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Abstract

An empirical study is performed on the local-optimum space in graph bipartitioning. We examine some statistical
features of the fitness landscape and the local properties of the landscape. They include the distributions of local
optima, their cost-distance correlations, their attraction powers, the properties around the central area of local
optima, etc. The study reveals some new notable results about the properties of the fitness landscape. For example,
the central area yielded good quality in local-optimum space, the local-optimum space had the self-similar structure
of global convexity, local optima showed clusters in more than one place, etc. We also provide a simple experiment
on whether it is worth to exploit the area around the Euclidean center of the problem space.
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1. Introduction

An NP-hard problem such as graph partitioning problem or traveling salesman problem
(TSP) has a finite solution set and each solution has a cost. Although finite, the problem space
is intractably large even for a small but nontrivial problem. It is almost impossible to find an
optimal solution for those problems by exhaustive or simple search methods. Thus, in the
case of NP-hard problems, heuristic algorithms are being used. Heuristic algorithms provide
reasonable solutions in acceptable computing time but have no performance guarantee.
Consider a combinatorial problem C = (2, f) and a local optimization algorithm L, :
Q — Q, where 2 is the solution space and fis the cost function. If a solution s* € Q is in
L (2), then s* is a local optimum with respect to the algorithm L. For each local optimum
s* € L.(R2), we define the neighborhood set of s* to be a set N(s*) C 2 such that, for every
s in N(s*), L.(s) is equal to s*. That is, s* is the attractor of the solutions in N(s*). We
examine the space L.(€2) and hope to get some insight into the problem space. This is an
alternative for examining the intractably huge whole problem space. Good insight into the
problem space can provide a motivation for a good search algorithm (Boese, Kahng, and
Muddu, 1994).
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A number of studies about the ruggedness and the properties of problem search spaces
have been done. Sorkin (1991) defined the fractalness' of a solution space and proposed
that simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983) is efficient when the space
is fractal. Jones and Forrest (1995) introduced fitness-distance correlation as a measure of
search difficulty. Manderick, de Weger, and Spiessens (1991) measured the ruggedness of
a problem space by autocorrelation function and correlation length obtained from a time
series of solutions. Weinberger (1991) conjectured that, if all points on a fitness landscape
are correlated relatively highly, the landscape is bowl shaped. Boese, Kahng, and Muddu
(1994) suggested that, through measuring cost-distance correlation for the TSP and the
graph bisection problem, the cost surfaces are globally convex; from these results they
proposed an adaptive multi-start heuristic and showed that the heuristic is efficient (Boese,
Kahng, and Muddu, 1994). Kauffman (1989) proposed the NK-landscape model that can
control the ruggedness of a problem space.

In this paper, we propose a number of experiments to analyze problem spaces more
elaborately. We examine the distributions of local optima, their cost-distance correlations,
their attraction powers, the properties around the central areas of local optima, etc. We
perform these experiments on the graph bipartitioning problem.

The remainder of this paper is organized as follows. In Section 2, we summarize the
graph bipartitioning problem, the Fiduccia-Mattheyses algorithm (FM) which is used as a
major local optimization algorithm in this paper, large-step Markov chain approach, and
test graphs. We perform various experiments and analyze fitness landscapes in Section 3.
In Section 4, we examine how strongly one needs to exploit the central area of a problem
space. Finally, we make our conclusions in Section 5.

2. Preliminaries
2.1.  Graph bipartitioning

Let G = (V, E) be an unweighted undirected graph, where V is the set of vertices and
E is the set of edges. A bipartition (A, B) consists of two subsets A and B of V such that
AUB=V and AN B = ¢. The cut size of a bipartition is defined to be the number
of edges whose endpoints are in different subsets of the bipartition. The bipartitioning
problem is the problem of finding a bipartition with minimum cut size. If the differ-
ence of cardinalities between two subsets is at most one, the problem is called graph
bisection problem and if the difference does not exceed the fixed ratio of | V|, the prob-
lem is called roughly balanced bipartitioning problem. Without balance criterion, we can
find the optimal solution in polynomial time by maxflow-mincut algorithm (Ford and
Fulkerson, 1962). In a roughly balanced bipartitioning problem, 10% of skewness is usu-
ally allowed (Saab, 1995). Since it is NP-hard for general graphs (Garey and Johnson,
1979), practically heuristic algorithms are used. These include FM algorithm (Fiduccia and
Mattheyses, 1982), a representative linear time heuristic, PROP (Dutt and Deng, 1996)
based on probabilistic notion, LG (Kim and Moon, 2004) based on lock gain, etc. In
this paper, we consider only roughly balanced bipartitioning problem allowing 10% of
skewness.
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do {
Compute gain g, for each v € V;
Make gain lists of gys;
Q=4
fori=1to |V |-1{
Choose v; € V — Q such that g,; is maximal and
the move of v; does not violate the balance criterion;
Q=QU{v};
for each v € V — @ adjacent to v;
Update its gain g, and adjust the gain list;
}
Choose k € {1,...,| V| —1} that maximizes Zf=1 v
Move all the vertices in the subset {v1,...,v5} to their opposite sides;
} until (there is no improvement)

