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Abstract

daInic ti otohnnivssp eur agnpedener,cre ww m eho sitdcuhedls— yet lawenctodo r -eerxceaceonmmtint bheieno tharteeivtiricea asG lsAm umosdw peotlisro—knsaw t p eololpg .uaW ilnaeti iu nossneig-s thihztesinsi egnti m onsot ihdgeehltc sa ont nod-
pfteorrsotmb tluhelmeatu ,es ae snefuvN elnPrea-hslsa dro edsfit pg hnreord b uleelesmisg n ftroro ud mleevc s,aerlw otopegc c roaopmnhpsyied.tee Wrneta sG  coa Amc sapf saoerres p tr uthadecyt pit crhaeeldp im crtaoiopbn-llesambo esfl.t ihnT ego
tlehmeo.r eEtxipcaelrmi moednetsls s whoitwh t thhaet act hteua plrep derifcotiromnsanm ceato cfht h theeG o Absf eorrvet hdes cm alaep-u-lpab beelhinagvip orrobo -f
the GA, thereby strengthening our claim that the design rules can guide the design of
competent selecto-recombinative GAs for realistic p roblems.

1 Introduction

Genetic algorithms h ave b een applied to solve an impressively w ide range of prob-
lems. Although they have proven to b e v ery flexible, many successful GAs are found
by making educated guesses for representation, p arameters and operators. A s a result,



GA design is sometimes seen as a b lack art, not as an engineering task w ith a solid the-
oretical b asis. I n part, this is caused b y the complexity of the behavior of the algorithm,
which is difficult to model in its entirety. Several different theoretical approaches are
being pursued, such as the facet-wise composition of partial models (Goldberg, 2002),
the exact analytical models b ased on Markov chains (Vose, 1999; Rowe, 2 001), formal
proofs of GA behavior (Jansen and Wegener, 2 001), models b ased on statistical me-
chanics (Shapiro et al., 1994), exact schema theorems (Poli, 2000), and coarse-grained
analysis of b uilding-block evolution (Stephens and Waelbroeck, 1999).

These approaches offer valuable insights into various i mportant aspects of genetic
algorithms, but usually do not translate easily to p ractical design rules. Indeed, practi-
tioners dealing with real-life problems may feel that current theoretical results are too
far removed from p ractical realities to b e of any use.
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In this p aper, w e study this gap between theory and p ractice, following the ap-
proach of facet-wise design as advocated b y Goldberg (2002). Specifically, w e examine
selecto-recombinative GAs, that are b ased on selection and recombination, on p rob-
lems ofbounded difficulty. It is assumed that the Building Block Hypothesis (Goldberg,
1989c) h olds: good solutions can b e found b y finding (with selection) and combining
(with recombination) building blocks. Note that w e h ereby exclude, for example, GAs
that place a strong emphasis on mutation and use crossover as macro-mutation.

A GA can b e called competent if it is able to find good solutions for the problem
at h and in reasonable time. “Good” can b e defined as finding solutions with qual-
ity that is a certain p ercentage of the optimum. “Reasonable” means that the algorithm
should s cale up w ell (Thierens and Goldberg, 1993; Thierens, 1999; Sastry and Goldberg,
2003). The scale-up behavior of an algorithm is the relation between input size land
the amount of computational effort W required to find a solution w ith the requested
quality. The amount of computational effort the GA spends is the product of the n um-
ber of fitness evaluations E and the time needed to perform a single fitness evaluation
efit: W = E· efit. The optimal number of fitness evaluations E is also the product of two
fact:oW rs: =thE e ·ceritical population size and the number of generations it takes to converge:
E = n∗ · t∗, where n∗ is the smallest population size n eeded to obtain a solution of
a certain quality, and t∗ is the number of generations until convergence w hen the GA
uses a p opulation that is sized large enough (n ≥ n∗). Both factors (n∗ and t∗) together
duseteesra m pionpe tuhlaet scale-up sbe shizaevdiol ar rogfe ete hen on uugmhb( ner ≥ofn nfitness evaluations spent b y the GA.
Our goal therefore is to construct GAs that find solutions of a specific quality (for exam-
ple, w ithin 97% of the optimum) w hile maintaining a reasonable (for example, linear)



scale-up in the number of fitness evaluations.
In this p aper, w e discuss two models from the literature—a population-sizing

model (Goldberg et al., 1992; Harik et al., 1999) and a convergence model (Mühlen-
bein and Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994a; Bäck, 1995; Miller
and Goldberg, 1996)—that together give a p rediction of the scale-up behavior of the
GA. Both models predict a scale-up of the square root of l,yielding a prediction of a
linear scale-up for the n umber of fitness evaluations (E = O(l)). Unfortunately, these
models h ave only b een tested for artificial problems of bounded d ifficulty.1 It is implicitly
assumed that the concept of bounded difficulty is relevant for many p ractical problems,
too. In this paper w e w ill strengthen this claim b y showing how good solutions can b e
found for the map-labeling problem b y treating it as a problem of bounded difficulty.

Map labeling. The map-labeling problem comes from automated cartography and is
defined as follows. Given a map of cities and their names, each name has to b e p laced
on the map next to the city. The label of a city is the rectangularboundingbox of its name
when printed in a certain font and font size. The label can b e p laced w ith the city in
one of the four corners—in other w ords, the label can b e placed in either the top-right,
top-left, b ottom-right or b ottom-left p osition. The task is to find a labeling (a position
for each label) such that the number of non-intersecting l abels is maximized. A solu-
tion for a randomly-generated map of 1000 points is shown in Figure 1. This variant of
the map-labeling problem has b een shown to b e NP-hard (Formann and Wagner, 1991;
Marks and Shieber, 1991). The full map-labeling problem is more complex and contains
many additional cartographic constraints and additional feature types (such as rivers
and areas). To ease the analysis done in this paper, we w ill only b e concerned w ith
randomly-generated maps of uniform density such as shown in Figure 1. A more thor-

1We w ill say more about problems of bounded difficulty in Section 2.
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Figure 1: An example of a labeled map.

ough treatment of the map-labeling problem and the application of the GA from this
paper to real cartographic m aps is reported elsewhere (Van Dijk, 2001; Van Dijk et al.,
2002). N ote that for this problem, the term efit is easy to b ound: in the fitness function
each label on the map is checked for an intersection in constant time (by checking for
an intersection with the labels of a bounded number of neighboring cities). Therefore,
the total time n eeded for a single fitness evaluation is efit = O(l). Combining this w ith
the p redicted linear scale-up for the number of evaluations gives a quadratic scale-up
for the amount of computational effort: W = O(l2).

