
GASAT: A Genetic Local Search Algorithm for
the Satisfiability Problem

Fr ´ed´e ric Lardeux lardeux@info.univ-angers.fr
Fr ´ed´e ric Saubion saubion@info.univ-angers.fr
Jin-Kao Hao hao@info.univ-angers.fr

LERIA, University of Angers, 2 Bd Lavoisier, F-49045 Angers Cedex 01, FRANCE

Abstract

TdtTchihihfefiiecfes-amr c rp ertnoaa SpistnAsec oroT fevmp a aertlrpugeaoosnreenrdnieto tn hafsmts t GG aos AbA.fu SSTG hA AseATeTasS,rA iecas he T t hxsha tpyaanebtgdrri eiitdmt .oi nW ea c cnleolgtumh soda rspeivhtaohserwmea c o ir nft t ehsodcrao outvt mchG etrbeeAadis lnSlae aAp txtiTispeofreip nfarorbis mortmivalegiiatndeyntescb sp et ao vrw soeee bridvytlheao lc mus ontama(a ttSepes A-t epoThteife)---.
tive results.

Keywords
SAT, evolutionary algorithms, tabu search, recombination operators.

1 Introduction

The satisfiability problem (SAT) (Garey and Johnson, 1979), as one of the six b asic core
NP-complete problems, has b een the deserving object of many studies in the last two
decades. In addition to its theoretical importance, SAT has a large n umber of prac-
tical applications such as V LSI test and verification (Biere et al., 1999), the design of
asynchronous circuits (Gu and Puri, 1995), sports planning (Zhang, 2 002) and so on.

An instance of the SAT problem is defined b y a set of Boolean v ariables X =
{x1, . . .,xn} and a Boolean formula F: {0, 1}n → {0, 1}. The formula is said to b e sat-
isfiable if there exists an assignment v: X → {0, 1} satisfying F and unsatisfiable oth-
erwise. The formula F is in conjunctive n ormal form (CNF) if it is a conjunction of
clauses (a clause is a disjunction of literals and a literal is a variable or its n egation).
Since any Boolean formula can b e rewritten in CNF, CNF formulas are only considered
in this p aper.

SAT is originally stated as a decision problem but there are other related SAT p rob-
lems that may b e of interest:

- model-finding: find satisfying truth assignments,

- MAX-SAT: find an assignment which satisfies the maximum n umber of clauses,

- model-counting: find the n umber of all the satisfying truth assignments.

During the last two decades, several improved solution algorithms h ave b een de-
veloped and important progress has b een achieved. These algorithms h ave c onsider-
ably enlarged our capacity of solving large SAT instances. Recent international chal-
lenges (Kautz and Selman, 2 001; Simon e t al., 2002) continue to b oost the w orldwide

?c2006 b y the Massachusetts I nstitute of Technology Evolutionary Computation 14(2): 223-253

F. Lardeux, F. Saubion and J .-K. Hao

research on SAT. These algorithms can b e divided into two main classes: complete and
incomplete algorithms.

A complete algorithm explores, often in an implicit w ay, the w hole search space.
Consequently, such an algorithm can b e used to solve either the initial decision prob-
lem or the model-finding problem. The most powerful complete algorithms are b ased
on the Davis-Putnam-Loveland procedure (Davis et al., 1962). They differ essentially
by the underlying h euristics used for the b ranching rule (Dubois et al., 1996; Li and
Anbulagan, 1997; Zhang, 1997). Specific techniques such as symmetry-breaking, b ack-
bone detecting or equivalence elimination are also used to reinforce these algorithms
(Benhamou and Sais, 1992; Dubois and Dequen, 2001; Li, 2 000). As of today, com-
plete algorithms h ave an exponential complexity and the solution time may b ecome
prohibitive for large and h ard instances.

