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Abstract
In this paper, we study two recent theoretical models—a population-sizing model and
a convergence model—and examine their assumptions to gain insights into the con-
ditions under which selecto-recombinative GAs work well. We use these insights to
formulate several design rules to develop competent GAs for practical problems. To
test the usefulness of the design rules, we consider as a cage study the map-labeling
problem, an NP-hard problem from cartography. We compare the predictions of the
theoretical models with the actual performance of the GA for the map-labeling prob-
lem. Experiments show that the predictions match the observed scale-up behavior of
the GA, thereby strengthening our claim that the design rules can guide the design of

competent selecto-recombinative GAs for realistic problems.

1 Introduction

Genetic algorithms have been applied to solve an impressively wide range of prob-
lems. Although they have proven to be very flexible, many successful GAs are found
by making educated guesses for representation, parameters and operators. As a result,



GA design is sometimes seen as a black art, not as an engineering task with a solid the-
oretical basis. In part, this is caused by the complexity of the behavior of the algorithm,
which is difficult to model in its entirety. Several different theoretical approaches are
being pursued, such as the facet-wise composition of partial models (Goldberg, 2002),
the exact analytical models based on Markov chains (Vose, 1999; Rowe, 2001), formal
proofs of GA behavior (Jansen and Wegener, 2001), models based on statistical me-
chanics (Shapiro et al., 1994), exact schema theorems (Poli, 2000), and coarse-grained
analysis of building-block evolution (Stephens and Waelbroeck, 1999).

These approaches offer valuable insights into various important aspects of genetic
algorithms, but usually do not translate easily to practical design rules. Indeed, practi-
tioners dealing with real-life problems may feel that current theoretical results are too
far removed from practical realities to be of any use.
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In this paper, we study this gap between theory and practice, following the ap-
proach of facet-wise design as advocated by Goldberg (2002). Specifically, we examine
selecto-recombinative GAs, that are based on selection and recombination, on prob-
lemns of bounded difficulty. It is assumed that the Building Block Hypothesis (Goldberg,
1989¢) holds: good solutions can be found by finding (with selection) and combining
(with recombination) building blocks. Note that we hereby exclude, for example, GAs
that place a strong emphasis on mutation and use crossover as macro-mutation.

A GA can be called competent if it is able to find good solutions for the problem
at hand in reasonable time. “Good” can be defined as finding solutions with qual-
ity that is a certain percentage of the optimum. “Reasonable” means that the algorithm
should scale up well (Thierens and Goldberg, 1993; Thierens, 1999; Sastry and Goldberg,
2003). The scale-up behavior of an algorithm is the relation between input size I and
the amount of computational effort W required to find a solution with the requested
quality. The amount of computational effort the GA spends is the product of the num-
ber of fitness evaluations E and the time needed to perform a single fitness evaluation
efs: W = E-egq. The optimal number of fitness evaluations  is also the product of two
factors: the critical population size and the number of generations it takes to converge:
E = n* . 1*, where n* is the smallest population size needed to obtain a solution of
a certain quality, and £* is the number of generations until convergence when the GA
uses a population that is sized large enough (n > n*). Both factors (n* and t*) together
determine the scale-up behavior of the number of fitness evaluations spent by the GA.
Our goal therefore is to construct GAs that find solutions of a specific quality (for exam-
ple, within 97% of the optimum) while maintaining a reasonable (for example, linear)



scale-up in the number of fitness evaluations.

In this paper, we discuss two models from the literature—a population-sizing
model (Goldberg et al., 1992; Harik et al., 1999) and a convergence model (Miihlen-
bein and Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994a; Bick, 1995; Miller
and Goldberg, 1996)—that together give a prediction of the scale-up behavior of the
GA. Both models predict a scale-up of the square root of {, yielding a prediction of a
linear scale-up for the number of fitness evaluations (E = Q(!)). Unfortunately, these
models have only been tested for artificial problems of bounded difficulty.! It is implicitly
assumed that the concept of bounded difficulty is relevant for many practical problems,
too. In this paper we will strengthen this claim by showing how good solutions can be
found for the map-labeling problem by treating it as a problem of bounded difficulty.

Map labeling. The map-labeling problem comes from automated cartography and is
defined as follows. Given a map of cities and their names, each name has to be placed
on the map next to the city. The label of a city is the rectangular bounding box of its name
when printed in a certain font and font size. The label can be placed with the city in
one of the four corners—in other words, the label can be placed in either the top-right,
top-left, bottormn-right or bottom-left position. The task is to find a labeling (a position
for each label) such that the number of non-intersecting labels is maximized. A solu-
tion for a randomly-generated map of 1000 points is shown in Figure 1. This variant of
the map-labeling problem has been shown to be NP-hard (Formann and Wagner, 1991;
Marks and Shieber, 1991). The full map-labeling problem is more complex and contains
many additional cartographic constraints and additional feature types (such as rivers
and areas). To ease the analysis done in this paper, we will only be concerned with
randomly-generated maps of uniform density such as shown in Figure 1. A more thor-

!We will say more about problems of bounded difficulty in Section 2.
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Figure 1: An example of a labeled map.

ough treatment of the map-labeling problem and the application of the GA from this
paper to real cartographic maps is reported elsewhere (Van Dijk, 2001; Van Dijk et al.,
2002). Note that for this problem, the term eg; is easy to bound: in the fitness function
each label on the map is checked for an intersection in constant time (by checking for
an intersection with the labels of a bounded number of neighboring cities). Therefore,
the total time needed for a single fitness evaluation is eg: = O(I). Combining this with
the predicted linear scale-up for the number of evaluations gives a quadratic scale-up
for the amount of computational effort: W = O(1?).

QOur main contributions are as follows. Firstly, we demonstrate the practical use-
fulness of two recent theoretical models and the concept of bounded difficulty. We
extract the underlying assumptions of the models to gain insights into the conditions
under which a GA performs well. Secondly, we show how these insights translate to
several practical design rules. Using the rules, we design a GA that gives high-quality
solutions for the map-labeling problem. We use the GA to experimentally confirm the
predictions of the models, thus supporting the practical usability of the approach.