Our main contributions are as follows. Firstly, we demonstrate the p ractical use-
fulness of two recent theoretical models and the concept of bounded difficulty. W e
extract the underlying assumptions of the models to gain insights into the conditions
under which a GA performs w ell. Secondly, we show how these insights translate to
several p ractical design rules. Using the rules, we design a GA that gives h igh-quality
solutions for the map-labeling problem. W e use the GA to experimentally confirm the
predictions of the models, thus supporting the practical usability of the approach.

This article is structured as follows. In Section 2, we will briefly describe the two
models from the literature. Next, in Section 3 , w e formulate the design rules and use
them to design an efficient GA for the map-labeling problem. The impact of disre-
garding the rules is discussed as well. The m ap-labeling GA is not able to satisfy the
underlying assumptions of the models as well as the GAs for the artificial problems on
which the models were originally tested. However, since the design rules aim to sat-
isfy the underlying assumptions of the models, w e expect n o serious deviations from
the assumptions and thus expect the predictions to h old. Section 4 is devoted to the



verification of this expectation. Firstly, w e systematically check the model assumptions
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to see how m uch the GA deviates from them. Secondly, w e run the G A on dense,
randomly-generated maps and find the experimental critical population size and n um-
ber of generations u ntil convergence occurs. These match the p redictions of the models.
As a result, the total number of fitness evaluations scales linearly with respect to the in-
put size. Some concluding remarks are given in Section 5.

2 The models

Before examining the theoretical models, w e h ave to discuss w hat i s meant in this pa-
per b y “problems of bounded difficulty”. Such problems can b e solved b y combining
the b est schemata of p artitions of bounded size (Kargupta, 1995). Specifically, in this
paper w e will consider problems of bounded difficulty that can b e solved b y a GA
whose fitness function is assumed to b e additively decomposable, uniformly scaled
and (semi-)separable. A n additively decomposable function (Mühlenbein and Mahnig,
1999) can b e expressed as the summation of the contributions of the p arts of the so-
lution. More p recisely, the function is a summation of partial fitness functions that only
depend on a few genes2 each. For example, given a solution x = x1x2x3x4x5, the func-
tion ffit (x) = f1(x1x2) + f2 (x3x4) + f3(x5) is an ADF. If the different functions fi(·) all
depend on different genes, as in the example above, an ADF is called s eparable. It is( )ala soll
useful to consider the case where a fitness function is “almost” separable, which we w ill
call semi-separable. An additively decomposable function is defined as semi-separable i f
each gene is input to only a small, bounded number of partial fitness functions. For ex-
ample, ffit (x) = f1(x1x2x3) + f2 (x2x3x4) + f3(x4x5) is a semi-separable ADF in w hich
each gene occurs in at most two partial functions. If the n umber of sub-functions a gene
can b e input to is small enough, a semi-separable function w ill b ehave like a separa-
ble function. Note that the critical n umber of sub-functions depends on whether the
optima of sub-functions that share genes agree on the v alues of the shared genes. The
ADF is uniformly scaled if the functions fi(·) have similar distributions of values.

Problems that are defined b y an additively decomposable bfuunticotnisono are liunests.ances
for which the Building Block Hypothesis (Goldberg, 1989c) h olds: they can b e solved
by combining smaller p arts called building blocks of bounded size. W e define a build-
ing block as a schema w ith the highest fitness in the partition corresponding to a p ar-
tial fitness function.3 Combining building b locks simply m eans that the f inal solution
matches each building b lock.

We will consider problems of bounded difficulty for w hich the fitness function can



be expressed as follows:

Xm

ffit(x) = Xfi(xi,1,xi,2 ...xi,k) , (1)
iX= X1

where partial functions fi are defined on at m ost k genes, with k ? l. In addition, the
functions fi(·) are (semi-)separable aendd o n haa vtem msiomstikl ar g ednisetsr,ibw uittihonk s ?of vl.a Ilnuea sd.

The b it-counting problem (ffit (x) = Pil=1 xi, w ith xi ∈ {0, 1}) is the most simple
instance in this class of functions. A charPacteristic example ∈o{f a problem etm haot sitnv siomlvpeles
linkage over multiple genes is the concatePnated trap-function problem. It is defined as
follows. Chromosomes use a b inary alphabet and are l = k · m long, w here m is the
nfoulmlowbesr. o Cf trap fousnocmtioesn su asned a kb iins a ycoa nlspthaanbt.e

2We w ill assume a simple encoding that uses a gene for each problem variable, and w ill use those terms
interchangeably.

3The fitness of a schema i s the average of the fitnesses of all possible chromosomes that match it.
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We define a trapf unction as follows:

ftrap(xi+1...i+k)= ? kk− 1  −u (xi+1...i+k) iofth ue(rxwi+i1s.e..i+k)= k ,(2)
where xi...j is shorthand for xixi+1 . . . xj−1xj and u(xi...j ) = Ptj=i xt.

Trap functions with k ≥ 4 h ave also b een called fully decePptivef unctions (Goldberg,
1989bT;r aDpe fbu nanctdio Goldberg, ≥194 93 h)a, v beec aalsuosbe einenfo cramllaedtiof un lfryo dmec eaPpllt lvoewf uenrc-otirodnesr( p artitions
(defined over less than k genes) directs the search away from the optimal schema. I n
order to grow the p roportion of individuals in the p opulation that m atch the building
block (the optimal schema of the partition defined on the genes that are input to the
trap function), schemata in the partition should not b e disrupted during crossover. In
other words, there exists strong linkage between those genes. Linkage can b e formally
defined in terms of non-zero W alsh coefficients (Goldberg, 1989a), but the intuitive no-
tion of a non-linear i nteraction between linked genes w ill suffice for this paper.

The fitness function for the concatenated trap-function problem is a concatenation
of m trap functions:

mX− X1

ffit(x) = X ftrap(xi·k+1...i·k+k) .(3)
Xi=0



Each trap function is defined on k genes and introduces linkage between those
genes. The optimal solution can b e found b y combining the b est schema of each par-
tition defined over linked genes. For example, if k = 4 and m = 2, these p artitions
are simply FFFF#### and # ###FFFF, w here “F” denotes a fully specified gene and “#”
denotes the “don’t care”-character (Goldberg, 1989c). The optimal solution 11111111
can b e found b y searching the b est schema in each partition (namely, the schemata
1111#### and # ###1 1111) and combining them.