An incomplete algorithm does not carry out a systematic examination of the w hole
search space. Instead, it explores, often in a guided way and w ith a limited time, some
parts of the search space. Such an algorithm is appropriate for tackling the model-
finding and MAX-SAT problems. Most incomplete algorithms are based on local search
(Hansen and Jaumard, 1990; Selman et al., 1994; Jaumard et al., 1996; Spears, 1996)
and evolutionary algorithms (EA) (De J ong and Spears, 1989; Hao and Dorne, 1994;
Fleurent and Ferland, 1996; Gottlieb et al., 2002). The v ery simple h ill-climber GSAT
(Selman et al., 1992) and its powerful variant Walksat (Selman et al., 1994) are famous
examples of incomplete algorithms b ased on local search while FlipGA (Marchiori and
Rossi, 1999; Rossi et al., 2000) is a representative example of genetic algorithms for
SAT. Though incomplete algorithms are of little h elp for proving the unsatisfiability of
instances, they represent an indispensable complementary approach and a very inter-

esting alternative w ith respect to the complete algorithms.
In this paper, we are interested in the development of incomplete algorithms b ased

on the hybrid approach w hich combines local search and genetic search. Indeed, this
general Genetic Local Search approach, also called the memetic approach (Corne et al.,
1999; Hart et al., 2004), has p roven to b e quite successful in recent years in solving
a n umber of w ell-known difficult problems such as the traveling salesman problem
(Merz and Freisleben, 1997) and the graph coloring problem (Galinier and Hao, 1999).
The main m otivation b ehind this approach is to use recombination (crossover) as a
guided diversification (exploration) mechanism and local search as a powerful inten-
sification (exploitation) m echanism. A first genetic local search algorithm for SAT was
reported in (Fleurent and Ferland, 1996) leading to remarkable results.

Until n ow, specific crossover operators h ave not b een studied in depth for the SAT
problem (Fleurent and Ferland, 1996; Marchiori and Rossi, 1999). In this work, w e
follow the genetic local search schema and focus on the design and study of a hybrid
algorithm b ased on SAT specific crossover operators combined with Tabu Search (TS).
The resulting algorithm is called GASAT (Genetic Algorithm for SAT). Within GASAT,
specific crossover operators are used to identify particularly promising search areas
while T S performs an intensified search of solutions around these areas. In such a
way, w e h ope to b e able to achieve a good compromise between intensification and
diversification in the search procedure. One key point for such a h ybrid algorithm
is obviously the definition of the specific crossover operator w hich should take into
account the semantic aspects of the SAT problem.

A first version of GASAT has b een p resented in (Hao et al., 2003). It uses a simple
TS and the Corrective Clause crossover. This paper proposes a reinforced TS which
uses new mechanisms, a study of four crossovers and a large p anel of experimental

224 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

and comparative results.
The remainder of the p aper is organised as follows. Section 2 presents our general

framework and the main lines of GASAT. Section 3 provides a study of the population
management. Sections 4 , 5 and 6 describe our analysis of the recombination opera-
tor and of the TS. In section 7, GASAT is compared with other algorithms in order to
evaluate its p erformance. The paper closes with our conclusions in section 8.

2 A Genetic Local Search Algorithm for SAT: GASAT

As mentioned in the introduction, G ASAT is b ased on a genetic local search approach.

It relies on the management of a p opulation of individuals which are submitted to
recombination and local search operators. The earlier version of GASAT m entioned
above (Hao et al., 2003) was developed with a simple local search process. In this
section, the general scheme and the main components of the improved algorithm are
defined.

2.1 Representation and Search Space

The most obvious way to represent an individual for a SAT instance (as defined in the
introduction) is a b inary string of nb its w here each bit is associated w ith one v ariable.
In this representation, an individual X obviously corresponds to a truth assignment.
Therefore, for a given SAT instance involving n v ariables, the search space is the set
S = {0, 1}n (i.e. all the possible strings of nb its).