Figure 1. The Fiduccia-Mattheyses algorithm (FM).
2.2.  Fiduccia-Mattheyses algorithm (FM)

Fiduccia and Mattheyses (1982) introduced a heuristic for roughly balanced bipartitioning
problem. The FM algorithm as well as the Kernighan-Lin algorithm (KL) (Kernighan and
Lin, 1970) is a traditional iterative improvement algorithm. The algorithm improves on an
initial solution by single-node moves. The main difference between KL and FM lies in that
a new partition in FM is derived by moving a single vertex, instead of KL’s pair swap. The
structure of the FM algorithm is given in figure 1. FM proceeds in a series of passes. In
each pass, all vertices are moved in chain and then the best bipartition during the pass is
returned as a new solution. The algorithm terminates when one or a few passes fail to find
a better solution. With an efficient data structure, each pass of FM runs in ®(| E|) time.

2.3.  Large-step Markov chain (LSMC)

Martin, Otto, and Felten (1991) proposed the large-step Markov chain (LSMC) method for
the traveling salesman problem (TSP). It iteratively applies a local optimization algorithm,
and then perturbs the resulting local optimum by a kick move to obtain the starting solution for
the next local optimization. LSMC actually performs simulated annealing (SA) (Kirkpatrick,
Gelatt, and Vecchi, 1983) over the set of local optima, with “kick move + local optimization”
as its neighborhood operator. Like SA, it optimally uses the Boltzmann acceptance criterion
in adopting a new local optimum. A number of studies about LSMC have been done (Hong,
Kahng, and Moon, 1997; Fukunaga, Huang, and Kahng, 1996). A study about various kick
moves for hypergraph partitioning was presented in Fukunaga, Huang, and Kahng (1996).
In our experiments later, we use random perturbation for the kick move, and use zero-
temperature LSMC as in Martin, Otto, and Felten (1991) and Fukunaga, Huang, and Kahng
(1996) that is, a new local optimum is accepted only when it is better than its predecessor.
LSMC will be used in Section 3.5 for the study of attraction powers around local optima
and in Section 4 for comparing with our proposed method.
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2.4. Test beds

We tested on a total of 17 graphs which consist of two groups of graphs. They are composed
of 17 graphs from Johnson et al. (1989) (9 random graphs and 8 geometric graphs). The
two classes were used in a number of other studies (Lim and Chee, 1991; Saab, 1995; Bui
and Moon, 1996; Moon and Kim, 1997; Steenbeek, Marchiori, and Eiben, 1998; Battiti and
Bertossi, 1998, 1999; Merz and Freisleben, 1998; Kim and Moon, 2004). The classes are
briefly described below.

1. Gn.d: A random graph on n vertices, where an edge is placed between any two vertices
with probability p independent of all other edges. The probability p is chosen so that the
expected vertex degree, p(n — 1), is d.

2. Un.d: A random geometric graph on n vertices that lie in the unit square and whose
coordinates are chosen uniformly from the unit interval. There is an edge between two
vertices if their Euclidean distance is ¢ or less, where d = nm¢? is the expected vertex
degree.

3. Investigation of the problem space

In this section, we make new attempts to examine properties of the problem space. We
first extend the experimentation of Boese, Kahng, and Muddu (1994) to examine the local-
optimum space. We denote by local-optimum space the space consisting of all local optima
with respect to a local optimization algorithm. Next, we examine the area around the “central
point” of local optima and propose a supportive experiment to observe the self-similar fractal
structure of global convexity in problem spaces. We then measure the distribution of local
optima and their attraction powers. In our experiments, we use a sufficiently large number
of local optima. We do not care about solutions other than local optima. The local optimizer
in our experiments is the FM algorithm.

In the graph bipartitioning problem for a graph G = (V, E), each solution (A, B) is
represented by a |V |-bits code. Each bit corresponds to a vertex in the graph. A bit has value
zero if the vertex is in the set A, and has value one otherwise. In this encoding, a vertex
move in the FM algorithm changes the solution by one bit. Thus, it is natural to define
the distance between two solutions by the Hamming distance. However, if the Hamming
distance between two solutions is | V|, they are symmetric and equal. We hence define the
distance between two solutions as follows.

Definition 1. Let the universal set U be {0, 1}!V!. For a, 6 € U, we define the distance
between a and b as follows:?

d(a, b) = min($H(a, b), |V| — H(a, b))
where $) is the Hamming distance.