The remainder of this section examines two models from the literature. We extract
the underlying assumptions and then use them in the n ext section to formulate several
design rules. W e start in Subsection 2.1with the convergence model t o find t∗, the n um-
ber of generations until convergence. It i s assumed the population size is adequately
sized. Subsection 2.2 w ill cover the gambler’s-ruin model, w hich deals w ith the critical
population size n∗—that is, the minimal p opulation size n eeded to find a solution with
a certain level of quality.

2.1 Determination of t∗

There have b een several studies (Mühlenbein and Schlierkamp-Voosen, 1993; Thierens
and Goldberg, 1994a; Bäck, 1995; M iller and Goldberg, 1996) of the convergence char-
acteristics of GAs that solve the b it-counting problem, w hich is to find a b itstring of
length lw ith the maximal n umber of 1’s. It is a v ery useful problem to study because
its p roperties (for example the distribution of fitness values in a r andomly-generated
population) can b e calculated exactly. F urthermore, it has building b locks of only one
gene, w hich means that n o disruption can occur. Using uniform crossover, adequate
mixing can b e obtained. M ixing is the recombination of schemata from the parents to
form new combinations inthe children. Mixing is called perfect when no correlations be-
tween partitions4—which w ere introduced b y selection—remain after crossover. U ni-
form crossover is not a perfect mixer, but w hen the selection pressure is moderate, it is

4Unless otherwise specified, “partitions” refers to the partitions that correspond with the sub-functions
from the fitness function.
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safe to assume it is fast enough to avoid p remature convergence (Thierens and Gold-
berg, 1993). Note that the recombination operators used in evolutionary algorithms
that are b ased on the estimation of distributions (Mühlenbein and Paass, 1996; Bosman
and Thierens, 2002; Pelikan et al., 2002) can b e perfect mixers when the learned model
matches the linkage.

Mühlenbein and Schlierkamp-Voosen (1993) analyzed the convergence time—the



number of generations to obtain convergence to the optimal string—of a GA that solves
the b it-counting problem using truncation selection, uniform crossover, n o mutation,
and assuming a properly-sized p opulation. Uniform crossover is usedb ecausen o dis-
ruption of building b locks can occur for this problem, and it mixes the building b locks
well. Crossover is always applied (Prc = 1.0). The rate of convergence of the GA is
primarily determined b y the selection pressure of the selection scheme. Under the as-
sumption of perfect mixing, the population fitness is b inomially distributed, which can
be approximated well w ith a normal distribution. Since crossover does not change the
proportion of 1’s—that is, the building b locks—in the population, the use of a selection
scheme w ith constant selection pressure gives predictable convergence b ehavior.

The following result was obtained (Mühlenbein and Schlierkamp-Voosen, 1993)
for t∗, the expected n umber of generations until convergence:

t∗ = (12π −I c)√l =O(√l).(4)

where lis the length of the chromosomes, Isignifies the selection intensity of the selec-
tion scheme, and c is a constant depending on the p roportion of building b locks in the
initialp opulation.

Thierens and Goldberg (1994a) investigated other selection schemes, such as tour-
nament selection, and the elitist recombination scheme (the latter is discussed inSection
3). Bäck (1995) considered (µ,λ)-selection and tournament selection, and used order
statistics to generalize the results for different selection intensities. In these studies, all
rank-based schemes w ere found to have t∗ = O(√l). In contrast, for p roportionate
selection, t∗ = O(l log l) h olds. This suggests that the above result h olds for selection
schemes which are rank-based.

Miller and Goldberg (1996) extended this research b y considering noisy fitness
functions. Furthermore, they also considered more complex problem domains than the
bit-counting problem, but w here the fitness function still was uniformly scaled, sepa-
rable, and additively decomposable. They derived exact equations for domains where
the mean and the standard deviation of the fitness distribution can b e expressed as
functions of the p roportion of converged building blocks. For the m ore complex do-
main of concatenated trap functions an approximation was used. Their p rediction of
the convergence behavior for the concatenated trap function closely matched experi-
mental results. In addition, they showed that adding small levels of n oise to the fitness
function added a constant to the n umber of generations u ntil convergence.

The requirement of separability can b e relaxed to semi-separability b y modeling
the interactions between different partitions as n oise. Therefore, as long as the linkage
between genes from different partitions is w eak, the convergence model gives a good
approximation. For the case where the fitness function is exponentially scaled (instead
of uniformly), similar studies (Thierens et al., 1998; Lobo et al., 2000) show that the
number of generations is linear w ith respect to the input size: t∗ = O(l).

In the models above, it is assumed that the population size is large enough and



contains a sufficient n umber of building blocks. The n ext section covers models that
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dealw ithp opulation sizing andb uilding-block supply.

2.2 Determination of n∗

The issue of determining n∗, the minimal population size n eeded to reliably solve a
problem of input length l,was investigated b y Goldberg et al. (1992). They provided
a m odel of the GA b ased on statistical decision making. Assuming that the GA would
find the b est solution if b uilding-block p roportions had grown in the first generation,
they obtained a population-sizing equation. One drawback of this approach was that it
did not m odel the way a GA can recover from decision errors (explained later). Harik
et al. (1999) addressed this issue b y extending the model w ith the so-called gambler’s-
ruin model.

The decision-making model views the search process as the propagation of b uild-
ingb locks through thep opulation, assumingm ixingi s adequate. Recall that ab uilding
block is the schema in a certain p artition with the highest fitness. It is assumed that
the order of the partition is bounded b y a constant k. During selection (for example,
a tournament of two individuals) the building b lock has to compete against another
schema from the same partition. Since decisions are made on the level of strings, a
competition between a string matching a building b lock and a string matching another
(sub-optimal) element from the same p artition can result in the loss of the building
block. Such an event is called a decision error. Under the assumption of an additively
decomposable fitness function, the distribution of fitnesses in the p opulation can b e
approximated b y a normal distribution according to the Central Limit Theorem. The
probability of making the right decision Prok (Goldberg et al., 1992) can then b e for-
mulated as a function of the cumulative distribution function of the standard n ormal
distribution and several constants that are dependent on the problem.

The expression for Prok is used in the gambler’s-ruin m odel as the p robability of
increasing the frequency of building b locks in a certain p artition. The search of a G A
in a single p artition is then viewed as a series of competitions that p rogresses until
either all individuals in the p opulation match the building b lock, or n one does. The
outcome is dependent on the p opulation size and the initial n umber of building b locks
in the population. The m odel is a one-dimensional random w alk between absorbing
barriers, corresponding w ith the loss of the building b lock (no building b locks left; this



is called the depletion barrier) and the existence of the building b lock i n all individuals (n
building b locks in the population; this is called the s aturation barrier). The w alk starts at
x0, the n umber of building b locks in the initial p opulation. Each competition advances
the walk to either the saturation barrier (the string with the building b lock w ins the
competition) w hich increases the number of building blocks, or the depletion barrier (a
decision error) w hich decreases the n umber of building blocks.

