b e added b y the

appropriate Mode Mutation, whose rate was 0.1 in each case.

These networks chose which mode to use b ased on the values

of their preference neurons, as described in Section III-C2.

Additionally, MM((R) made use of a mutation to delete the

least-used output mode at a r ate of 0.1.

NPCs were evolved 20 times for 500 generations for each

experimental condition in each game. NSGA-II was used

with a p opulation size of µ = λ = 52 to evolve neural

network controllers. Each controller earned scores by b eing

evaluated i n multitask games. To earn scores for a single

task, a network was copied into each of the four members
of a team of NPCs. Such h omogeneous teams tend to b e
better at producing teamwork because the altruistic behavior
of i ndividuals is not punished if it contributes to greater
team scores [18]. Because of random starting conditions,
evaluations are noisy. Therefore every network was evaluated
three times in each task, and their final scores in each
objective were the averages across evaluations. The maximal
evaluation time for each task was 600 time steps. Networks
were evaluated separately in each task, and since the games
in this paper consist of two tasks each, each network was
evaluated a total of six times.

On each time step of the simulation, the enemy acts
according to scripted behavior (Section II), and the evolving
agents act according to their neural networks. On each time
step, the NPCs’ sensors provide inputs to the network, which
are then processed t o produce outputs, which t hen define the
behavior of the NPC for the given time step.

In each game, evolving N PCs had the following 31 sen-
sors: a constant b ias, difference between NPC and enemy
headings, angle between the NPC’s current heading and
enemy’s location, b rief signals whenever the NPC deals
or receives damage, signals for when any teammate deals
or receives damage, a sense for when the enemy is b eing
knocked back from being hit, a sense for whether the NPC
is in front of the enemy, differences in headings between
the NPC and each of its teammates, angles between the

NPC heading and each of its teammate’s locations, indi-
vidual signals for when each teammate deals damage to
the enemy, as well as an array of five ray sensors in front
of the agent that provide different signals for when the
enemy or other teammates are sensed. Though each team
member is controlled b y a copy of the same network, each
member senses the environment differently, and can therefore
take action in accordance with its p articular circumstances.
Additionally, each NPC’s network has its own recurrent
state corresponding to its history of senses and actions. The
recurrent states of all NPCs are reset whenever the enemy
respawns. T his list may seem long, but recall that a feature
selective approach [19] is used to evolve the networks, which
allows for some of these inputs to be ignored or incorporated
later if necessary.

In contrast to the long list of inputs, the list of outputs
(per mode for multimodal approaches) is short: One output
for the degree of forward vs. backward thrust, and another
for left vs. right turning. However, complex b ehaviors can
be produced from these outputs, as the results show.

V. RESULTS

Performance in multiobjective domains is measured very
differently from p erformance in single-objective domains.
Therefore, methods for multiobjective performance assess-
ment are discussed b efore moving on to the results.

A. M ultiobjective P erformance A ssessment

A run of NSGA-II creates an approximation to the true
Pareto front, i.e. an approximation set. Multiobjective per-
formance metrics compare approximation sets from different
runs. Individual objective scores and statistics based on them
are misleading because high scores in one objective can be

2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 106

combined with low scores in other objectives. Comparing
approximation sets directly reveals whether one dominates
another, but this approach does not scale to a large number
of comparisons. Furthermore, if different approximation sets
cover non-intersecting regions of objective space, it is still
unclear which one is better. Multiobjective performance
metrics help b y reducing an approximation set to a single
number that gives some indication of its quality.