By the definition, 0 < d(a, b) < [|V|/2] while 0 < $(a, b) < |V|.
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3.1. Cost-distance correlation

Given a set of local minima, Boese, Kahng, and Muddu (1994) plotted, for each local
minimum, (i) the relationship between the cost and the average distance from all the other
local minima and (ii) the relationship between the cost and the distance to the best local
minimum. They performed experiments for the graph bisection and the traveling salesman
problem, and showed that both problems have strong positive correlations for both (i) and
(i1) in the above. This fact hints that the best local optimum is located near the center of
the local-optimum space. From their experiments, they conjectured that cost surfaces of
both problems are globally convex. In this subsection, we repeat their experiments for other
graphs and provide some additional information and statistics.

The solution space for the experiment is selected as follows. First, we choose thousands
of random solutions and obtain the corresponding set of local optima by locally optimizing
them. Next, we remove the duplicated solutions in the set if any. Figures 2 and 3 show
the plotting results for two graphs (U500.05 and U500.10). It is consistent with Boese et
al.’s results with strong cost-distance correlation. More statistics for a number of graphs
are given in Table 1. The meaning of each item in the table is as follows. “Population size”
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Figure 2. Relationship between cost and distance: U500.05 (see Table 1).
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Figure 3. Relationship between cost and distance: U500.10 (see Table 1).
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Table 1. The results for each graph.

Items G250.10  G500.2.5  G1000.2.5  US500.05  US500.10  U1000.05
Population size 9877 10000 10000 10000 9302 10000
Best cut 352 52 103 5 24 16
Average cut 367.65 64.58 128.17 35.62 83.58 70.76
Cost-distance correlation 0.77 0.78 0.83 0.89 0.91 0.88
Central point cut (CP) 380 60 118 5 24 17
CP +FM 352 51 99 5 24 16
Average distance 102.94 217.11 453.44 215.63 192.83 448.09

Population size: the number of local optima; Best cut: the minimum cost; Average cut: the average cost;
Cost-distance correlation: correlation coefficient between cost and average distance from each local optimum
to others; Central point cut (CP): the cost of the approximate central point in solution space; CP + local opt:
the cost after local optimization on the approximate central point; Average distance: the average value of
distances between a pair of local optima.

means the number of local optima we used for each graph. “Best cut” is the cost of the
best local optimum. “Average cut” is the average cost of the local optima. “Cost-distance
correlation” is the correlation coefficient between the costs of local optima and the av-
erage distances from the other local optima. “Central point cut (CP)” is the cost of the
approximate central point of the local-optimum space (see Section 3.2 for the approximate
central point). “CP + local opt” is the cost after local optimization on the approximate
central point. Finally, “Average distance” means the average distance between a pair of
local optima. Overall, each graph showed strong positive correlation. Depending on graphs,
correlation coefficients were a bit different. Geometric graphs showed larger correlation
coefficients than random graphs. In the statistical data of Table 1, each population was
obtained from 10,000 random initial solutions. Among the six graphs, four graphs had no
duplications and the other two graphs had 123 and 698 duplications, respectively. It is sur-
prising that there were no duplications in the first 10,000 attractors for four of them. It seems
to suggest that the number of all possible local optima with respect to FM is immeasurably
large.

Figure 4, Tables 2 and 3 compare the data with different local optimizers. A greedy local
optimizer which moves only vertices with positive gain was named GREEDY. Its principle
is the same as that of the steepest descent algorithm in the differentiable cases. NONE means
a set of random solutions without any local optimization. From the cut sizes in Tables 2 and
3, FM is clearly stronger than the GREEDY algorithm. The stronger the local optimizer, the
smaller the average distance between two local optima and the more sharing among local
optima. However, from Tables 1-3, it is surprising that, differently from our expectation,
the average distance between two arbitrary local optima is nearly 80%—90% of the possible
maximum distance ||V|/2]. This is an evidence of the huge diversity of local optima. In
figure 4, a stronger local optimization shows stronger cost-distance correlation. Since the
average distances in graphs are various, these values may have some potential to be used as
measures of the problem difficulty with respect to a local optimizer.’
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Table 2. The data comparison with different local optimizer in the graph G500.10.

Local opt FM GREEDY NONE
Population size 2000 2000 2000
Best cut 623 666 1101
Average cut 648.60 706.26 1178.00
Cost-distance correlation 0.77 0.81 —0.02
Central point cut (CP) 659 670 1138
CP + local opt 623 643 -
Average distance 218.58 229.71 241.09
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Figure 4. Relationship between cost and distance with different local optimizer in the graph U500.05 (see

Table 3).

3.2.  Approximate central point

The results of Boese, Kahng, and Muddu (1994) for the TSP and the graph bisection
problem suggest that the best solution is located near the center of the local-optimum space.
As a result of this, given a subspace of local optima for a problem, the “central point™* of
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Table 3. The data comparison with different local optimizer in the graph

U500.05.