2.2 Fitness Evaluation and Associated Functions

Let Fb e a given SAT instance and X an i ndividual, the fitness of X with respect to F
is defined as the n umber of clauses of Fw hich are not satisfied b y X:

eval: S → IN
X → card({c|¬sat(X, c) ∧ c ∈ F})

where card(A) denotes, as usual, the cardinality of the set A and the Boolean function
sat(X, c) indicates whether the clause c is true or false for X (i.e satisfied or not b y the
assignment corresponding to X). This fitness function induces an order >eval on the
individuals of the p opulation. The smallest value of this function is 0 and an individual
having this fitness v alue corresponds to a satisfying assignment. This order will b e used
in the selection process.

Let flip b e the following function allowing us to change the v alue of a v ariable:

flip: {0, 1} → {0, 1}
α → 1−α

Let X[i ← α] b e an individual X w hose ith position (variable) is set to the v alue α.

Now, the improvement function is defined as follows.

improvement: S ×IN → IN
(X, i) → eval(X[i ← flip(X|i)]) − eval(X)

Thisf unction computest hei mprovementobtainedb yt heflip ofthei th variableofX
and was previously introduced in GSAT and Walksat (Selman et al., 1994; Selman et al.,
1992). It corresponds to the gain of a flip according to the function eval and is equal
to the n umber of false clauses which b ecome true b y flipping the ith variable minus

Evolutionary Computation Volume 14, Number 2 225

F. Lardeux, F. Saubion and J .-K. Hao

the n umber of satisfied clauses which b ecome false. Therefore a positive n umber indi-
cates an increase of the n umber of satisfied clauses while a negative one corresponds
to an increase of the n umber of false clauses. This function is used in GASAT specific
crossover operators and in the TS procedure.

2.3 The GASAT Algorithm

GASAT is a h ybrid algorithm that combines a specific crossover operator and a TS
procedure. Given a randomly generated initial population where each individual rep-
resents a truth assignment, the first step consists in selecting its b est individuals ac-
cording to the order <eval. Then, two individuals (parents) are randomly selected and
recombined to obtain a new individual (child). This resulting child is improved us-
ing the T S procedure and then added to the current population under certain insertion
conditions. This w hole process is repeated until a solution is found or until a fixed
maximum number of crossovers is reached. The p seudo-code of the GASAT algorithm
is described in Algorithm 1and w ill b e detailed in the next sections.

Data: a set of CNF clauses φ, Maxflip, MaxNbCrossovers
Result: the b est truth assignment
begin

Algorithm 1: GASAT Algorithm

3 Population Management

GASAT i ntroduces two mechanisms to manage its p opulation of individuals. First, a
specific selection of the parents h elps the crossover to produce a good child and en-
sures the diversity of the selected parents. Second, the children are only introduced in
the population under certain insertion conditions. This mechanism acts as an inten-
sification process b y drawing aside bad individuals. Since the size of the population
appears as a determinant factor for evolutionary algorithms performances, a study of
this parameter has b een carried out to determine an optimal size for GASAT.

226 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

3.1 Selection Operator and Insertion Condition

GASAT is a steady-state algorithm. The whole population is kept for the next genera-
tion except the oldest individual w hich is replaced b y a child obtained b y the crossover
(if this one can b e accepted in the population). Contrary to the well-known tournament
selection which chooses the b est individual in a subset of randomly selected individu-
als, the GASAT selection operator randomly chooses two individuals in a subset of the
best individuals of the population.

The GASAT selection operator is a function select: S ×IN → S that takes as input
a given p opulation P and extracts a sub-population P′ of size NbInd, which w ill serve
as parents for the recombination stage. Two parents are randomly selected in this sub-
population to b e crossed. To insure an efficient search, it is n ecessary to keep some
diversity in the p opulation. Indeed, if the selected parents are too similar, some regions
of the search space S may not b e explored.