The initial number of building b locks is given b y x0, w hich can b e easily approx-
imated if the initial population is randomly generated. The n otion of competitions in
the gambler’s-ruin model corresponds most n aturally to an incremental GA. However,
the experimental results b y Harik et al. (1999) show that the m ore conventional genera-
tional replacement scheme also agrees w ell w ith the m odel. As a result, w e can assume
that any selection scheme with constant selection pressure suffices. This implies a rank-
based selection scheme such as tournament selection or truncation selection.

The formulation as a random w alk allows for the calculation of the probability
Pr(n) of the gambler eventually hitting the saturation barrier using a p opulation of
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size n (Feller, 1966):

Pr(n) =11−  −(  (11−P−PPrrPoorkrkookk))xn0. (5)

Given a measure of quality α that denotes the desired fraction of partitions that
converge to the building b lock, the smallest p opulation size to obtain a solution of the
desired quality can b e derived. Note that each partition is assumed to converge inde-
pendently from any other partition, therefore α = Pr(n). Extracting n from Equation 5
and approximating Prok, the following approximationo fa p opulation-sizing equation
was found b y Harik et al. (1999):

n∗ ≈ − ln(1 − α)βp(m −1 ) = O(√l) , (6)

where m = l/k denotes the number of paprtitions and β is a constant that depends on
the properties of the problem.

Note that limα↑1 ln(1−α) = −∞. In other words, finding the optimal solution with
absolute certainty requires an i =nf i−n∞ite. population sridzse,. iTnhdisin nisg only ptot i bme expected, s winicteh
a GA is a stochastic algorithm. Harik et al. performed experiments to test their model
on various domains, including the concatenated trap-function problem with overlap-
ping partitions (they share genes). They found that the model gave a good estimate of
the relation between the quality of solutions (expressed in α) and the p opulation size.



The good results on the domain with overlapping partitions suggest that the assump-
tion of separability of the fitness function can b e relaxed to semi-separability.

2.3 Model assumptions

The convergence model and the population-sizing model share a set of underlying as-
sumptions. Under these assumptions, the convergence model predicts that the number
of generations until a properly-sized population is converged scales as t∗ = O(√l). In
addition, the minimal p opulation required to reliably find a solution of a certain quality
scales as n∗ = O(√l). These assumptions are as follows:

1. The fitness function is additively decomposable, uniformly scaled, and
(semi-)separable.

2. The order of the partitions, k, is a fixed constant, w ith k ? l.

3. All building b locks are present in the initial p opulation.

4. The selection scheme is rank-based.

5. Mixing is perfect: n o correlations remainbetween genes of differentpartitions after
crossover.

6. There is no disruption of building blocks.

The assumptions may appear to b e quite strict. Is it possible to design a competent
GA that adheres to these assumptions closely enough to find solutions for a realistic
problem? Recall that w e consider a GA competent when it finds solutions w ith a spec-
ified lower b ound on quality and good scale-up b ehavior. To answer the question, we
first turn the assumptions into p ractical design rules a GA p ractitioner can follow. W e
subsequently apply these rules to design a GA for the map-labeling problem and em-
pirically compare its p erformance w ith the p redictions of the models.
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Figure 2: The four possible p ositions where a label can b e placed.



Figure 3: The encoding for a map.

3 Design rules and application to map labeling

The overview of the models from the previous section showed the underlying assump-
tions about the problem and the GA. A s such, it provides us with several insights that
we can turn into design rules. The rules we will formulate in this section are remi-
niscent of the “six conditions for GA success” developed b y Goldberg et al. (1992), but
ours are more explicit. Note that the “six conditions”, although conjectured, formed the
basis of much of the research described in Section 2 (Goldberg, 2002). We will use the
rules to design a GA that will find solutions for instances of the map-labeling problem.
Recall that the map-labeling problem consists of placing a label in one of four p ositions
(see Figure 2) for a set of points such that the n umber of labels that do not intersect
another label is maximized. We denote the n umber of p oints on the map w ith npts.

3.1 The design rules

We w ill now state the design rules that w e can derive from the models. Each rule
is immediately followed b y a description of its application in the design of the m ap-
labeling GA:

1. Use a fitness function that is additively decomposable, uniformly scaled and
(semi-)separable. The models suggest that a problem is tractable for a GA when the
linkage p artitions the representation into groups of strongly-linked genes that do not
overlap m uch. W ithin each partition the schema w ith the highest fitness (the b uild-
ing b lock) can b e found b y selection and the final solution then can b e found b y com-
bining all building blocks. Given a representation that h olds a gene for each p rob-
lem variable, a fitness function that is additively decomposable, uniformly scaled and
(semi-)separable induces a linkage that makes the problem tractable for a GA.

The GA that will solve the map-labeling problem w ill represent a labeling b y a
string of numbers between one and four, indicating p ositions. Each city has an index
which indicates its position in the string, as shown in Figure 3. The fitness function
of our map-labeling GA satisfies the required form b y j ust counting the number of free



labels. A label is free when it does not intersect any other label. For example, the fitness
of the little map of Figure 3 is 3. The fitness function can b e expressed as an additively
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Figure 4 : The rival relationship: cities p and q are rivals, but p and r are not. Together p
and q form a rival group.

decomposable function:

nXpts

ffit(x) = Xfree(xi), (7)
iX= X1

where npts denotes the number of points on the map. We define two points as rivals
if their l abels can intersect (see Figure 4). A rival g roup consists of a certain point and
its rivals. Now xi denotes the genes corresponding to the rival group of p oint i. The
function free(xi) returns 1if the label of point iis free, and 0 i f it intersects another label.
Hence, this fitness function is uniformly scaled. If the rival groups are bounded in size,
then each gene w ill b e input to a bounded number of sub-functions, w hich makes the
fitness function semi-separable.

2. Identify building blocks. The fact that a problem is tractable only means that
a GA is, in principle, capable of solving it. Of course, the GA n eeds to b e carefully
designed in order to succeed in this task. The n ext critical step therefore is obtaining
a good assessment of the linkage of the problem. To construct a competent GA, it is
necessary to know where to search for the building b locks of the solution.

Map labeling is interesting in that the linkage of the problem is reasonably clear
since it can b e inferred from the geometry. Given the representation described earlier,
linkage between two genes can b e suspected when the two corresponding points are
close together. Thus, we assume the building b locks consist of good labelings of a city
and its rivals. That is, we assume the b est labelings for rival groups are building blocks.