The primary performance measure in this paper is the
hypervolume indicator [21]. Hypervolume measures the re-
gion dominated by all p oints in an approximation set with
reference to some p oint that is dominated b y all points in the
set. For example, if an approximation set consisted of a single
solution with all positive scores, and the r eference point
were the zero vector, its h ypervolume would b e the product
of all objective scores, i.e. the volume of the h ypercube
between the solution and the reference point. When more
points are in the approximation set, hypervolume measures

the size of the union of the hypercubes between each solution
and the r eference p oint. The actual reference points used
were (0,−50,0) for PP and (0,0,−50,−50,0,0) for FBR,
wwhereere t0h,e− zeroes are PfoPr tha ned dva(r0io,0u,s− damage 0d,0ea)lt oanrd tiBmRe,
alive objectives, and each −50 is for one of the damage
raelicveeivo edb objectives. Basically, 0eai csh orrefeo rneenc oef point was a
vector of minimum scores for each objective.

Hypervolume is p articularly useful because it is Pareto-
compliant [21], meaning that an approximation set that
completely dominates another approximation set will have
a higher h ypervolume. The opposite is not true: an approx-
imation set with higher hypervolume does not necessarily
dominate one with lower hypervolume, since each set could
dominate non-intersecting regions of objective space.

In fact, it is provably impossible to construct a unary
indicator that tells when one approximation set dominates
another [22]. Despite this limitation, hypervolume is one
of the best metrics available for multiobjective p erformance
assessment. Other Pareto-compliant metrics are the mul-
tiplicative and additive unary epsilon indicators [7]. All
hypervolume-based comparisons discussed b elow were also
done using these epsilon indicators as well. The results of
statistical tests using epsilon indicators tell the same story as
tests performed using the hypervolume indicator. Therefore
the analysis below will focus only on h ypervolume.

B. F ront/Back Ramming Results

The results for FBR conform to expectations of how the

different methods should perform: Control p erformed the
worst, b oth MM (P) and MM (R) are better, and Mult itask
is the best. The hypervolumes (Fig. 4) support these conclu-
sions. The differences in h ypervolume between Cont rol
and b oth forms of Mode Mutation, as well as the differences
between the Mode Mutation methods and Mult itask, are
significant (p < 0.05). There is no significant difference
between the two forms of Mode Mutation.

The behaviors of NPCs from each condition are in line
with these results. Movies of FBR behavior from each
condition can be seen at http://nn.cs.utexas.edu/?multitask.

Average Hypervolume by Generation in Front/Back Ramming Game

Generation

Fig. 4 : Average hypervolumes in Front/Back Ramming game.
For each experimental condition, average h ypervolumes across 20
runs are shown by generation, along with the corresponding 95%
confidence intervals. The figure indicates that M ult itask quickly
outpaces the other methods b y achieving and m aintaining ap-
proximation sets with significantly higher h ypervolumes. Beneath
Mult itask are M M (R) and MM (P) , which are roughly equal to
each other, but both significantly b etter than Cont rol, thus demon-
strating that multimodal networks have a significant advantage over
generic neuroevolution in this multitask game.

In general, Control networks easily learn to perform
well in one of the two tasks, but are r arely capable of p er-
forming both well. These networks often perform behavior
that is successful for F ront Ramming in the Back Ramming
task (or vice versa), in which such behavior is detrimental.

In contrast, Mult itask networks are almost always
capable of p erforming b oth tasks well. Such b ehaviors are
easy to learn since the networks have completely different
policies for each task. In the Front Ramming task NPCs rush
forward to ram the enemy, and in Back Ramming the same
NPCs immediately turn around at the start of the trial so they
can attack the enemy with the r ams on their r ears.

Mode Mutation networks, though lacking information
available to M ult itask networks, are significantly differ-
ent from Control networks in an important way: they are
capable of solving both tasks instead of j ust one. However,
since Mode Mutation networks need to overcome the chal-

lenge of not knowing which task they are facing, their scores
tend to b e lower than Mult itask networks.