Data: a p opulation P, NbInd
Result: a sub-population P′
begin

Algorithm 2: Selection process

A child can b e inserted according to whether its fitness v alue is b etter than the
fitness v alue of the w orst individual i n the current sub-population P′. T his condition
accepts the insertion of an individual already in the sub-population. The diversity is
insured b y the suppression of the older individual. Algorithm 2 describes the selec-

Evolutionary Computation Volume 14, Number 2 227

F. Lardeux, F. Saubion and J .-K. Hao

tion process. Note that a particular set noP′ is introduced to record individuals which
are deleted from P′ according to the insertion condition but which can b e used later
to complete P′ when needed. A n example of the selection and insertion processes is
proposed Figure 3.1.

Figure 1: Selection and insertion p rocesses. A child i s obtained b y a c rossover between
two randomly selected parents in a sub-population of the b est individuals. If its fitness
value is b etter than the v alue of the worst individual of the sub-population then it
replaces the oldest individual of the p opulation; otherwise the p opulation is kept and
a new selection process is executed.

3.2 Population Size

Thepopulations izeis generally animportantp arameterforevolutionarya lgorithms. If
the p opulation is too small, the ability to explore the entire search space w ill b e w eak.
However, if the size is too large, a lot of time w ill b e n eeded to m anage the popula-
tion. Figure 2 shows the behavior of GASAT without TS w ith different population and
sub-population sizes on the random 3-SAT instance f10 0 0 (Mitchell et al., 1992). The
sub-population size is presenteda s ap ercentageo ft hep opulation size. Becausew e are
interested in b oth model-finding and MAX-SAT problems, the configuration quality is
given b y the n umber of false clauses in the b est configuration found during an execu-
tion instead of the success rate. Each combination p opulation size/sub-population s ize is
tested 20 times. A p ool of 20 p opulations is randomly generated and used for each run
to ensuret hat the algorithmb ehaviori sn ot duet o thei nitialp opulation1. Thes topping
criteria is the n umber of crossovers which is limited to 103.

As can b e seen in Figure 2 , when the population size increases, the configuration
quality is improved and the execution time rises. The same effects are observed w hen
the sub-population size is increased. If the purpose is to obtain very good results w ith-
out taking into account the execution time, a solution consists in taking a large popu-
lation and a large sub-population. On the other hand, if execution time must b e very
short and the configuration i s not n ecessarily v ery good, it may b e i nteresting to set a
smaller population size. For GASAT, a trade-off between configuration quality and ex-

ecution time has b een chosen. Figure 2 suggests that a p opulation w ith 100 individuals

1All the experiments presented in this p aper which require an initial population use a pool of similar
initial p opulations.

228 Evolutionary Computation Volume 14, N umber 2

A Genetic Local Search Algorithm for SAT

size of the sub−population (percent of the population size)

Figure 2 : Influence of the population and sub-population sizes on the configuration
quality (top) and the execution time (bottom).

and a sub-population composed of 15 individuals correspond to this trade-off. Similar
tests h ave b een realized on other instances and leading to similar conclusions.

4 Crossover Operators

The main goal of the crossover operator in GASAT is to create diversified and poten-
tially p romising new individuals. For this purpose, the crossover should take into ac-
count as much as possible the semantics of the individuals. In the SAT problem, the
clauses of a given instance induce a constraint structure among the v ariables. One way
to define SAT specific crossover operators is then to use this constraint structure. More
specifically, b ased on the satisfiability of each clause with respect to the two parent in-

Evolutionary Computation Volume 14, N umber 2 229

F. Lardeux, F. Saubion and J .-K. Hao

dividuals, one may try to create a child w hich benefits from b oth parents and satisfies
a maximum n umber of clauses. This can b e achieved b y correcting false clauses and
maintaining true ones. Three cases are then p ossible: 1) the clause is false for the two

parents; 2) the clause is true for the two parents; and 3) the clause is true for one p arent
and false for the other.

In this section these different cases are studied and three structured crossover op-
erators are devised. The classical uniform crossover is also p resented i n order to com-
pare it w ith the structured ones and to assess their b enefits. All these crossovers p ro-
duce one child (Z) from two parents (X and Y) , therefore each operator is a function
cross: S ×S → S. At the b eginning of all the crossovers, each variable of Z is undefined
and is assigned av alue along the crossoverp rocess.