Local opt M GREEDY NONE
Population size 2000 2000 2000
Best cut 7 34 562
Average cut 35.86 65.16 640.89
Cost-distance correlation 0.88 0.79 —0.02
Central point cut (CP) 5 33 581
CP + local opt 5 30 —
Average distance 215.71 222.58 241.08

the subspace may be near the optimal solution. Hence, computing the “central point” not
only supports the results of Boese et al. but also may be helpful for obtaining the optimal
solution. In this subsection, we propose a heuristic method to find the central point of the
local-optimum space in the graph bipartitioning problem.

Given a subspace Q' of the whole solution space in the graph bipartitioning problem,
the “approximate central point™ is computed as follows. First, since each solution has a
pair of encodings, we make the set Sg that contains only the encodings with zero in the
first position, i.e., So C {0} x {0, 1}VI=!, Next, let the encoding of the best solution in
S be ppest. For each a in Sg, if the Hamming distance between a and ppeg is more than
LIV]/2], take the mirror solution a’ by reversing 0’s and 1’s. Then, the Hamming distance
between a’ and pyeg is always not greater than || V] /2]. Let Sg, be the set that consists of
all such encodings. Next, for each position, count the number of 0’s and that of 1’s for all
elements of Sg,,. Make the approximate central point ¢ so that each position of ¢ has the
more-frequently-appeared bit. Then, the approximate central point c is closer to the center
of Q' than pyes.® The proof of this proposition is given in Appendix A.

Although the approximate central points are calculated through a simple computation, it
turned out that the costs of the approximate central points are quite attractive (see Tables 1—
3). It is amazing that the cut size of the approximate central point without any fine-tuning
was sometimes equal to or better than that of the best solution (see the cases of U500.05 and
U500.10 in Table 1). In order to check the local optimum near the center, we applied local
optimization to the approximate central point. The results are in the row “CP + local opt” of
Tables 1-3. In all of the ten cases, the costs of the local optima near the approximate central
points were at least as good as those of the best solutions; surprisingly enough, they were
better than those of the best solutions in five cases of them. This shows the attractiveness
of the central area of the local-optimum space.

3.3.  Fractal structure of global convexity

Here, a fractal structure means self-similar substructures. In a globally convex problem
space, we experimentally check such similarity as in figure 5. Consider, for each solution
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// Let the local-optimum space Q and the positive constant ¢ be given.
for each solution s € Q2
{
Choose e-ball K.(s) centered at s, where K¢(s) = {a € Q : d(s,a) < €};
If the solution s is the minimal solution in subspace K¢(s) and |Ke(s)| is “not too small”T,
then make the same experiment as Section 3.1 for the subspace Ke(s);

«

}

t We mean that the experimental data for subspace are creditable. We set the size to some integer larger than 30.

Figure 5. The test of self-similarity.

s in the problem space, a subspace centered at s. If the solution s is the minimum in the
subspace, we call this subspace a hole subspace. Given a local-optimum space, we select
all hole subspaces with a proper size. If the hole subspace is not too sparse, we perform the
same experiment as Section 3.1 with the local optima in the hole subspace.

Roughly speaking, if each hole subspace also has a positive cost-distance correlation,
it implies that the problem space has similar subspaces. In the experiment, it is important
to choose “proper” neighborhood. The number of hole subspaces is too low if the radius
is too large, and the density of hole subspaces is too small if the radius is too small.” For
our experimental data, we use only hole subspaces that have more than 30 local optima.
Generally speaking, given a space Q2 with a cost function, if we show that M is globally
convex for every hole subspace M, we may guess that 2 has the fractal structure of global
convexity.

The experimental data are given in Table 4 and figure 6. In figure 6, we selected an arbitrary
hole subspace among all subspaces found by the method of figure 5 for each graph. First,
the symbol ‘4 in the figure indicates each element of the hole subspace with the coordinate
“(average distance from the other local minima in the whole solution space(X), cut size(Y),
average distance from the other local minima in the hole subspace(Z)).” In the XY plane, the
elements of the whole solution space are plotted by dot(‘-”) and those of the hole subspace
are indicated by the symbol ‘x’ in order to compare the distributions of the whole space

Table 4. The hole subspace for each graph.

Items G250.10 G500.2.5 U500.05 U500.10
Population size 9877 10000 10000 9302
Cost-distance correlation 0.77 0.78 0.89 0.91
Radius 0.188]V| 0.281|V| 0.266]V | 0.125]V|
Number of holes 20 12 5 7
Ave. density 100.95 229.00 199.40 191.43
Ave. corr. in holes 0.62 0.45 0.46 0.70

Radius: the radius of ball, i.e., the maximum value of d(-, hole); Number of holes: the
number of hole subspaces; Ave. density: the average number of local minima in a hole
subspace; Ave. corr. in holes: the average correlation in hole subspaces.
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Figure 6. Relationship between cost and distance in a hole subspace (see Table 4).

and the hole subspace. That is, the local optima in the hole subspace are projected to the XY
plane and indicated by the symbol ‘x’. In the YZ plane, the solutions of the hole subspace
are projected and indicated by the symbol ‘x’. This plotting in the Y Z plane shows the
cost-distance relationship of the solutions inside the hole subspace. The figures show that
hole subspaces also have strong correlation similarly to the whole spaces although their
correlations are not as strong as those of the whole spaces.