Note that w e make an assessment of the linkage which may disregard non-linearities
overm any genes. In essence, we trade solution quality for performance. It depends on
the specific problem whether this is acceptable, but many NP-hard problems require
such a reduction to remain tractable. For map labeling, we h ypothesize that close-to-
optimal solutions can still b e found w hen the problem is treated as having bounded
difficulty b y only considering the non-linearities between genes that correspond w ith
the rival-group relationship.

Note that for other problems an acceptable assessment of the linkage is not so eas-
ily found. In that case, the natural course of action would b e to try and learn the linkage
(Kargupta, 1996; Munetomo and Goldberg, 1999; Harik, 1999; Pelikan et al., 2002). Al-
ternatively, one can resort to traditional trial-and-error of design choices (which have
implicit assumptions about the linkage) and h ope to find a competent GA b y chance.

3. Use a rank-based selection scheme. The models depend on the assumption of
constant selection pressure, w hich implies a rank-based selection scheme. For our
map-labeling GA, we chose the elitist recombination scheme (Thierens and Goldberg,
1994b). In this rank-based scheme, two parents are chosen randomly from the pop-
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identify slot status

place inslot
Figure 5: The geometrically local optimizer resolves conflicts after crossover.

ulation. Crossover is always performed, and two children are generated. From this
family of four, the two b est individuals replace the parents in the p opulation. In the
case of ties, children precede their parents. The scheme is conceptually simple, easily
implemented, and simplifies the structure of the GA. In addition, it preserves good so-
lutions b y h aving elitism on the family level. The parameter Prc, w hich denotes the



probability that crossover is applied, is set to 1.0, because there is n o danger of losing
fit parents.

4. Ensure good mixing of building blocks. Fast m ixing of building b locks is critical
to the success of the GA. Ideally, after crossover no correlations between elements of
differentpartitions exist. Adequate mixing can, for example, be achieved by using what
Miller and Goldberg (1996) called a “uniform b uilding-block crossover”—a crossover
that chooses at random for each p artition the p arent from which v alues are copied.

The assessment of linkage as the rival relationship allows us to design a crossover
operator for the map-labeling GA that mixes on the level of building blocks. The
crossover operator works b y generating a set S of points. The labelings of points in
S are transferred from the first p arent to the first child. Labelings of p oints not in S
are taken from the other parent. The other child is constructed in a complementary
fashion—that is, the first child inherits labelings of p oints in S from the second parent,
and the rest from the first parent. The crux lies, of course, in the method to construct
the set S. This is done b y randomly picking a point on the map and placing its rival
group in the set. Since we assess the linkage as the rival relationship, the rival group is
a partition which can h old a building b lock. Consequently, if the local labeling of the
chosen point and its rivals is indeed a building b lock, it is transferred undisrupted to
the child. The n ext p oint is again chosen randomly, and this process is repeated until
the size of S exceeds h alf the total n umber of points on the map.

5. Minimize disruption. Both models assume that no disruption of building b locks
takes place, so naturally it is important to minimize disruption as m uch as possible.
One can either do this b y mixing less aggressively, sometimes copying whole chromo-
somes (by setting Prc < 1), or repairing disrupted building b locks after crossover. W e
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Number of generations

Figure 6: Comparison of crossover operators. Prc = 1.0, n o mutation.

use the latter m ethod for our example GA.
The geometry of the map-labeling problem (the rival relationship) h elps in iden-

tifying locally bad solutions. After crossover, p oints which came from S but had a
rival not in S (and vice-versa) can have new conflicts, making the crossover rather dis-
ruptive. On these p oints a so-called g eometrically local optimizer, or GLO for short, is
applied, which tries to resolve the conflict in two phases (see Figure 5). Firstly, it deter-
mines the status of each candidate label p osition. The status is EMPTY if the label is free
when it is p laced there. It is FULL otherwise. Secondly, from the EMPTY positions one
is randomly chosen. If no position is EMPTY, nothing changes.

6. Ensure good b uilding-block supply. Both m odels assume a good supply of b uild-
ing blocks. Two w ell-known mechanisms of b uilding-block supply are initialization
and m utation. Initialization forms building b locks in the initial population and mu-
tation introduces them during the run of the algorithm. The GLO is a more explicit
kind of b uilding-block supply than b lind m utation, since it cannot make the solution
worse. Therefore, no b lind mutation is used (Prm = 0.0). Our use of the GLO allows us
to p lace modest demands on the initialization operator. Since the GLO w ill introduce
building b locks during the run, there is n o need for all building b locks to b e present



in the initial p opulation. For initialization, w e assign a random position to each label
of each individual in the p opulation. As will b ecome apparent in Subsection 4 .2, the
population size canb e k ept small.

3.2 Evaluation of the GA

To evaluate whether the design rules h elped us in the construction of a competent GA,
we’ll first compare against other map-labeling algorithms. Next, w e’ll investigate the
impact of deliberately violating the rules.
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Figure 7: Left: results of the comparison of labeling algorithms b y Christensen et al.
Right: Comparison of simulated annealing with our GA for the four- and eight-position
model.

Comparison w ith a simple GA. In Figure 6, we compare our GA using the so-called
“rival” crossover against simple GAs using uniform and one-point crossover. To make
easy comparison of results p ossible, all experiments in this paper are p resented in
terms of generations. For the runs done w ith the elitist recombination scheme (imple-
mented as an incremental scheme), one generation is taken to b e 21n recombinations.
The graphs show the average of five runs on five different maps each (25 runs in total).
The last point of each graph shows the standard deviation of the fitnesses of the b est so-



lutions of all r uns. The maps are created as explained in Subsection 4.2, and p lace 1000
points on a grid of 650 units squared (an example of such a map is shown in Figure 1).
The GAs used a population size of 200 and the elitist recombination scheme. A run is
terminated w hen the average fitness equals the fitness of the b est individual. Runs that
include mutation are also terminated if they h ave performed 400 · 106 label-intersection
itencstlus.

The results shown in Figure 6 demonstrate that our GA is able to find n ear-optimal
solutions on the dense, randomly-generated test data. More extensive comparisons are
beyond the scope of this p aper and can b e found elsewhere (Van Dijk, 2001).