Though in terms of performance metrics there is no sig-
nificant difference between MM (P) and MM((R) , observation
of evolved b ehaviors indicates that MM (R) networks tend
to more clearly associate particular modes with particu-
lar b ehaviors, i.e. MM (R) behaviors are more transparent.
MM((P) mode usage is often confusing, in that more thrashing
between modes occurs, or multiple b ehaviors seem to b e
exhibited by a single mode. This confusion is likely caused
by the interconnectedness of MM (P) m odes; since each mode
leads into the next, the behavior of a given mode might
actually b e more r epresentative of one of the modes that
precedes it. The resulting networks usually h ave the majority
of hidden-layer connections leading into the oldest output

107 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

Average Hypervolume by Generation in Predator/Prey Game

Generation

Fig. 5: Average h ypervolumes in Predator/Prey game. For each
experimental condition, average hypervolumes across 20 r uns are
shown by generation, along with the corresponding 95% confidence
intervals. In contrast to the FBR task, M M (R) outperforms all other
methods. Those other methods are roughly equal with overlapping
confidence intervals, with M M (P) slightly b elow M ult itask
and Cont rol. This domain demonstrates how evolving a task
division with M M (R) outperforms the obvious task division used
by M ult itask and the lack of a task division u sed b y Cont rol.

modes, even though there are usually several newer output

modes in the network as well (their only connection to the

network is through previous modes).
One method that Mode Mutation networks found of over-

coming their lack of task awareness is to start by turning the

NPC b acks towards the enemy. In the Back Ramming task,
this strategy is effective. In the Front Ramming task, this
behavior will cause the NPCs to b e hit, but this hit does two
things: 1) when hit, N PCs are flung b ackwards with their
front ram facing the enemy, and 2) NPCs sense b eing hit,
and as a r esult switch network modes so they now attack
with their front rams. Preference for the new attack mode
is maintained b y internal r ecurrent state. This multimodal
behavior is a good example of how M ode Mutation networks
can learn to overcome the challenges of a multitask game.

Though the results in FBR make sense given the resources
and information available to each method, these results are
clearly domain-dependent, as demonstrated via contrast with
the results from PP, explained next.

C. P redator/Prey Results

The results in PP are unexpected, in that neither
Mult itask nor MM (P) performs b etter than Control,
but MM (R) greatly outperforms all of these conditions. The
hypervolumes (Fig. 5) support this conclusion: MM (R) is
significantly b etter than all other conditions (p < 0.05).

The insights gleaned from the h ypervolume values are
further supported b y observing the evolved b ehaviors of the
NPCs. Movies of behavior from each condition can b e seen
at http://nn.cs.utexas.edu/?multitask.

Cont rol networks tend to be good in only one of the
two tasks, but because the Prey task is so easy, there are
also Control networks that are successful at both tasks.

The Predator task is the more challenging task. Sometimes
NPCs that take damage and die in the Prey task make it into
the Pareto front because they deal a large amount of damage
in the Predator task.

What is surprising is that Mult itask networks do not
do better in the Predator task. Mult itask networks always
master the Prey task because they start running from the
Predator as soon as evaluation starts; not a single individual
in any of the 20 Pareto fronts for M ult itask networks in
PP fails to get perfect scores in the Prey task. I t is easy for
Mult itask networks to have one policy that makes the
NPCs run away. However, it is unclear why Mult itask
networks do not always do well in the Predator task.

A possible explanation is that giving equal attention to
each t ask, as M ult itask networks do as a r esult of their
architecture, is unnecessary and even detrimental in this
game, because the relative challenge of the two tasks is so
different. Good Prey behavior thus becomes over-optimized
at the expense of good Predator b ehavior.

This trade-off in evolutionary search might also explain
why MM (R) does so well: E volution with Mode Mutation
chooses how many modes to make, and how often to use
each of them. This r esult indicates that the “obvious” t ask
division may hinder evolution, but MM((R) overcomes this
problem b y finding its own task division.

However, this conclusion does not explain why MM((P)
behavior is so erratic; sometimes mediocre in b oth tasks, and

sometimes spectacular in b oth tasks. Success with MM((P)
seems to depend strongly on luck in this domain. W hen
MM((P) succeeds, it tends to use few of its modes. It seems
that the interconnectedness and similarity of MM (P) ’s output
modes make i t difficult for networks to specialize modes for
either task, so success for MM (P) mainly comes about when
multiple modes are ignored. Successful MM (R) networks
often, though not always, use only one mode as well.