Table 4 shows some figures relevant to figure 6. The meaning of each item is as follows.
“Radius” means the size of subspace. “Number of holes” means the number of hole sub-
spaces found from the experimental data. “Ave. density” is the average number of local
minima in a hole subspace. “Ave. corr. in holes” is the average cost-distance correlation
in hole subspaces. The numerical data show that the overall correlations of subspaces are
smaller than those of the whole spaces. They are also different depending on graphs. How-
ever, it is clear that hole subspaces still maintain strong positive correlations.

Our next experiment tests the consistency of convexity as we hierarchically extract smaller
and smaller subspaces. Figure 7 shows an example with the graph U500.10. In figure 7(a), the
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Table 5. The results for each level in the graph U500.10.

Items Level 1 Level 2 Level 3
Population size 91229f 2260 116
Best cut 24 28 42
Average cut 87.79 50.65 46.33
Cost-distance correlation 0.92 0.80 0.69
Average distance 194.88 71.44 14.96
Radius 0.5001V| 0.125]V| 0.047|V|

TData from removing duplicated 18,771 local optima among 110,000 local optima.

cost-distance relations for 91,229 local optima are plotted. Figure 7(b) shows the plottings
for a hole subspace extracted from the space used in (a). Similarly, figure 7(c) shows those
for a hole subspace extracted from the subspace in (b). The bold points in (a) represent the
points extracted for (b); the bold points in (b) represent the points extracted for (c). One
can see that each set has a strong positive correlation. The convexity remains consistent in
each level of spaces. Table 5 shows the figures relevant to figure 7.

3.4.  Distribution of local optima

As a result of the experiments of Boese, Kahng, and Muddu (1994), we agree with the
conjecture about the global convexity of local-optimum space but it is difficult to obtain
more detailed deduction. In this subsection, we conduct experiments to get more detailed
induction. Figure 8 shows the relationship between the distance to the best local minimum
and the average distance from the other local minima for each local minimum in the local-
optimum space.® In the figure, there are considerably many solutions such that they are

Avg Distance from other local minima Avg Distance from other local minima
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Figure 8. Relationship between distance to the best local optimum and average distance from the other local
minima.
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// Let the local-optimum space Q and the positive constant e be given.
for each solution s €

Choose e-ball K¢(s);
Compute its cardinality |Ke(s)[;
With the proper function p(s) that can identify the location of s in the whole space, plot (p(s), |Ke(s)]);

}

Figure 9. Plot the distribution of local optima.

far from the best solution but their average distances are small. We suspect that this fact
suggests solutions are clustered in more than one place. In this subsection, we intend to
understand their distributions in more detail. The experimental method is given in figure 9.
For each solution s in the problem space, we choose a ball centered at s. Figure 10 plots the
densities of the balls. Figure 10 shows that the density of local optima near the central point
is remarkably high. One can see that the local optima are more sparsely distributed as they
locate distant from the central point. One can also observe that local optima are clustered in
more than one place. Although ubiquitous, U500.10 shows the strongest evidence among
the graphs in figure 10. High-density balls are often observed in the areas far from the center.
It suggests the existence of “medium valleys” or “small valleys.” It could not be explained
by the experimental methods such as Boese, Kahng, and Muddu (1994). Table 6 shows the
statistical data for the experimental result of figure 10. In the table, “Density” means the
average number of elements in each ball.

3.5. Local optima as attractors

A local optimum is obtained by a local optimizer. Since each local optimum is a solution
stabilized by the local optimizer in the whole solution space, it plays a role of attractor
in its neighborhood. We conducted experiments to measure the attraction powers of local
optima. The experimental method is given in figure 11. We perturb each local optimum by
reversing i percent of the bits and apply the local optimizer to the perturbed solution to
obtain a local optimum. Then, we compute the distance d between the new local optimum
and the previous one, and plot the relation between the size of perturbation and the distance
d. If there is no attraction power, the distance d is expected to remain the same as the size
of perturbation.

Table 6. Statistical data of figure 10.

Items G250.10 G500.2.5 U500.05 U500.10
Population size 2989 3000 3000 2902
Radius 0.188|V| 0.281]V| 0.266|V| 0.125|V|
Density 17.35 21.66 18.12 22.73
Average distance 102.97 217.00 215.68 191.98

Density: the average number of local minima in a subspace.
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Figure 10. Distribution of local minima (see Table 6).
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// Assume that the positive integer m is given.
for each local minimum s
for i = 1 to 50 // perturbation rate: 1% ~ 50%

fork=1tom

{

s1 + i%-random_perturbation(s);
s2 < local_opt(s1);
Dy; + d(s, s2);

} A
Plot (V1 55 (X Drs) /m) 5

Figure 11. The test of attraction power.