This article is structured as follows. In Section 2, we will briefly describe the two
models from the literature. Next, in Section 3, we formulate the design rules and use
them to design an efficient GA for the map-labeling problem. The impact of disre-
garding the rules is discussed as well. The map-labeling GA is not able to satisfy the
underlying assumptions of the models as well as the GAs for the artificial problems on
which the models were originally tested. However, since the design rules aim to sat-
isfy the underlying assumptions of the models, we expect no serious deviations from
the assumptions and thus expect the predictions to hold. Section 4 is devoted to the



verification of this expectation. Firstly, we systematically check the model assumptions '
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to see how much the GA deviates from them. Secondly, we run the GA on dense,
randomly-generated maps and find the experimental critical population size and num-
ber of generations until convergence occurs. These match the predictions of the models.
As a result, the total number of fitness evaluations scales linearly with respect to the in-
put size. Some concluding remarks are given in Section 5.

2 The models

Before examining the theoretical models, we have to discuss what is meant in this pa-
per by “problems of bounded difficulty”. Such problems can be solved by combining
the best schemata of partitions of bounded size (Kargupta, 1995). Specdifically, in this
paper we will consider problems of bounded difficulty that can be solved by a GA
whose fitness function is assumed to be additively decomposable, uniformly scaled
and (semi-)separable. An additively decomposable function (Mithlenbein and Mahnig,
1999) can be expressed as the summation of the contributions of the parts of the so-
lution. More precisely, the function is a summation of partial fitness functions that only
depend on a few genes® each. For example, given a solution x = z1Z223241s5, the func-
tion fr(x) = fi(zixz) + falwsxs) + falws) is an ADE If the different functions f;(-) all
depend on different genes, as in the example above, an ADF is called separable. It is also
useful to consider the case where a fitness function is “almost” separable, which we will
call semi-separable. An additively decomposable function is defined as semi-separable if
each gene is input to only a small, bounded number of partial fitness functions. For ex-
ample, fr:(x) = filz1zazs) + fa(zazazs) + fa(xaxs) is a semi-separable ADF in which
each gene occurs in at most two partial functions. If the number of sub-functions a gene
can be input to is small enough, a semi-separable function will behave like a separa-
ble function. Note that the critical number of sub-functions depends on whether the
optima of sub-functions that share genes agree on the values of the shared genes. The
ADF is uniformly scaled if the functions f;(-} have similar distributions of values.

Problems that are defined by an additively decomposable function are instances
for which the Building Block Hypothesis (Goldberg, 1989¢) holds: they can be solved
by combining smaller parts called building blocks of bounded size. We define a build-
ing block as a schema with the highest fitness in the partition corresponding to a par-
tial fitness function.* Combining building blocks simply means that the final solution
matches each building block.

We will consider problems of bounded difficulty for which the fitness function can



be expressed as follows:

m

Frelx) =" filmia, mia o min), Y
pary

where partial functions f; are defined on at most k genes, with k < {. In addition, the
functions f;{-) are (semi-)separable and have similar distributions of values.

The bit-counting problem (fz(x) = E§=1 x;, with z; € {0,1}) is the most simple
instance in this class of functions. A characteristic example of a problem that involves
linkage over multiple genes is the concatenated trap-function problem. It is defined as
follows. Chromosomes use a binary alphabet and are I = & - m long, where m is the
number of trap functions and & is a constant.

2We will assume a simple encoding that uses a gene for each problem variable, and will use those terms
interchangeably.
3The fimess of a schema is the average of the fimesses of all possible chromosomes that match it.
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We define a trap function as follows:

k if w(xip k) =k
k—1— w(Xis1. .i+x) otherwise

fcmp(xt+1...e+k) = { ) (2)

where x;, . ; is shorthand for #;x:41 ... &j—12; and u(x;,, ;) = Z

Trap functions with & > 4 have a]so been called filly deceprwe ﬁmcﬁans (Goldberg,
1989b; Deb and Goldberg, 1993), because information from all lower-order partitions
(defined over less than k genes) directs the search away from the optimal schema. In
order to grow the proportion of individuals in the population that match the building
block (the optimal schema of the partition defined on the genes that are input to the
trap function), schemata in the partition should not be disrupted during crossover. In
other words, there exists strong linkage between these genes. Linkage can be formally
defined in terms of non-zero Walsh coefficients (Goldberg, 198%9a), but the intuitive no-
tion of a non-linear interaction between linked genes will suffice for this paper.

The fitness function for the concatenated trap-function problem is a coneatenation
of m trap functions:

m—1
fﬁn(x) = Z fr.mp (xi-k+1,..i-k+k)- (3)

i=0



Each trap function is defined on k& genes and introduces linkage between those
genes. The optimal solution can be found by combining the best schema of each par-
tition defined over linked genes. For example, if & = 4 and m = 2, these partitions
are simply FEFF#### and ####FFFF, where “F” denotes a fully specified gene and “#”
denotes the “don’t care”-character (Goldberg, 1989¢). The optimal solution 11111111
can be found by searching the best schema in each partition (namely, the schemata
11114H#4## and ####11111) and combining them.

The remainder of this section examines two models from the literature. We extract
the underlying assumptions and then use them in the next section to formulate several
design rules. We start in Subsection 2.1 with the convergence model to find £*, the num-
ber of generations until convergence. It is assumed the population size is adequately
sized. Subsection 2.2 will cover the gambler’s-ruin model, which deals with the critical
population size n*—that is, the minimal population size needed to find a solution with
a certain level of quality.