Comparison with other map-labeling algorithms. A comparison of several map-
labeling algorithms was done by Christensen et al. (1995). Their conclusion was that the
best results were obtained b y a simulated-annealing algorithm. Figure 7 shows their
experimental results of running the algorithms on randomly-generated maps. Note
that these maps differ from those we use in the rest of this p aper, since they w ere cre-
ated b y placing an increasing n umber of p oints in an area of fixed size. Therefore, the
maps get increasingly more dense until it becomes impossible to label all points. In ad-
dition, the optimal number of free labels is not known, unlike with our maps. Since the
comparison b y Christensen et al., several other algorithms have b een proposed, such as
genetic algorithms (Verner et al., 1997; Raidl, 1998), h euristics for maximum indepen-
dent set (Strijk et al., 2000; Verweij, 2000; Strijk, 2001), and tabu-search (Yamamoto et al.,
2002). They perform similar, or slightly b etter than simulated annealing. A comparison
between our implementation of the simulated-annealing algorithm and our genetic al-
gorithm is shown in Figure 7. It shows the results are comparable. An advantage of the
GA over the SA algorithm is that additional constraints—that is, cartographic rules—
are more easily incorporated through the GLO (Van Dijk, 2001). We can conclude that
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Figure 8: Left: varyingt he rival-group size.



The GAs use rival crossover without GLO,
the ER scheme, Prc = 1.0, and n o mutation. Right: different selection schemes. The
GAs use rival crossover without GLO.

our GA succeeds in finding solutions of good quality. In Section 4, w e w ill turn to the
question of whether the computation time is reasonable—that is, whether the scale-
up behavior is favorable. Specifically, w e will b e interested in whether the scale-up
matches the prediction of the models.

3.3 Violating the design rules

It is instructive to study w hat happens if the design rules are not followed. We w ill take
each of the r ules and discuss the impact of ignoring it. Experiments were all p erformed
with a population size of 200.

1. The first design rule p rescribes the fitness function to b e in a certain form. The



fitness function and the representation together define the true linkage between
genes. Assuming a representation that uses a gene for each problem variable, a
fitness function of this form induces a linkage that allows separate partitions to
be searched independent from each other and thus makes the problem tractable
for a selecto-recombinative GA. This seems to suggest, for example, that adding
penalty functions to the fitness function that are not additively decomposable is a
technique that may adversely affect the performance of a GA. Consequently, w hen
the map-labeling GA was extended to h andle real-world maps with cartographic
constraints (Van Dijk, 2001), those constraints were not enforced b y using penalty
functions but instead b y using local rules in the GLO.

2. Identify building blocks: Failing to find a good assessment of the linkage can have
a dramatic impact on the p erformance of the GA. A good assessment of the linkage
is needed to design the crossover operator and minimise disruption. The standard
crossover operators (one-point, two-point, and uniform crossover) can b e viewed
as assessments of linkage that attempt to cover b road classes of p roblems.

The design of the rival crossover for the map-labeling problem was guided b y the
assessment of the linkage. The comparison with standard crossovers (with their
implicit assumptions about the linkage), shown in Figure 6, demonstrates that it
performs b etter even without the GLO. The assessment of linkage was derived
from the rival relationship, which states that two labels are rivals if they can inter-
sect. We can generalize this to include the notion of size, which simply uses the
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Figure 9 : Use of the geometrically local optimizer. The GAs use the ER scheme, Prc =
1.0. Right: close-up of left graph.

rival relation in a transitive sense. For example, a rival group of zero size only con-
tains the center label. U sing size one gives the usual rival relation, and the rival
group of size two contains the labels of the size-one group and all their rivals. Dif-
ferent sizes perform differently, depending on how w ell the assessment matches
the true linkage. Figure 8 (left) shows a comparison of different sizes, demonstrat-
ing that size one was the appropriate choice.

3. Use a rank-based selection scheme: A selection scheme with constant selection
pressure is necessary to maintain a steady growth of the proportion of building
blocks. Figure 8 (right) shows runs done w ith different selection schemes, employ-
ing rival crossover without the GLO. For the sake of completeness, the effect of
varying the parameters Prc and Prm is also shown for tournament selection. The
results clearly show that fitness-proportionate selection without a scaling m ethod



is inferior to tournament selection and the ER scheme. Experiments done w ith
rival crossover that used the GLO gave similar results.

4. Ensure good m ixing of building blocks: Failure to mix rapidly enough can cause
premature convergence to an inferior solution, as demonstrated b y the comparison
of crossovers in Figure 6. Note that the GA using one-point crossover converges
before it has had time to mix the building blocks.

5. Minimise disruption: Disruption during crossover w ill degrade the proportion of
building b locks in the p opulation. The GLO successfully combats disruption, al-
lowing the GA to find a n ear-optimal solution (see Figure 9 (left)). Recall that w e
only apply the GLO to p oints w here disruption could have arisen. The combined
use of all applications of the GLO can b e seen as a local optimizer in a hybrid GA.
Interestingly, applying the GLO to all genes after uniform crossover gives good
solutions too (see Figure 9 (right)). This GA is very similar to the one proposed b y
Raidl (1998). Note that applying the GLO to all genes degrades the performance
of rival crossover5. This is to b e expected, since rival crossover is not disruptive
enough to counter the strong b ias towards local optima that arises b y using GLO

5A Mann-Whitney test at significance level 0.05 confirms that the quality of the solutions found b y the

pthreopG oLsOeda  GpAplwi edithe v rievryalwc hroesrseo.v Tehre wq ausa sliigtynio fifcab nottlhyw b aetste srigt hnaifnic athnatltyo b fet thteerG t Ahaw nit thhau tn oiffot hrme Gc rAosw soivtherr ai vnadl
crossover and GLO applied everywhere.
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Figure 10: Different sources of building blocks. The GAs use the ER scheme and Prc =
1.0.



on every gene. Selecto-recombinative GAs construct good solutions b y mixing and
recombining building blocks. On the other hand, other GAs may also find solu-
tions of the same qualityb y employing a differents earchp rocess.

6. Ensure good b uilding-block supply: Good solutions cannot b e assembled with-
out the required building blocks. Building b locks can b e provided in the initial
population, or b y genetic operators during the run. Figure 10 shows that perfor-
mance improves with m utation, and also w hen the p opulation size is doubled. I n
the proposed GA, the GLO acts as a major source of building blocks, so no (blind)
mutation is used and populations can b e kept small.

4 Experimental evaluation

In the previous sections, w e examined the theoretical models and turned their under-
lying assumptions into p ractical design rules. Using these rules, w e developed a GA
that is able to find solutions of good quality. To qualify as a “competent” GA, it should
also have good scale-up b ehavior. According to the models, the number of fitness eval-
uations should scale linearly if the GA adheres to the assumptions of the models. The
question is whether these assumptions are attainable for a real-world GA. Our GA does
not match them completely, and it may deviate too much from them for the p redictions
to hold. First, w e will check each assumption of the m odels and discuss how much
the GA adheres to it. Then we will experimentally find the critical population size
and number of generations until convergence, and see whether their scale-up behavior
matches with the p rediction of the models.