Figure 12 shows the experimental results with m = 20 from 200 local minima. From the
results, the following explanation for the graphs U500.05 and U500.10 is possible. The local
optima have strong attraction powers with respect to both local optimizers. The attraction
power is stronger with FM than with GREEDY.

Distance to the returned local optimum 2{‘)5["‘“‘:3 to the returned local optimum
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Figure 12. Local optima as attractors.
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In the case of GREEDY with perturbation size 50 (10%) in U500.05, the perturbed local
optima returned local optima of average distance 15.4 from the initial local optima; in the
case of FM, the average distance was 9.5. This data seems to be an explanation for the
observation of Hong, Kahng, and Moon (1997) that stronger local optimization heuristics
need stronger perturbation to get good solutions in LSMC. One can observe wider basins of
attraction in U500.10 than in U500.05. In the case of U500.10 with the same perturbation
size 50, the average distances were 11.0 and 4.6 in GREEDY and FM, respectively. We
conjecture that a small average distance implies the low ruggedness of the corresponding
instance. However, we leave tighter investigation for this issue for future studies. One can
also observe that FM rapidly loses the returning power when the perturbation size exceeds
some point.

The results also show that the correlation between the costs of initial local optima
and those of perturbation-induced local optima greatly depends on the perturbation rates.
Figure 13 shows the spectrum of correlations with respect to perturbation sizes. The results
were obtained from 1,000 local optima and those after “perturbation 4 local optimization”
on them. Table 7 provides the LSMC performance of the graph U500.10 over a number
of perturbation rates. The best perturbation rate was around 30%. The perturbation rates
corresponding to correlation 0.5 in figure 13 roughly corresponded to the best perturbation
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Figure 13. Correlation between random perturbation rate and cut size.
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Table 7. LSMC performance of the graph U500.05.

Perturbation rate

M 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

100 22.77 22.14 17.16 13.20 11.42 10.07 10.34 11.02 12.19 12.72
500 21.60 15.67 11.18 8.07 7.42 6.39 6.50 7.33 8.02 9.20
1000 22.59 12.99 8.91 8.21 6.70 6.06 5.51 5.85 7.03 7.96

Average results from 100 runs.
M is the number of iterations in LSMC.

rate. Manderick, de Weger, and Spiessens (1991) used the correlation length 7 as a measure
of problem hardness. It is the degree of difference of two solutions with autocorrelation 0.5.
It is interesting that autocorrelation 0.5 was related to the most attractive perturbation rate.

4. Exploiting approximate central points

We observed in Section 3.2 that the approximate central points obtained by simple com-
putation are quite attractive. In Section 3.3, we showed that these properties are fractally
maintained in local-optimum subspaces. In this section, we examine the advantage of ex-
ploiting the area around the approximate central point.

A search template for exploiting the approximate central points is given in figure 14. We
call it Central Search. It is a variation of multi-start heuristics. A multi-start heuristic returns
the best local optimum among several local optima fine-tuned from random initial solutions.
Although multi-start heuristics are simple, they have been useful in a number of studies
(Johnson, 1990; Boese and Kahng, 1994). The proposed heuristic proceeds in two threads.
One thread makes a series of solutions by “random solution + local optimization” like the
multi-start approach. Simultaneously, the other makes a series of solutions by “approximate
central point of recent K local optima + random perturbation + local optimization.” It adds
the part of exploiting the central area of recent K solutions to the typical multi-start heuristic.
K was used to control the degree of exploitation around the central area. For example, let
M be 100. If K is 10, it exploits the central area 45 times out of 100 trials and, if K is 40,
30 times out of 100 trials. If K is equal to M, the heuristic equals the multi-start heuristic.
The values of K represent a spectrum of the exploitation strength of the central area. Since
the heuristic makes total M local optima, it has almost the same running time as multi-start
heuristic with M iterations.

The experimental results of multi-start heuristic and the proposed heuristic are given in
Table 8. We use the FM algorithm as the local optimizer. We set M and R to 100 and 20
respectively in all cases and performed 1,000 runs in the experiments.

Overall, exploiting the central area showed improvement over the multi-start heuristic in
all test graphs. Figure 15 shows two sample spectra. The results show that it is useful to
exploit the central area, but that excessive or insufficient exploitation is not desirable. This
experiment is only a simple example to utilize the central area and is not the major output
of our study.