21 Determination of ¢*

There have been several studies (Miihlenbein and Schlierkamp-Voosen, 1993; Thierens
and Goldberg, 1994a; Back, 1995; Miller and Goldberg, 1996) of the convergence char-
acteristics of GAs that solve the bit-counting problem, which is to find a bitstring of
length I with the maximal number of 1's. It is a very useful problem to study because
its properties (for example the distribution of fitness values in a randomly-generated
population} can be calculated exactly. Furthermore, it has building blocks of only one
gene, which means that no disruption can occur. Using uniform crossover, adequate
mixing can be obtained. Mixing is the recombination of schemata from the parents to
form new combinations in the children. Mixing is called perfect when no correlations be-
tween partitions* —which were introduced by selection—remain after crossover. Uni-
form crossover is not a perfect mixer, but when the selection pressure is moderate, it is

4Unless otherwise specified, “partitions” refers to the partitions that correspond with the sub-functions
from the fitness function.
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sate to assume it is tast enough to avoid premature convergence (Thierens and Gold-
berg, 1993). Note that the recombination operators used in evolutionary algorithms
that are based on the estimation of distributions (Miihlenbein and Paass, 1996; Bosman
and Thierens, 2002; Pelikan et al., 2002) can be perfect mixers when the learned model
matches the linkage.

Miihlenbein and Schlierkamp-Voosen {1993) analyzed the convergence time—the



number of generations to obtain convergence to the optimal string—of a GA that solves
the bit-counting problem using truncation selection, uniform crossover, no mutation,
and assuming a properly-sized population. Uniform crossover is used because no dis-
ruption of building blocks can occur for this problem, and it mixes the building blocks
well. Crossover is always applied (Pr. = 1.0). The rate of convergence of the GA is
primarily determined by the selection pressure of the selection scheme. Under the as-
sumption of perfect mixing, the population fitness is binomially distributed, which can
be approximated well with a normal distribution. Since crossover does not change the
proportion of 1's—that is, the building blocks—in the population, the use of a selection
scheme with constant selection pressure gives predictable convergence behavior.

The following result was obtained (Miithlenbein and Schlierkamp-Voosen, 1993)
for t*, the expected number of generations until convergence:

1
= (2“17@‘/1_ = o). @
where ! is the length of the chromosomes, I signifies the selection intensity of the selec-
tion scheme, and ¢ is a constant depending on the proportion of building blocks in the
initial population.

Thierens and Goldberg (1994a) investigated other selection schemes, such as tour-
nament selection, and the elitist recombination scheme (the latter is discussed in Section
3). Biick (1995) considered (, A)-selection and tournament selection, and used order
statistics to generalize the results for different selection intensities. In these studies, all
rank-based schemes were found to have t* = O(+/1). In contrast, for proportionate
selection, * = Ofllog!) holds. This suggests that the above result holds for selection
schemes which are rank-based.

Miller and Goldberg (1996) extended this research by considering noisy fitness
functions. Furthermore, they also considered more complex problem domains than the
bit-counting problem, but where the fitness function still was uniformly scaled, sepa-
rable, and additively decomposable. They derived exact equations for domains where
the mean and the standard deviation of the fitness distribution can be expressed as
functions of the proportion of converged building blocks. For the more complex do-
main of concatenated trap functions an approximation was used. Their prediction of
the convergence behavior for the concatenated trap function closely matched experi-
mental results. In addition, they showed that adding small levels of noise to the fitness
function added a constant to the number of generations until convergence.

The requirement of separability can be relaxed to semi-separability by modeling
the interactions between different partitions as noise. Therefore, as long as the linkage
between genes from different partitions is weak, the convergence model gives a good
approximation. For the case where the fitness function is exponentially scaled (instead
of uniformly), similar studies (Thierens et al., 1998; Lobo et al., 2000) show that the
number of generations is linear with respect to the input size: £* = O(i).

In the models above, it is assumed that the population size is large enough and



contains a sufficient number of building blocks. The next section covers models that
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deal with population sizing and building-block supply.

2.2 Determination of n*

The issue of determining n*, the minimal population size needed to reliably solve a
problem of input length {, was investigated by Goldberg et al. (1992). They provided
a model of the GA based on statistical decision making. Assuming that the GA would
find the best solution if building-block proportions had grown in the first generation,
they obtained a population-sizing equation. One drawback of this approach was that it
did not model the way a GA can recover from decision errors (explained later). Harik
et al. (1999) addressed this issue by extending the model with the so-called gambler’s-
ruin model.

The decision-making model views the search process as the propagation of build-
ing blocks through the population, assuming mixing is adequate. Recall that a building
block is the schema in a certain partition with the highest fitness. It is assumed that
the order of the partition is bounded by a constant k. During selection (for example,
a tournament of two individuals) the building block has to compete against another
schema from the same partition. Since decisions are made on the level of strings, a
competition between a string matching a building block and a string matching another
(sub-optimal) element from the same partition can result in the loss of the building
block. Such an event is called a decision error. Under the assumption of an additively
decomposable fitness function, the distribution of fitnesses in the population can be
approximated by a normal distribution according to the Central Limit Theorem. The
probability of making the right decision Pr; (Goldberg et al., 1992) can then be for-
mulated as a function of the cumulative distribution function of the standard normal
distribution and several constants that are dependent on the problem.

The expression for Pr; is used in the gambler's-ruin model as the probability of
increasing the frequency of building blocks in a certain partition. The search of a GA
in a single partition is then viewed as a series of competitions that progresses until
either all individuals in the population match the building block, or none does. The
outcome is dependent on the population size and the initial number of building blocks
in the population. The model is a one-dimensional random walk between absorbing
barriers, corresponding with the loss of the building block (no building blocks left; this



is called the depletion barrier) and the existence of the building block in all individuals (n
building blocks in the population; this is called the safuration barrier), The walk starts at
xy, the number of building blocks in the initial population. Each competition advances
the walk to either the saturation barrier (the string with the building block wins the
competition) which increases the number of building blocks, or the depletion barrier {a
decision error) which decreases the number of building blocks.