4.1 Corrective Clause Crossover (CC)

When a clause c is false for b oth parents, a possible solution for turning c into true i s to
flip one of its variables2. However, this action mayp roduce otherf alsec lauses. To l imit
the n umber of new false clauses, the choice of the flipping variable should b e guided
by the improvement evaluation function. This leads t o the following Corrective Clause
Crossover (CC).

Data: two parents X and Y
Result: one child Z
begin

endAiAfotyllrllt eftSahhoecereth aZ Cv v claalo|lk rrmapiiu=oaa pssbbeiul tlfi ectelosesi snpoo u σs(fcfXih = Z Z s|t uik hwa mc)arhti eptwh¬ t a rhhsosn aevastroietet (gvm hnXk eaee,lv niudsca)etrt (t h∧ oiXt aeabu ,¬ klp niees)doax t+ stehi(ifeati Yiimnpv, opecnap)dealrus ∧ oruesvc¬ eo i hnmsfat Xc hetn(d aZoo tt(r,σ YcY),i sid w)m oitahxe imquuamlp robabil-
Algorithm 3: Corrective Clause Crossover (CC)

4.2 Corrective Clause and T ruth Maintenance Crossover (CCTM)

When a clause c is true for b oth parents, all the values of the v ariables appearing in c
maybe copied from one of the parent to the child. Unfortunately, this action would only
take into account the structure of the chosen parent. To b e fair, v alues of variables com-
ing from b oth parents should b e copied, but these v alues can b e different. A solution is
to select the variable whose flip has the smallest impact and to set its v alue such that the
corresponding literal is true in c. Since only one variable is necessary to maintain this
clause as true, this operation may b e again guided b y the improvement function. This
leads to the following Corrective Clause and Truth Maintenance crossover (CCTM).

4.3 Fleurent and Ferland’s Crossover (F&F)

Fleurent and Ferland (1996) developed a solution for cases when a clause c is true for
one p arent and false for the other. Their solution is: “The corresponding v ariables [to

sar2ilNy othtee sthamat,e if v aal ucleaui nse bio sthf alp saeref notrsb .othp arents,t hena llt hev ariablesa ppearingi nt hisc lauseh aven eces-

230 Evolutionary Computation Volume 14, N umber 2

A Genetic Local Search Algorithm for SAT

Data: two parents X and Y
Result: one child Z
begin

Algorithm 4 : Corrective Clause and Truth Maintenance crossover (CCTM)

this clause] are assigned values according to the p arent satisfying the identified clause”.
This principle l eads to the following definition:

Data: two parents X and Y
Result: one child Z
begin

endAfitoylrl etfaohcerhZ va cl |allira p u=iaossbeX ilte icos|i snu os(crfihe Zss tpuhw .cahiZ tt t hs|haian = tt(oX tYhv ,ae| c liv))ua∧ reiat ¬ abskleaetx t (iYhae,pcv)pae(lraueresspo i .nf¬ X c sd ao ot(rX Y,w c)it∧ hs e aqtu(Yal,cp)r)od boabil-
Algorithm 5: Fleurent and Ferland’s crossover (F&F)

It is clear that for all these crossover operators, the order in which the clauses are
traversed is relevant. In our algorithm, they are traversed in the same order that they
are p resented in the studied instance b ut, of course, a specific ordering could improved
the performances. Note also that CC, CCTM and F&F crossovers differ in the use of the
truth values of the clauses induced b y the parents. As mentioned above, the key ideas
are to correct false clauses, to preserve true clauses and to maintain the structure of the
parent assignments.

4.4 Uniform Crossover

In this section, the definition of the uniform crossover operator (Syswerda, 1989) is
recalled. Each variable of the child is assigned b y randomly taking the v alue of the
variable of one the parents.