128

KIM AND MOON
MultiStart(M)
fori=1to M
{
Generate a random solution P;;
P; « local_opt(P;);
return the best among P, P, ..., Pyy;
CentralSearch(M, K, R)
foreachi=1,...,K
{
Generate a random solution FP;;
P; + local_opt(P;);
}
B « the best among P, P», ..., Pk;
fori=1to (M —K)/2
{
Generate the approximate central point C of P;, Ps, ..., Pk;
C + R%-_random_perturbation(C);
C* « local_opt(C);
Generate a random solution 77
P((i=1) mod K)+1 < local_opt(T);
B < the best among B, C*, and P((;_1) mod K)+15
}
return B;

Figure 14. A simple variation of multi-start heuristic.

Cut Size
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-
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Figure 15. Two sample spectra from Table 8.

We also compare our proposed method with LSMC. As mentioned in Section 2.3, LSMC
is an iterated “perturbation + local optimization.” We use zero-temperature LSMC as in
most literature (Martin, Otto, and Felten, 1991; Fukunaga, Huang, and Kahng, 1996; Hong,
Kahng, and Moon, 1997); i.e., it chooses the best solution found so far as the solution
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Table 8. The comparison of cut size (M = 100 and R = 20).

129

Multi-Start? K =10 K =20 K =30 K =40

Graphs Avel  CcPUt  Avel  CcPU'  Avel CPU!  Avel  CPUT  Avel  CPU!
G500.2.5 55.16 0.8 5434 0.26 53.96 0.27 53.85  0.28 5371 029
G500.05 22235 038 21939 036  219.02 037 21894 039 21881 039
G500.10 62790 0.67 62542 068 62482 069 62449 070 62455 0.73
G50020 173651 226 173322 230 173276 216 173241 214 173230 2.17
G10002.5 11037 062 10822 0.67 10742 062 10689 077 10637 0.74
G1000.05 46537 106  460.75 123 45933 1.10 45874 124 45871 1.16
G1000.10 137444 268 1368.07 284 136633 280 1365.69 2.62 136553 2.78
G100020 3379.56 643 336539 679 3363.17 6.64 336247 629 336199 6.63
U500.05 1217 0.36 1193 037 11.82 033 1140 035 1120 0.40
U500.10 2559 0.66 25.04  0.66 25.19  0.50 2520  0.62 2523 0.60
U1000.05 3228 090 3312 1.40 3227 099 3172 117 3125 111
U1000.10 5226 228 4861  2.53 4832  2.08 4851  2.11 4780 222
K =50 K =60 K =170 K =80 K =90
G500.2.5 53.78 030 53.83 030 53.88  0.29 53.99  0.29 5428 028
G500.05 218.88 040 21920 040 21937 039 21969 039 22021 038
G500.10 624.60 0.69 62473 075 62520 074 62559 075 62623 0.76
G500.20 173243 204 173299 2.6 1733.10 211 1733.85 208 173452 2.1l
G10002.5 10641 073 10625 078 10607 078 10640 0.65  107.30 0.64
G1000.05 45849 125 45858 122 45906 121  460.02 1.15 46125 124
G1000.10  1365.64 283 136579 265 136659 278 1367.61 2.67 136932 2.78
G100020 336220 637 336158 637 3361.63 647 3363.04 643 336646 6.59
U500.05 11.08  0.36 1092 037 1097 042 11.15  0.36 1134 036
U500.10 2505 0.62 25.16  0.62 2525  0.69 25.14 0.8 25.14  0.59
U1000.05 3067 112 3020 125 3012 123 3076 121 3057 115
U1000.10 4797 220 4844  2.06 4844 222 48.67 225 4902 235
Sk = M(=100).

T Average over 1,000 runs.
{CPU seconds on Pentium celeron 466 MHz.
For four dense geometric graphs (U500.20, U500.40, U1000.20, and U1000.40), all the methods always found
the best known.

for the next perturbation step. Table 9 shows the performance of Central Search and two
LSMCs. We performed 1,000 runs in each experiment. In each run, 1,000 new solutions
were generated, which consequently required 1,000 runs of local optimization, for both
Central Search and LSMC. As parameters for our method, we set M, K, and R to 1,000,
500, and 20 respectively. LSMCI1 has 20% as the perturbation rate—the same perturbation
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Table 9. The comparison of cut size (1,000 iterations).

CentralSearch! LSMC1? LSM(C2?
Graphs Avef Avel Avel
G500.2.5 50.64 51.71 51.25
G500.05 213.78 221.04 215.07
G500.10 619.76 627.28 621.04
G500.20 1727.20 1737.98 1729.60
G1000.2.5 97.59 100.27 100.19
G1000.05 448.01 45331 447.84
G1000.10 1354.97 1366.97 1352.88
G1000.20 3345.07 3388.03 3357.90
U500.05 4.77 7.57 5.67
U500.10 24.00 33.70 25.36
U1000.05 12.86 16.73 17.68
U1000.10 40.97 59.27 43.39

'0Our method with (M, K, R) = (1000, 500, 20).