Since the few quality MM (P) networks and the many
quality MM (R) networks tend t o favor only one mode,
perhaps one mode is the ideal number for this game. Then
why does MM (R) do so well? The mode-deletion mutation is
likely the k ey. I f a single quality mode is all that is necessary,
then MM (R) is ideal because it b oth creates new, novel modes
via mode mutation and deletes p ointless, unused modes via
mode deletion. In other words, M M (R) helps evolution find
the right one mode for this game. In fact, modes found early
on can serve as crutches until b etter modes are found, at
which p oint the old modes are deleted. Switching behavior in
this way is easier for evolution than incrementally changing
the behavior of existing modes, as in the Cont rol and
Mult it as k cases.

VI. DISCUSSION AND FUTURE WORK

Interestingly, although Multitask Learning and Mode Mu-
tation generally work well in the multitask games of this
paper, results were very different for the two games. In order

to b est exploit these methods in more challenging games
with less extreme task divisions, some idea of when a given
method will b e successful is needed.
2011 IEEE Conference on Computational Intelligence and Games (CIG’11) 108

First, Mult itask is r estricted b y needing to know the
current task, whereas MM (R) is not. Since M M (R) does great
in PP and better than Cont rol in FBR, i t is the ideal
choice for multitask games i n which the t ask division is not
known. However, since games are artificial environments,
programmers will usually b e able to tell agents what the
current task is. Therefore, in these cases the M ult itask
approach could b e u sed.

However, Multitask Learning is only powerful when the
task division properly splits the challenges of the game. As
was shown by the PP game, when tasks are not equally dif-
ficult, separate dedicated modes may actually b e detrimental
to evolution. In such cases it is b etter to let M M (R) discover
a good division into modes. F urthermore, MM (R) may also
be applied to games where the task division is m ore dynamic
or overlapping. For instance, MM((R) should work well even
when the agents choose which task they perform, as in the
Unreal Tournament example discussed in Section II.

MM (R) could be further improved b y controlling bloat
more intelligently, while still allowing new modes t o t ake
hold in the network. The delete-mode mutation h elps control
bloat, but MM (R) networks still contain unused modes. In

this p aper, a Mode Mutation r ate equal to the mode-deletion
rate was used, which may not do a good enough job of
pruning seldom used modes. Furthermore, it may be the case
that new modes need some protection from deletion for a
certain number of generations after being created. E xploring
these and other ways of improving Mode Mutation is an
interesting direction for future work.

VII. CONCLUSION

Two multitask games, F ront/Back Ramming and Preda-
tor/Prey, were used to evaluate two methods of evolving mul-
timodal networks: Multitask Learning and Mode Mutation.

Multitask Learning uses knowledge of the current task to
pick which of a set number of output modes will control an
NPC for an entire task. Mode Mutation, in contrast, does not
know about the current task. Instead, it discovers a suitable
task division by adding new output modes to a network, any
of which can b e used on any given time step depending on
preference-node values.

In the F ront/Back Ramming game, W here the task division
is both obvious and balanced, Multitask Learning i s the
most effective, and Mode Mutation is second b est. Both ap-
proaches are better than using networks with j ust one mode.
In Predator/Prey a form of Mode Mutation, named MM(R),
proved to be the most effective method by discovering a task
division that is not obvious to a human designer. M ultitask
Learning and Mode Mutation thus allow evolving agents

to have multiple policies to fit different situations, which

will make these approaches useful in developing intelligent

behaviors for challenging games consisting of multiple tasks.

ACKNOWLEDGMENT

This research was supported in p art b y the NSF under

grants DBI-0939454 and IIS-0915038 and Texas Higher
Education Coordinating Board grant 003658-0036-2007.