Evolutionary Computation Volume 14, Number 2 231

F. Lardeux, F. Saubion and J .-K. Hao

Data: two parents X and Y
Result: one child Z
begin

for each variable x do
Z|x takest he value of X|x or Y |xw ithe qualp robability

end

Algorithm 6: Uniform Crossover

4.5 Comparison among the Crossover Operators

In order to study the characteristics of the above defined crossover operators, each of
them is inserted into a simplified genetic algorithm that carries out a sequence of recom-

bination stages on a population with or without using the selection and the insertion
processes. The four crossovers presented in the previous section are u sed.

The experiments are p resented on a random 3-SAT instance: f5 0 0 (Mitchell et al.,
1992) w ith 500 variables and a ratio of clauses-to-variables of 4 .25 (which corresponds
to h ard instances (Monasson et al., 1999)) but other instances, structured (real combi-
natorial problems translated in SAT format) or n ot, h ave also b een tested and provide
similar results.

The size of the p opulation P is 100 and the sub-population P′ of possible parents
has a size of 15 (according to section 3.2). A set of 2 0 p opulations has b een generated
and each crossover has b een tested over each element of t his set. The stopping criteria
is the n umber of crossovers w hich is limited to 10 ×3. W hen there is n o selection and
insertion p rocesses, two parents are randomly chosen in the population and all the
children are inserted in the new population. Several p arameters are studied: thef itness
(i.e., the average n umber of false clauses) vs. number of crossovers and the p opulation
diversity (i.e. the entropy) vs. number of crossovers. The first comparison h ighlights the
search power of the crossovers and the second comparison indicates the ability to keep
a diversified p opulation. The entropy, taking into account the value of each variable in
each individual, allows us to measure the population diversity. It corresponds to the
following function (Fleurent and Ferland, 1996) :

entropy(P) =−iP=n1jP=10canrnldio(jgP2)logcarndi(jP)
where n is the n umber of v ariables and nij is the number of times the variable iis set
to j in the p opulation P. In this definition, entropy(P) ∈ [0, 1]. 0 indicates a popula-
tion of identical individuals whereas 1means that all possible assignments are almost
uniformly distributed in the p opulation.

The results are shown in Figure 3. Without the selection process, F&F and CCTM
crossovers obtain the b est improvement of the average number of false clauses but
they also obtain the worst behavior w .r.t. the entropy. The uniform crossover does not
improve the average number of false clauses and its entropy decreases whereas the CC
crossover improves the average number of false clauses and maintains a h igh entropy.

With the selection process, CC and CCTM crossovers improve the average number
of false clauses. For all the crossovers, the selection process drops the entropy r ates but
CC and CCTM stop these decreases sooner whereas the F&F behavior is damaged.
Concerning the uniform crossover, no significant improvement of the average n umber

232 Evolutionary Computation Volume 14, N umber 2

A Genetic Local Search Algorithm for SAT

crossovers (1→Uniform crossover, 2→CCTM crossover, 3→CC crossover and 4 →F&F
crossover).

of f alse clauses can b e observed even with this selection mechanism. We may remark
that CC and CCTM crossovers have a b etter behavior than the F&F crossover.

Therefore, an efficient crossover is not n ecessarily a crossover w hich quickly im-
proves the w hole population but rather w hich ensures a good trade-off between the
quality and the diversity of the p opulation. The diversification process allows the al-
gorithm to benefit from a b etter exploration of the search space and prevents the pop-
ulation from stagnating in poor local optima.

5 Tabu Search (TS)

Each new individual created b y the recombination stage of GASAT is improved b y the
TS procedure. This can b e considered as an intensification stage b y searching around
the given individual according to a neighborhood relation.