4.1 Adherence of model assumptions for map-labeling GA

We w ill now check all model assumptions w hich were stated in Section 2:

The fitness function is additively decomposable: Equation 7 shows that the fitness
function can b e expressed as an ADF.

The order of partitions, k, is a fixed constant, with k ? l: The p artitions in the map
labeling problem (sr,i vka,i ls groups) are sn taotn to,f w wfiixtehdk o ?rd el:r, Tb huet tphaer largest irniv athl group
canb e taken as a conservative estimate. Moreover, the size of rival groups does not
vary too much (on the dense maps used in the experiments, the n umber of rivals
is distributed approximately normal w ith mean 6.6 and standard deviation 1.6.
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The fitness function is uniformly scaled: Each partial function can contribute either
zero or one to the overall fitness. Therefore, the fitness function is uniformly scaled.

The fitness function is semi-separable: Each city occurs in a bounded number of rival
groups, since the n umber of r ivals is bounded. Therefore, each gene is input to a
bounded n umber of partial functions, and the fitness function is semi-separable.

All building b locks are present in the initial population: Since b uilding-block for-
mation is possible, and indeed very likely to happen, this requirement can b e re-
laxed.

The selection scheme is rank-based: We will experimentally test the predictions for
two rank-based selection schemes: tournament selection and the elitist recombina-
tion scheme.

Mixing is perfect: Rival crossover can b e seen as a kind of uniform crossover on the
level of the building blocks. A s a result, we can b e reasonably confident that mix-
ing is performed adequately.

No disruption of building b locks takes place: I n p ractice, some disruption takes
place but is m inimized due to the use of the geometrically local optimizer with the
effect that it has a limited influence on the behavior of the algorithm. Since b uild-
ing b locks can b e disrupted, the saturation barrier in the gambler’s-ruin m odel is
not absorbing. However, a gambler that reached the saturation barrier w ill w ith
highp robabilitys tay in its proximity.

We find that some assumptions are not adhered to exactly but deviate somewhat. Still,
we expect that the deviation is not serious enough to falsify the prediction. More gen-
erally speaking, w e expect the models to b e quite liberal in their assumptions. For
example, the models assume that mixing completely removes the correlations between
building b locks (or rather, their p artitions) that w ere introduced b y selection. W e do
not expect radically different behavior unless mixing i s substantially slower.

Therefore, w e conclude that w e can b e reasonably confident that n one of the un-
derlying assumptions is seriously violated. We expect to see the scale-up behavior
predicted b y the models. The next section is devoted to experimentally putting this
expectation to the test.

4.2 Empirical results

Experimental data was gathered by running the GA on randomly-generated maps. The
use of randomly-generated maps allows us to systematically v ary the input size of
the algorithm and know b eforehand an optimal solution. Results of the GA on real
cartographic maps are described elsewhere (Van Dijk, 2001). The randomly-generated



maps w ere square grids, embedded on a torus (to remove boundary effects). They
were generated b y repeatedly selecting uniformly at random a location for a p oint and
placing its label w here it w ould not intersect another label. If the label could not b e
placed, the point was discarded. All labels had fixed dimensions of 30 b y 7 units.
Afterwards, the labels were removed and the GA was used to find a placement for the
labels again. T his way w e were certain that it was possible to p lace all labels without
intersecting other labels, and the optimum was always the n umber of cities on the
map. The density δ of the map is the n umber of units on the grid for each point. For
all subsequent experiments, we u sed a density of δ = 450—that is, an area of 670 units
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squared contains 1000 points. The density is equal for all maps. Therefore, maps w ith
more p oints are bigger.

In the remainder of this section, functions will b e fitted to data b y u sing the
Levenberg-Marquardt algorithm for non-linear least-squares fitting, w ith the data
points weighted b y their standard deviation. Experiments w ere p erformed for b oth
tournament selection (with tournament size of two) and the elitist recombination
scheme. Both selection schemes have the same selection intensity (Thierens, 1997).

We present the experimental results in a n umber of steps. W e start b y looking
at how the gambler’s-ruin m odel can b e fitted to our experimental data. T his allows
us to derive the critical population size. The number of generations to converge for
a GA using the critical p opulation size can subsequently b e found. We show that the
functions p redicted by the models can b e fitted well to the experimental results. Finally,
the total, minimal number of function evaluations can b e derived and is shown to b e
linear in the i nput size.

4.2.1 Use of the gambler’s-ruin model

Since we have argued that the assumptions are not significantly v iolated, we should
be able to apply the gambler’s-ruin model to describe the behavior of the GA for map
labeling. Equation 5 gives us the p robability Pr(n) a certain gambler h its the saturation
barrier. We h ave m = npts gamblers running in parallel in the GA (where npts is the
number of points). Each p artition corresponds to a rival group. The optimal schema of
the p artition will place the label of the central p oint of the rival group in a free p osition.
Given a p opulation size n, the fitness ffit (x∗ (n)) of the final solution x∗ (n) is equal to
the number of partitions that converge to the optimal schema. Therefore, the following
holds for the expected fitness of the final solution when a p opulation size of n is used:



E[ffit(x∗ (n))] = npts · Pr(n) , (8)

where Pr(n) is as given in Equation 5, and E[·] denotes the expected value.
rFeo rP maps o afs sg iizvee npts ∈q u{a5t0io0n, 1000, 1500, 2 d0e0n0o, 4te0s0t0 h, e70e 0x0p, e1c0t0e0d0v } we ran the GA

with p opulation size n ∈ {30∈, 5 {05,0 100,01,0 10100,,1 1250000},.2 2F0o0r0 map s,i7z0e0s 0s,m10a0l0le0r} or equal ttho e20G 0A0,
twheit hGp Ao was irounn eight ∈tim{ 3e0s, 5 w0,ith10 0d,i1ff1e0re,2n0t s}e.e Fdosr m fora pths ei erasn sdmoamll-enruo mre beqru generator
on eight different maps of the same size. For larger maps, due to computational con-
straints, the GA was run four times on four different maps. For each map, the eight (or
four) runs of the GA w ere averaged. For each population size, this results in a single
data p oint.