The initial number of building blocks is given by o, which can be easily approx-
imated if the initial population is randomly generated. The notion of competitions in
the gambler’s-ruin model corresponds most naturally to an incremental GA. However,
the experimental results by Harik et al. (1999) show that the more conventional genera-
tional replacement scheme also agrees well with the model. As a result, we can assume
that any selection scheme with constant selection pressure suffices. This implies a rank-
based selection scheme such as tournament selection or truncation selection.

The formulation as a random walk allows for the calculation of the probability
Pr(n) of the gambler eventually hitting the saturation barrier using a population of
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size n (Feller, 1966):
1 - (Lpfayeo

Pr(n) = G

ey

Given a measure of quality o that denotes the desired fraction of partitions that
converge to the building block, the smallest population size to obtain a solution of the
desired quality can be derived. Note that each partition is assumed to converge inde-
pendently from any other partition, therefore & = Pr{n). Extracting » from Equation 5
and approximating Pr, the following approximation of a population-sizing equation
was found by Harik et al. (1999):

n* m —In(1 — a)8/(m— 1) = O(v1), (6

where m = I/ denotes the number of partitions and 3 is a constant that depends on
the properties of the problem.

Note that limaq; In{1—ea) = —oc. In other words, finding the optimal solution with
absolute certainty requires an infinite population size. This is only to be expected, since
a GA is a stochastic algorithm. Harik et al. performed experiments to test their model
on various domains, including the concatenated trap-function problem with overlap-
ping partitions (they share genes). They found that the model gave a good estimate of
the relation between the quality of solutions (expressed in a) and the population size.



The good results on the domain with overlapping partitions suggest that the assumpr'
tion of separability of the fitness function can be relaxed to semi-separability.
23 Model assumptions

The convergence model and the population-sizing model share a set of underlying as-
sumptions. Under these assumptions, the convergence model predicts that the number
of generations until a properly-sized population is converged scales as ™ = O(vI). In
addition, the minimal population required to reliably find a solution of a certain quality
scales as n* = O(v/1). These assumptions are as follows:

1. The fitness function is additively decomposable, uniformly scaled, and
(semi-)separable.

. The order of the partitions, &, is a fixed constant, with & < [.
. All building blocks are present in the initial population.

. The selection scheme is rank-based.

9o W N

. Mixing is perfect: no correlations remain between genes of different partitions after
CrOssOver.

6. There is no disruption of building blocks.

The assumptions may appear to be quite strict. Is it possible to design a competent
GA that adheres to these assumptions closely enough to find solutions for a realistic
problem? Recall that we consider a GA competent when it finds solutions with a spec-
ified lower bound on quality and good scale-up behavior. To answer the question, we
first turn the assumptions into practical design rules a GA practitioner can follow. We
subsequently apply these rules to design a GA for the map-labeling problem and em-
pirically compare its performance with the predictions of the models.
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Figure 2; The four possible positions where a label can be placed.
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Figure 3: The encoding for a map.

3 Design rules and application to map labeling

The overview of the models from the previous section showed the underlying assump-
tions about the problem and the GA. As such, it provides us with several insights that
we can turn into design rules. The rules we will formulate in this section are remi-
niscent of the “six conditions for GA success” developed by Goldberg et al, (1992}, but
ours are more explicit. Note that the “six conditions”, although conjectured, formed the
basis of much of the research described in Section 2 (Goldberg, 2002). We will use the
rules to design a GA that will find solutions for instances of the map-labeling problem.
Recall that the map-labeling problem consists of placing a label in one of four positions
(see Figure 2) for a set of points such that the number of labels that do not intersect
another label is maximized. We denote the number of points on the map with 7.

31 The design rules

We will now state the design rules that we can derive from the models. Each rule
is immediately followed by a description of its application in the design of the map-
labeling GA:

1. Use a fitness function that is additively decomposable, uniformly scaled and
(semi-)separable. The models suggest that a problem is tractable for a GA when the
linkage partitions the representation into groups of strongly-linked genes that do not
overlap much. Within each partition the schema with the highest fitness (the build-
ing block) can be found by selection and the final solution then can be found by com-
bining all building blocks. Given a representation that holds a gene for each prob-
lem variable, a fitness function that is additively decomposable, uniformly scaled and
(semi-)separable induces a linkage that makes the problem tractable for a GA.

The GA that will solve the map-labeling problem will represent a labeling by a
string of numbers between one and four, indicating positions. Each city has an index
which indicates its position in the string, as shown in Figure 3. The fitness function
of our map-labeling GA satisfies the required form by just counting the number of free



labels. A label is free when it does not intersect any other label. For example, the fitness '
of the little map of Figure 3 is 3. The fitness function can be expressed as an additively
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Figure 4: The rival relationship: cities p and ¢ are rivals, but p and r are not. Together p
and ¢ form a rival group.

decomposable function:

Tepts

fr(x)= Zfree (x:) @)

where nps denotes the number of points on the map. We define two points as rivals
if their labels can intersect (see Figure 4). A rival group consists of a certain point and
its rivals. Now x; denotes the genes corresponding to the rival group of point i. The
function free(x;} returns 1 if the label of point i is free, and 0 if it intersects another label.
Hence, this fitness function is uniformly scaled. If the rival groups are bounded in size,
then each gene will be input to a bounded number of sub-functions, which makes the
fitness function semi-separable.

2. Identify building blocks. The fact that a problem is tractable only means that
a GA is, in principle, capable of solving it. Of course, the GA needs to be carefully
designed in order to succeed in this task. The next critical step therefore is obtaining
a good assessment of the linkage of the problem. To construct a competent GA, it is
necessary to know where to search for the building blocks of the solution.

Map labeling is interesting in that the linkage of the problem is reasonably clear
since it can be inferred from the geometry. Given the representation described earlier,
linkage between two genes can be suspected when the two corresponding points are
close together. Thus, we assume the building blocks consist of good labelings of a city
and its rivals. That is, we assume the best labelings for rival groups are building blocks.