2L.SMC with 1,000 iterations and perturbation rate 20%.
3LSMC with 1,000 iterations and the best perturbation rate 35%.
7LAvelrage over 1,000 runs.

rate as our method. LSMC2 has 35% as the perturbation rate where it shows the best results
over a number of perturbation rates. Central Search overall outperformed the LSMCs.

5. Conclusions

The fitness landscape of the problem space is an important factor to indicate the problem
difficulty, and the analysis of the fitness landscape helps efficient search in the problem
space. In this paper, we made several experiments and got some new insights into the
global structure of the graph-partitioning problem space. We extended previous works and
observed that good solutions are located near other good solutions and the central area is
quite attractive. We supported the hypothesis that graph-partitioning problem spaces have
self-similar fractal structures. We also showed that the best perturbation rate of LSMC
accords with the point beyond which the local optima sharply lose the attraction power.

Boese, Kahng, and Muddu (1994) conjectured that the graph-partitioning problem space
is globally convex; i.e., it has the “big valley.” In our experiments, we found a strong
evidence of the existence of “medium valleys” as a result of investigating the distribution of
local optima. That is, some graph-partitioning problem spaces are not very globally convex
but seem to have more than one convex subspace. It could not be explained by previous
empirical methods.

It looks clear that there is a huge cluster of high-quality solutions near the central area
of local optima. Hence, it is attractive to exploit the central area. Too much exploitation of
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the central area makes the search diversity low. It is desirable to exploit the central area
avoiding excessive or insufficient exploitation. We showed that the performance of search
could be improved by a simple heuristic based on the exploitation of the central area. This
provides a motivation to contrive more sophisticated heuristics exploiting the central area.
More theoretical arguments for our empirical results and more analysis of various subspaces
are left for future study.

Our results were achieved in a specific problem: graph partitioning. However, we expect
that many other combinatorial optimization problems have similar properties. For example,
in the case of cost-distance correlation of Section 3.1, TSP showed similar property to the
graph partitioning problem (Boese, Kahng, and Muddu, 1994). We hope that this study
provides a good motivation for the investigation of problem spaces and the design of more
effective search algorithms.

Appendix A: Proof about approximate central point

Let the universal set U be {0, 1}!V!. Consider the distance measure d defined in Section 3,
a subset S in U, and an element s; in S.!° For each a € S, if H(s¢, @) > [|V]/2], make
a transition that interchanges 0 and 1 at every position of a. Let the new set resulted from
the transitions be S’ = {s, s2,...,s,} C U. Then, foreachi =1,2,...,n (i #k),0 <

sk, si) < |IV|/2]. Now, generate a new element c¢ such that foreach j = 1,2, ...,|V]|
1, if|{s €S :Bj(s)=1}| > |n/2]
Bj(c) = )
0, otherwise

where B;(x) is the jth element of x (x € U). Then, we have the following proposition.

Proposition 1.

Xn:d(sk, 5) > Xn:d(a si).
i=1 izl

Proof:
D dlsessi) =) Hlsi, i)
i=I i=1
n V|
=YY IBj(s) — Bj(si)|
i=1 j=I
VI n

= > > IBj(st) — Bj(si)|

j=Ii=1
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= Z |{S S S/ N BJ(S) 75 B](Sk)”
j=1

> Z I{s € S’ : Bj(s) # Bj(c)}
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Notes

L.

~

Sorkin defines “fractal” as follows: A cost surface over solution space 2 with distance d is defined to be
fractal if for random solutions s1, s> € @2, E[(f(s1) — f(sz))z] o« d(sy, sz)ZH, where d is simply the graph
distance induced by the neighborhood topology and H is the parameter with 0 < H < 1.

. Given an element a € U, there is only one element such that it is different from a and the distance d to a

is zero. If the distance between two elements is equal to zero, we define them to be in relation R. Then, the
relation R is an equivalence relation. Suppose that Q is the quotient set of U by relation R, it is easily verified
that (Q, d) is a metric space.

. This is not a simple issue, though.
. We define “central point” to be the nearest solution to the center of local-optimum space.
. In this problem, it is not easy to find the exact central point by a simple computation. Each solution has

two different encodings. In order to get the distance to other solution, we select one to which the Hamming
distance is smaller than the other. The more the solutions, the more complex the whole phase about which
encoding is used to calculate the distance.

. Since the approximate central point obtained in this way can violate balance criterion, adjustment is required.

Although not mentioned, the experimental data showed that most of adjusted approximate central points were
closer to the center of Q' than ppeg.

. Consider the space F having finite elements distributed uniformly in an n-dimensional Euclidean space. Given

a subspace 21 of F, if we choose the subspace €22 of F such that the radius of €2; is a half that of €, the
cardinality of €, is about 1/2" times that of ;.

. The data of this figure are from the same solutions as those in figures 2 and 3.
. The relative notion to big valleys mentioned by Boese, Kahng, and Muddu (1994).
. Assume that the distance d between any two elements in S is larger than zero.
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