The experimental data for a map of 4 000 p oints with GAs that use tournament
selection is shown in Figure 11(a) (note that the figure i s scaled to make 1the optimum).
We fitted Equation 8 to this data. The closeness of the fit shows that the gambler’s-ruin
model gives a reasonably close approximation of the relation between population size
and the quality of the final solution. All experiments w ere also done for the elitist
recombination scheme and the experimental results for a map with 4000 p oints are
shown in Figure 11(b).

4.2.2 The experimental critical population size

The critical p opulation size for each map of a certain size is found b y fitting Equation 8
to the experimental data and using the function to find the p oint where the fitness was
97% of the optimum. Since maps are constructed in a way that all labels can b e p laced
without intersections, the optimum is npts labels placed. The critical population size
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(b) Elitist r ecombination

Figure 11: Fit of gambler’s-ruin p rediction to data for maps w ith 4000 cities. Note that
the figure is scaled to m ake 1the optimum.

can b e calculated as

n∗ = g−1(0.97 ·n pts) , (9)

where g−1 (·) denotes the inverse of the function g(·) resulting from fitting Equation 8
to the experimental dsat thae.



The critical p opulation size is calculated in this way for the eight (or four) m aps of
each map size. Therefore, for each map size, we obtain a data p oint that gives us the av-
erage critical population size for maps of that size. The results are plotted in Figure 12,
where a square-root function is fitted to verify the prediction of the gambler’s-ruin
model. This p rediction, w hich states that the relation between critical population size
n∗ and problem length lshould b e n∗ = O(√l), is confirmed. A lso it is clear that very
small p opulation sizes are sufficient.

We also tried the same experiments w ith elitist recombination instead of tourna-
ment selection as the selection scheme. The results are p resented in Figure 12 as w ell
and show the same scale-up b ehavior. Note that elitist recombination succeeds in find-
ing solutions of the same quality but can use smaller populations than tournament
selection.

4.2.3 The number of generations

The number of generations n eeded to converge, when the population is equal to the
critical p opulation size, is obtained in a similar fashion. The critical population size
n∗ has already b een calculated. For each input size l, a function is fitted to a set of
data points. Each point consists of the p opulation size and the n umber of generations
that w ere spent to find a solution of the required quality. To these data points, the
function g(x) = Θ(1 −x1) is fitted. This function was chosen as it fits the experimental
fduantac reasonably Θ w(1ell− and it allowed us to obtain a good interpolation. After fitting
the function to the data, the critical number of generations t∗ is given as t∗ = g(n∗).6
This is done for each map size, and the results are shown for b oth selection schemes in

t∗f6roThme a udsedio tifoa nnai ln rutenrspo wlaitthioa n pa ovpeuralgateisoo nus itzs etoo cfhn as∗t.ice ffects.T hisw asd eemedm orer eliablet hand eriving
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Figure 12: Critical p opulation size for a quality of 97% of the global optimum. Shown is
experimental data with the fit of the predicted function, for tournament selection and
the elitist recombination scheme.

Figure 13. The experimental results are shown w ith a fit to a square root. The prediction
of t∗ = O(√l) is confirmed.

4.2.4 Total amount of computational effort

Since the n umber of fitness evaluations is E = t∗ · n∗, it follows that E = O(l) (the
number of evaluations scales up linearly with the problem size). In Figure 14 the re-
quired number of evaluations for a given map size—the optimalp opulation size times
the number of generations until convergence—is plotted, and a linear function is fitted
to it.

Figure 14 shows that the GA using tournament selection, compared w ith the GA
using elitist recombination, requires more computational effort to obtain the same level
of quality. However, the runs w ith tournament selection w ere done without any form
of elitism, so this may account for the difference.

5 Conclusion



In this p aper, we examined two theoretical models from the literature that allow us to
make p redictions about the scale-up behavior of selecto-recombinative GAs under cer-
tain assumptions. The models describe the search of a GA in terms of the growth (by
selection) and the recombination (by crossover) of building blocks. This v iew is suitable
for problems of bounded difficulty. The assumptions of the models were turned into
practical design rules that a GA-practitioner can follow to design a competent GA. A
GA is deemed competent w hen its solutions satisfy a specified lower b ound on quality
and its scale-up b ehavior—the relation between input size and the number of fitness
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Figure 13: Run time in number of generations of GA w hen using the critical population
size. Shown is experimental data w ith the fit of the p redicted function, for tournament
selection and the elitist recombination selection scheme.
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Figure 14: The scale-up behavior of the n umber of fitness evaluations is linear.
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evaluations—is reasonable (for example, a low-order p olynomial). To test the p ractical
usefulness of the rules, they were used to design a GA for the m ap-labeling problem,
an NP-hard cartographic problem. The GA was able to find solutions of good quality.
The scale-up behavior of the GA was experimentally determined and matched the pre-
dictions of the models: the n umber of fitness evaluations scales linearly with respect to
the input size.

Much theoretical research has b een done on problems of bounded difficulty, such
as the b it-counting problem and the concatenated trap function. This i s j ustified b y
the implicit claim that m any important real-world problems are either problems of
bounded difficulty, or can b e solved satisfactorily b y assuming they are. T herefore, one
can expect that theoretical results are useful in the design and analysis of GAs for real-



world problems. W e have shown that for at least one instance of an NP-hard problem
(namely, the map-labeling p roblem), the reduction to a problem of bounded difficulty
allows u s to quickly find solutions that are n ear optimal.

For some problems, it w ill b e fairly straightforward to apply the design rules to
obtain a competent GA. It is significant that the assumptions that underlie the mod-
els are more liberal than one may expect, since the m ap-labeling GA was allowed to
deviate from the assumptions to some extent but still showed the expected scale-up be-
havior. This suggests that the design rules can b e applied to a b road range of p roblems.
Other examples of the successful application of the design rules are GAs for other carto-
graphic problems such as line simplification and generalization (Van Dijk et al., 2002),
and a GA for the automated construction of a Bayesian network from data (Van Dijk
et al., 2003). But even for problems for w hich the application is less obvious, the de-
sign rules h ighlight the important issues that n eed to b e considered in order to design
a competent selecto-recombinative GA. For example, for a problem for w hich the link-
age of the building b locks is not readily available, the natural course of action would
be to try to learn the linkage. W hen the GA converges p rematurely, one can consider
the design of crossover in terms of mixing and disruption, or investigate the b uilding-
block supply in the GA. The design rules therefore guide the designer in developing a
competent GA. However, the design rules followed f airly straightforwardly f rom the
theoretical results on models of selecto-recombinative GAs. Consequently, w e advo-
cate an increased awareness of the theoretic results that are available in the literature,
and of their usefulness for p ractical GA design.
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