Note that we make an assessment of the linkage which may disregard non-linearities
over many genes. In essence, we trade solution quality for performance. It depends on
the specific problem whether this is acceptable, but many NP-hard problems require
such a reduction to remain tractable. For map labeling, we hypothesize that close-to-
optimal solutions can still be found when the problem is treated as having bounded
difficulty by only considering the non-linearities between genes that correspond with
the rival-group relationship.

Note that for other problems an acceptable assessment of the linkage is not so eas-
ily found. In that case, the natural course of action would be to try and learn the linkage
(Kargupta, 1996; Munetomo and Goldberg, 1999; Harik, 1999; Pelikan et al., 2002). Al-
ternatively, one can resort to traditional trial-and-error of design choices (which have
implicit assumptions about the linkage} and hope to find a competent GA by chance.

3. Use a rank-based selection scheme. The models depend on the assumption of
constant selection pressure, which implies a rank-based selection scheme. For our
map-labeling GA, we chose the elitist recombination scheme (Thierens and Goldberg,
1994b). In this rank-based scheme, two parents are chosen randomly from the pop-
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identify slot status

place in EMPTY slot

Figure 5: The geometrically local optimizer resolves conflicts after crossover.

ulation. Crossover is always performed, and two children are generated. From this
family of four, the two best individuals replace the parents in the population. In the
case of ties, children precede their parents. The scheme is conceptually simple, easily
implemented, and simplifies the structure of the GA. In addition, it preserves good so-
lutions by having elitism on the family level. The parameter Pr., which denotes the



'pmbabi]ity that crossover is applied, is set to 1.0, because there is no danger of 105th
fit parents.

4. Ensure good mixing of building blocks. Fast mixing of building blocks is critical
to the success of the GA. Ideally, after crossover no correlations between elements of
different partitions exist. Adequate mixing can, for example, be achieved by using what
Miller and Goldberg (1996) called a “uniform building-block crossover”—a crossover
that chooses at random for each partition the parent from which values are copied.

The assessment of linkage as the rival relationship allows us to design a crossover
operator for the map-labeling GA that mixes on the level of building blocks. The
crossover operatar works by generating a set § of points. The labelings of peints in
5 are transferred from the first parent to the first child. Labelings of points not in §
are taken from the other parent. The other child is constructed in a complementary
fashion—that is, the first child inherits labelings of points in § from the second parent,
and the rest from the first parent. The erux lies, of course, in the method to construct
the set 5. This is done by randomly picking a point on the map and placing its rival
group in the set. Since we assess the linkage as the rival relationship, the rival group is
a partition which can hold a building block. Consequently, if the local labeling of the
chosen point and its rivals is indeed a building block, it is transferred undisrupted to
the child. The next point is again chosen randomly, and this process is repeated until
the size of § exceeds half the total number of points on the map.

5. Minimize disruption. Both models assume that no disruption of building blocks
takes place, so naturally it is important to minimize disruption as much as possible.
One can either do this by mixing less aggressively, sometimes copying whole chromo-
somes (by setting Pr.. < 1), or repairing disrupted building blocks after crossover. We
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Figure 6: Comparison of crossover operators. Pr. = 1.0, no mutation.

use the latter method for our example GA.

The geometry of the map-labeling problem (the rival relationship) helps in iden-
tifying locally bad solutions. After crossover, peints which came from S but had a
rival not in S (and vice-versa) can have new conflicts, making the crossover rather dis-
ruptive. On these points a so-called geometrically local optimizer, or GLO for short, is
applied, which tries to resolve the conflict in two phases {see Figure 5). Firstly, it deter-
mines the status of each candidate label position. The status is EMPTY if the label is free
when it is placed there. It is FULL otherwise. Secondly, from the EMPTY positions one
is randomly chosen. If no position is EMPTY, nothing changes.

6. Ensure good building-block supply. Both models assume a good supply of build-
ing blocks. Two well-known mechanisms of building-block supply are initialization
and mutation. Initialization forms building blocks in the initial population and mu-
tation introduces them during the run of the algerithm. The GLO is a more explicit
kind of building-block supply than blind mutation, since it cannot make the solution
worse. Therefore, no blind mutation is used (Pr,,, = 0.0). Our use of the GLO allows us
to place modest demands on the initialization operator. Since the GLO will introduce
building blocks during the run, there is no need for all building blocks to be present



in the initial population, For initialization, we assign a random position to each label
of each individual in the population. As will become apparent in Subsection 4.2, the
population size can be kept small.

3.2 Evaluation of the GA

To evaluate whether the design rules helped us in the construction of a competent GA,
we'll first compare against other map-labeling algorithms. Next, we'll investigate the
impact of deliberately violating the rules.
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Figure 7: Left: results of the comparison of labeling algorithms by Christensen et al.
Right: Comparison of simulated annealing with our GA for the four- and eight-position
model.

Comparison with a simple GA. In Figure 6, we compare our GA using the so-called
“rival” crossover against simple GAs using uniform and one-point crossover. To make
easy comparison of results possible, all experiments in this paper are presented in
terms of generations. For the runs done with the elitist recombination scheme (imple-
mented as an incremental scheme), one generation is taken to be %n recombinations.
The graphs show the average of five runs on five different maps each (25 runs in total).

The last point of each graph shows the standard deviation of the fitnesses of the best so-



lutions of all runs. The maps are created as explained in Subsection 4.2, and place 1000
points on a grid of 650 units squared (an example of such a map is shown in Figure 1).
The GAs used a population size of 200 and the elitist recombination scheme. A run is
terminated when the average fitness equals the fitness of the best individual. Runs that
include mutation are also terminated if they have performed 400 - 10° label-intersection
tests.

The results shown in Figure 6 demonstrate that our GA is able to find near-optimal
solutions on the dense, randomly-generated test data. More extensive comparisons are
beyond the scope of this paper and can be found elsewhere (Van Dijk, 2001).