REFERENCES

[1] D. Andre and A. Teller. Evolving Team Darwin United. In
RoboCup-98: Robot Soccer World Cup II, p ages 346–35 1.
Springer Verlag, 1999.

[2] R. A. Caruana. Multitask Learning. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA 15213, 1997.

[3] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist
non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. P PSN VI, pages 849–858, 2000.

[4] T. D’Silva, R. J anik, M. Chrien, K. Stanley, and R. Mi-
ikkulainen. Retaining learned behavior during real-time neu-
roevolution. In A rtificial I ntelligence and I nteractive Digital
Entertainment. AAAI Press, 2005.

[5] F. Gomez and R. Miikkulainen. Active guidance for a finless
rocket using neuroevolution. In Genetic and E volutionary
Computation Conference, 2003.

[6] J . Klein. BREVE: A 3D Environment for the Simulation of
Decentralized Systems and A rtificial Life. A Life, 2003.

[7] J . Knowles, L . Thiele, and E. Zitzler. A Tutorial on the Perfor-
mance Assessment of Stochastic Multiobjective Optimizers.
TIK Report 214, TIK, ETH Zurich, Feb. 2006.

[8] N . Kohl and R. Miikkulainen. Evolving neural networks for
strategic decision-making problems. N eural N etworks, Special

issue on Goal-Directed N eural Systems, 2009.
[9] J . Schrum and R. Miikkulainen. Constructing complex NPC

behavior via multi-objective neuroevolution. In A rtificial
Intelligence and I nteractive Digital E ntertainment, 2008.

[10] J . Schrum and R. Miikkulainen. Evolving Multi-modal Be-
havior in NPCs. In Computational I ntelligence and Games,
2009.

[11] J . Schrum and R. M iikkulainen. Evolving agent behavior in
multiobjective domains using fitness-based shaping. In Ge-
netic and E volutionary Computation Conference, July 2010.

[12] K. O. Stanley, B. D. Bryant, I. Karpov, and R. M iikkulainen.
Real-Time Evolution of Neural Networks in the NERO Video
Game. In National Conference on A rtificial I ntelligence, 2006.

[13] K. O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary Computation,
10:99–127, 2002.

[14] R. S. Sutton and A. G. Barto. R einforcement L earning: A n
Introduction. MIT P ress, Cambridge, MA, 1998.

[15] T. Thompson, F. M ilne, A. Andrew, and J. Levine. Improving
Control Through Subsumption in the EvoTanks Domain. In
Computational Intelligence and Games, pages 363–370, 2009.

[16] J . T ogelius, S. Karakovskiy, J. Koutnik, and J . Schmidhuber.
Super M ario E volution. In Computational I ntelligence and
Games, 2009.

[17] N. van Hoorn, J. Togelius, and J . Schmidhuber. Hierarchical
Controller Learning in a First-Person Shooter. In Computa-
tional I ntelligence and Games, 2009.

[18] M. Waibel, L. Keller, and D. F loreano. Genetic Team
Composition and Level of Selection in the Evolution of Multi-
Agent Systems. E volutionary Computation, 13(3), 2009.

[19] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and
N. Kohl. Automatic feature selection in neuroevolution. In
Genetic and E volutionary Computation Conference, 2005.

[20] G. N. Yannakakis and J. Hallam. Interactive opponents
generate interesting games. In Computer Games: A rtificial
Intelligence, Design and Education, pages 240–247, 2004.

[21] E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume
Indicator Revisited: On the Design of Pareto-compliant Indica-
tors Via Weighted Integration. In Evolutionary M ulti-Criterion
Optimization, 2007.

[22] E . Zitzler, L. Thiele, M . L aumanns, C. M. Fonseca, and
V. G. da Fonseca. Performance Assessment of M ultiobjective
Optimizers: An Analysis and Review. TIK Report 139, TIK,
ETH Zurich, 2002.

109 2011 IEEE Conference on Computational Intelligence and Games (CIG’11)