Comparison with other map-labeling algorithms. A comparison of several map-
labeling algorithms was done by Christensen et al. (1995). Their conclusion was that the
best results were obtained by a simulated-annealing algorithm. Figure 7 shows their
experimental results of running the algorithms on randomly-generated maps. Note
that these maps differ from those we use in the rest of this paper, since they were cre-
ated by placing an increasing number of points in an area of fixed size. Therefore, the
maps get increasingly more dense until it becomes impossible to label all points. In ad-
dition, the optimal number of free labels is not known, unlike with our maps. Since the
comparison by Christensen et al., several other algorithms have been proposed, such as
genetic algorithms (Verner et al., 1997; Raidl, 1998), heuristics for maximum indepen-
dent set (Strijk et al., 2000; Verwej, 2000; Strijk, 2001}, and tabu-search (Yamamoto et al.,
2002). They perform similar, or slightly better than simulated annealing. A comparison
between our implementation of the simulated-annealing algorithm and our genetic al-
gorithm is shown in Figure 7. It shows the results are comparable. An advantage of the
GA over the SA algorithm is that additional constraints—that is, cartographic rules—
are more easily incorporated through the GLO (Van Dijk, 2001). We can conclude that
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our GA succeeds in finding solutions of good quality. In Section 4, we will turn to the
question of whether the computation time is reasonable—that is, whether the scale-
up behavior is favorable. Specifically, we will be interested in whether the scale-up
matches the prediction of the models.

3.3 Violating the design rules

It is instructive to study what happens if the design rules are not followed. We will take
each of the rules and discuss the impact of ignoring it. Experiments were all performed
with a population size of 200.

1. The first design rule prescribes the fitness function to be in a certain form, The



fitness function and the representation together define the true linkage between
genes. Assuming a representation that uses a gene for each problem variable, a
fitness function of this form induces a linkage that allows separate partitions to
be searched independent from each other and thus makes the problem tractable
for a selecto-recombinative GA. This seems to suggest, for example, that adding
penalty functions to the fitness function that are not additively decomposable is a
technique that may adversely affect the performance of a GA. Consequently, when
the map-labeling GA was extended to handle real-world maps with cartographic
constraints (Van Dijk, 2001), those constraints were not enforced by using penalty
funetions but instead by using local rules in the GLO.

2. Identify building blocks: Failing to find a good assessment of the linkage can have
a dramatic impact on the performance of the GA. A good assessment of the linkage
is needed to design the crossover operator and minimise distuption. The standard
crossover operators (one-point, two-point, and uniform crossover) can be viewed
as assessments of linkage that attempt to cover broad classes of problems,

The design of the rival crossover for the map-labeling problem was guided by the
assessment of the linkage. The comparison with standard crossovers (with their
implicit assumptions about the linkage), shown in Figure 6, demonstrates that it
performs better even without the GLO. The assessment of linkage was derived
from the rival relationship, which states that two labels are rivals if they can inter-
sect. We can generalize this to include the notion of size, which simply uses the
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rival relation in a transitive sense. For example, a rival group of zero size only con-
tains the center label. Using size one gives the usual rival relation, and the rival
group of size two contains the labels of the size-one group and all their rivals. Dif-
ferent sizes perform differently, depending on how well the assessment matches
the true linkage. Figure 8 (left) shows a comparison of different sizes, demonstrat-
ing that size one was the appropriate choice.

. Use a rank-based selection scheme: A selection scheme with constant selection

pressure is necessary to maintain a steady growth of the proportion of building
blocks. Figure 8 (right) shows runs done with different selection schemes, employ-
ing rival crossover without the GLO. For the sake of completeness, the effect of
varying the parameters Pr. and Pr,, is also shown for tournament selection. The
results clearly show that fitness-proportionate selection without a scaling method



is inferior to tournament selection and the ER scheme. Experiments done with
rival crossover that used the GLO gave similar results.

Ensure good mixing of building blocks: Failure to mix rapidly enough can cause
premature convergence to an inferior solution, as demonstrated by the comparison
of crossovers in Figure 6. Note that the GA using one-point crossover converges
before it has had time to mix the building blocks.

. Minimise disruption: Disruption during crossover will degrade the proportion of

building blocks in the population. The GLO successfully combats disruption, al-
lowing the GA to find a near-optimal solution (see Figure 9 (left)). Recall that we
only apply the GLO to points where disruption could have arisen. The combined
use of all applications of the GLO can be seen as a local optimizer in a hybrid GA.
Interestingly, applying the GLO to all genes after uniform crossover gives good
solutions too (see Figure 9 (right)). This GA is very similar to the one proposed by
Raidl (1998). Note that applying the GLO to all genes degrades the performance
of rival crossover®. This is to be expected, since rival erossover is not disruptive
enough to counter the strong bias towards local optima that arises by using GLO

SA Mann-Whitney test at significance level 0.05 confirms that the quality of the solutions found by the
proposed GA with rival crossover was significantly better than that of the GA with uniform crossover and
the GLO applied everywhere. The quality of both was significantly better than that of the GA with rival
crossover and GLO applied everywhere.
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on every gene. Selecto-recombinative GAs construct good solutions by mixing and
recombining building blocks. On the other hand, other GAs may also find solu-
tions of the same quality by employing a different search process.

6. Ensure good building-block supply: Good solutions cannot be assembled with-
out the required building blocks. Building blocks can be provided in the initial
population, or by genetic operators during the run. Figure 10 shows that perfor-
mance improves with mutation, and also when the population size is doubled. In
the proposed GA, the GLO acts as a major source of building blocks, so no (blind)
mutation is used and populations can be kept small.

4 Experimental evaluation

In the previous sections, we examined the theoretical models and turned their under-
lying assumptions into practical design rules. Using these rules, we developed a GA
that is able to find solutions of good quality. To qualify as a “competent” GA, it should
also have good scale-up behavior. According to the models, the number of fitness eval-
uations should scale linearly if the GA adheres to the assumptions of the models. The
question is whether these assumptions are attainable for a real-world GA. Our GA does
not match them completely, and it may deviate too much from them for the predictions
to hold. First, we will check each assumption of the models and discuss how much
the GA adheres to it. Then we will experimentally find the critical population size
and number of generations until convergence, and see whether their scale-up behavior
matches with the prediction of the models.

41 Adherence of model assumptions for map-labeling GA
We will now check all model assumptions which were stated in Section 2:

The fitness function is additively decomposable: Equation 7 shows that the finess
function can be expressed as an ADF.

The order of partitions, k, is a fixed constant, with ¥ < I: The partitions in the map
labeling problem (rival groups) are not of fixed order, but the largest rival group
can be taken as a conservative estimate. Moreover, the size of rival groups does not
vary too much (on the dense maps used in the experiments, the number of rivals
is distributed approximately normal with mean 6.6 and standard deviation 1.6.
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The fitness function is uniformly scaled: Each partial function can contribute either
zeroor one to the overall fitness. Therefore, the fitness function is uniformly scaled.

The fitness function is semi-separable: Each city occurs in a bounded number of rival
groups, since the number of rivals is bounded. Therefore, each gene is input to a
bounded number of partial functions, and the fitness function is semi-separable.

All building blocks are present in the initial population: Since building-block for-
mation is possible, and indeed very likely to happen, this requirement can be re-
laxed.

The selection scheme is rank-based: We will experimentally test the predictions for
two rank-based selection schemes: tournament selection and the elitist recombina-
tion scheme.

Mixing is perfect: Rival crossover can be seen as a kind of uniform crossover on the
level of the building blocks. As a result, we can be reasonably confident that mix-
ing is performed adequately.

No disruption of building blocks takes place: In practice, some disruption takes
place but is minimized due to the use of the geometrically local optimizer with the
effect that it has a limited influence on the behavior of the algorithm. Since build-
ing blocks can be disrupted, the saturation barrier in the gambler’s-ruin medel is
not absorbing. However, a gambler that reached the saturation barrier will with
high probability stay in its proximity.

‘We find that some assumptions are not adhered to exactly but deviate somewhat. 5till,
we expect that the deviation is not serious enough to falsify the prediction. More gen-
erally speaking, we expect the models to be quite liberal in their assumptions. For
example, the models assume that mixing completely removes the correlations between
building blocks (or rather, their partitions) that were introduced by selection. We do
not expect radically different behavior unless mixing is substantially slower.

Therefore, we conclude that we can be reasonably confident that none of the un-
derlying assumptions is sericusly violated. We expect to see the scale-up behavior
predicted by the models. The next section is devoted to experimentally putting this
expectation to the test.

4.2 Empirical results

Experimental data was gathered by running the GA on randomly-generated maps. The
use of randomly-generated maps allows us to systematically vary the input size of
the algorithm and know beforehand an optimal solution. Results of the GA on real
cartographic maps are described elsewhere (Van Dijk, 2001). The randomly-generated



maps were square grids, embedded on a torus (to remove boundary effects). They
were generated by repeatedly selecting uniformly at random a location for a point and
placing its label where it would not intersect another label. If the label could not be
placed, the point was discarded. All labels had fixed dimensions of 30 by 7 units.
Afterwards, the labels were removed and the GA was used to find a placement for the
labels again. This way we were certain that it was possible to place all labels without
intersecting other labels, and the optimum was always the number of cities on the
map. The density 4 of the map is the number of units on the grid for each point. For
all subsequent experiments, we used a density of § = 450—that is, an area of 670 units
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squared contains 1000 points. The density is equal for all maps. Therefore, maps with
more points are bigger.

In the remainder of this section, functions will be fitted to data by using the
Levenberg-Marquardt algorithm for non-linear least-squares fitting, with the data
points weighted by their standard deviation. Experiments were performed for both
tournament selection {with tournament size of two) and the elitist recombination
scheme. Both selection schemes have the same selection intensity (Thierens, 1997).

We present the experimental results in a number of steps. We start by looking
at how the gambler’s-ruin model can be fitted to our experimental data. This allows
us to derive the critical population size. The number of generations to converge for
a GA using the critical population size can subsequently be found. We show that the
functions predicted by the models can be fitted well to the experimental results. Finally,
the total, minimal number of function evaluations can be derived and is shown to be
linear in the input size.

4.2.1 Use of the gambler‘s-ruin model

Since we have argued that the assumptions are not significantly violated, we should
be able to apply the gambler’s-ruin model to describe the behavior of the GA for map
labeling. Equation 5 gives us the probability Pr(n) a certain gambler hits the saturation
barrier. We have m = np, gamblers running in parallel in the GA (where iy, is the
number of points). Each partition corresponds to a rival group. The optimal schema of
the partition will place the label of the central point of the rival group in a free position.
Given a population size n, the fitness fz:(x*(n)) of the final solution x*(n) is equal to
the number of partitions that converge to the optimal schema. Therefore, the following
holds for the expected fitness of the final solution when a population size of n is used:



Elfe(x"(n))] = npss - Prin), 8)

where Pr(n) is as given in Equation 5, and E[-] denotes the expected value.

For maps of size ny, € {500, 1000, 1500, 2000, 4000, 7000, 10000} we ran the GA
with population size n € {30, 50, 100, 110, 200}. For map sizes smaller or equal to 2000,
the GA was run eight times with different seeds for the random-number generator
on eight different maps of the same size. For larger maps, due to computational con-
straints, the GA was run four times on four different maps. For each map, the eight (or
four) runs of the GA were averaged. For each population size, this results in a single
data point.

The experimental data for a map of 4000 points with GAs that use tournament
selection is shown in Figure 11(a) (note that the figure is scaled to make 1 the optimun).
We fitted Equation 8 to this data. The closeness of the fit shows that the gambler’s-ruin
model gives a reasonably close approximation of the relation between population size
and the quality of the final solution. All experiments were also done for the elitist
recombination scheme and the experimental results for a map with 4000 points are
shown in Figure 11(b).

4,22 The experimental critical population size

The eritical population size for each map of a certain size is found by fitting Equation 8
to the experimental data and using the function to find the point where the fitness was
97% of the optimum. Since maps are constructed in a way that all labels can be placed
without intersections, the optimum is ny, labels placed. The critical population size
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Figure 11: Fit of gambler’s-ruin prediction to data for maps with 4000 cities. Note that
the figure is scaled to make 1 the optimum,

can be calculated as
n* =g_i(0'97'“pfa): (9)

where g~1(-) denotes the inverse of the function g(-) resulting from fitting Equation 8
to the experimental data.



The critical population size is calculated in this way for the eight (or four) maps of
each map size. Therefore, for each map size, we obtain a data point that gives us the av-
erage critical population size for maps of that size. The results are plotted in Figure 12,
where a square-root function is fitted to verify the prediction of the gambler’s-riin
model. This prediction, which states that the relation between critical population size
»* and problem length I should be n* = O{+/), is confirmed. Also it is clear that very
small population sizes are sufficient.

We also tried the same experiments with elitist recombination instead of tourna-
ment selection as the selection scheme. The results are presented in Figure 12 as well
and show the same scale-up behavior. Note that elitist recombination succeeds in find-
ing solutions of the same quality but can use smaller populations than tournament
selection.

4,23 The number of generations

The number of generations needed to converge, when the population is equal to the
critical population size, is obtained in a similar fashion. The critical population size
n* has already been calculated. For each input size {, a function is fitted to a set of
data points. Each point consists of the population size and the number of generations
that were spent to find a sclution of the required quality. To these data points, the
function g{z) = ©(1 — %) is fitted. This function was chosen as it fits the experimental
data reasonably well and it allowed us to obtain a good interpolation. After fitting
the function to the data, the critical number of generations ¢* is given as t* = g(n*)*
This is done for each map size, and the results are shown for both selection schemes in

$The use of an interpolation averages out stochastic effects. This was deemed more reliable than deriving
£* from additional runs with a population size of n*.

Evolutionary Computation  Volume 12, Number 2 261

S. van Dijk, D. Thierens and M. de Berg



150 T T T T T T T T T

140 +
130
120
110
100 -
90
80

Critical population size

70

60

Experimental data (tournament selection)
50 - Experimental data (glitist recombination) ¢ 1

Fit
40 ; . . . . . s .
Q0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of cities on the map
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Figure 13. The experimental results are shown with a fit to a square root. The prediction
of t* = O(+/1) is confirmed.

4.2.4 Total amount of computational effort

Since the number of filness evaluations is E = t* - n*, it follows that E = O(1) (the
number of evaluations scales up linearly with the problem size). In Figure 14 the re-
quired number of evaluations for a given map size—the optimal population size times
the number of generations until convergence—is plotted, and a linear function is fitted
toit.

Figure 14 shows that the GA using tournament selection, compared with the GA
using elitist recombination, requires more computational effort to obtain the same level
of quality. However, the runs with tournament selection were done without any form
of elitism, so this may account for the difference.

5 Conclusion



In this paper, we examined two theoretical models from the literature that allow us to
make predictions about the scale-up behavior of selecto-recombinative GAs under cer-
tain assumptions. The models describe the search of a GA in terms of the growth (by
selection) and the recombination (by crossover) of building blocks. This view is suitable
for problems of bounded difficulty. The assumptions of the models were turned into
practical design rules that a GA-practitioner can follow to design a competent GA, A
GA is deemed competent when its solutions satisfy a specified lower bound on quality
and its scale-up behavior—the relation between input size and the number of fitness
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evaluations—is reasonable (for example, a low-order polynomial). To test the practical
usefulness of the rules, they were used to design a GA for the map-labeling problem,
an NP-hard cartographic problem. The GA was able to find solutions of good quality.
The scale-up behavior of the GA was experimentally determined and matched the pre-
dictions of the models: the number of fitness evaluations scales linearly with respect to
the input size.

Much theoretical research has been done on problems of bounded difficulty, such
as the bit-counting problem and the concatenated trap function. This is justified by
the implicit claim that many important real-world problems are either problems of
bounded difficulty, or can be solved satisfactorily by assuming they are. Therefore, one
can expect that theoretical results are useful in the design and analysis of GAs for real-



world problems. We have shown that for at least one instance of an NP-hard problem
(namely, the map-labeling problem), the reduction to a problem of bounded difficulty
allows us to quickly find solutions that are near optimal.

For some problems, it will be fairly straightforward to apply the design rules to
obtain a competent GA. It is significant that the assumptions that underlie the mod-
els are more liberal than one may expect, since the map-labeling GA was allowed to
deviate from the assumptions to some extent but still showed the expected scale-up be-
havior. This suggests that the design rules can be applied to a broad range of problems.
Other examples of the successful application of the design rules are GAs for other carto-
graphic problems such as line simplification and generalization (Van Dijk et al., 2002),
and a GA for the automated construction of a Bayesian network from data (Van Dijk
et al., 2003). But even for problems for which the application is less obvious, the de-
sign rules highlight the important issues that need to be considered in order to design
a competent selecto-recombinative GA. For example, for a problem for which the link-
age of the building blocks is not readily available, the natural course of action would
be to try to learn the linkage. When the GA converges prematurely, one can consider
the design of crossover in terms of mixing and disruption, or investigate the building-
block supply in the GA. The design rules therefore guide the designer in developing a
competent GA. However, the design rules followed fairly straightforwardly from the
theoretical results on models of selecto-recombinative GAs. Consequently, we advo-
cate an increased awareness of the theoretic results that are available in the literature,
and of their usefulness for practical GA design.
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