5.1 Standard TS

TS is a local search method using a memory to avoid local optima (Glover and Laguna,

1997). TS has already b een experimented for the SAT problem (Mazure et al., 1997).
The principle is quite simple: it acts somewhat as a descent algorithm (at each itera-
tion, it makes the b est move), but once visited, a configuration is made tabu, that is, the
algorithm is not allowed to revisit this configuration for a given number of iterations.
Since the memorization of the last configuration could b e costly, a common v ariation
consists in making only the moves tabu. A m ove is performed if it is the b est one and if
it is not tabu. Once executed, the m ove is included in the tabu list, which acts as a fixed
size FIFO queue, and is removed from this list after λ iterations. The memorization of
moves instead of configurations may l ead to an “over-constraint” on forbidden config-

Evolutionary Computation Volume 14, Number 2 233

F. Lardeux, F. Saubion and J .-K. Hao

urations. For this reason, the tabu status of a move may b e disabled if the m ove leads
to a b etter configuration than the b est one ever found (aspiration).

TS uses an aggressive search strategy to exploit its n eighborhood. Therefore, i t is
crucial to have special data structures and techniques which allow a fast updating of
move evaluations, and reduce the effort of finding b est moves.

In the SAT context, it is clear that the moves are possible flips of the values of a
given assignment. The b est one is selected thanks to the choose function (Algorithm
7) w hich compares the gain provided to the current assignment b y each variable flip
thanks to the improvement function. In order to increase efficiency, the special data
structure for SAT is a matrix which provides for each v ariables the number of clauses
becoming true and the n umber of clauses becoming false b y its flip. It then becomes
very easy to estimate the improvement due to a flip. This matrix is updated after each
flip changing only the v alues for the v ariables b eing in the clauses of the flipped v ari-
able.

Here the T S corresponds to the TS of M azure & al. (Mazure et al., 1997). The
tabu list is a list of indexes of already p erformed flips. The tabu list (λ) length and the
maximum number of flips are provided by an empirical study. The initial configuration
given as entry to the TS is a selected child generated b y crossover and TS is used to
improve this child. The whole p rocedure is summarized in Algorithm 8.

Data: an assignment Z, the tabu list tabu, the b est assignment found Best
Result: a position
begin

endfRoerteiua flrlsl(n Zpe Cσo a[ios=p im← toio− psniu∞f tsitloei ipnd σ(ot Zh= |aii)tm]i ∈ s6pr rta oanvbdueom)m∨ enl(yte(vs Zael,le(i)Zct[eid← i nf t hliops(eZw |i)h]i)c< hh e avvael(t Bheesm t)a)xt himenumσ
Algorithm 7: Choose function for the tabu search

5.2 Reinforcing T S with Refinement of the Variable Choice to Flip (RVCF)

When TS selects a variable to flip, several v ariables may b e candidates. In order to
reduce the n umber of possible candidate v ariables, a new criterion is added to this
selection.

The more a clause has a significant number of true literals, the easier it is to flip
one of its v ariables without turning this clause into false. Therefore, the n otion of truth
degree for a clause is introduced:

degree(X, c) = card({l |val(X, l) = 1, l ∈ c ∈ F})

where F is the set of clauses of the formula and val (X, a) is the truth v alue of the literal
a for the assignment X.

234 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

Data: an assignment Z,λ,Maxflip
Result: the b est assignment found
begin

Algorithm 8: Tabu Search (TS)

For each selected v ariable, its w eight may b e computed with the following w eight
function:

P degree(X,c)

weight(X,i) =cacr∈{d(y{|yy∈|Fy,l ∈it(Fi),∈lyi,tva(il()X∈ ,liy t(,iv))a=l1(}X,lit(i))= 1 })
+

P degree(X,c)
c∈{y|y∈F,lit(i)∈y,val(X,lit(i))=0}

card({y|y∈ F ,lit(i)∈ y ,val(X,lit(i))= 0 })

where lit(i) represents the literal associated to the variable i. Now, the new choose
function (Algorithm 9) always takes as input an assignment and returns the position
with the b est improvement and the b est weight.

Data: an assignment X
Result: a position
begin

endRffooerrtCua aCrlloollnpm pm oo appss piiuuttoittiooeesnniσ tαssio ij= = nd s o uw ti mhcehaiptgrt hhi osatvrt(eXaσ mn,i edsjno)m tm(aXxlyi,mis)uelmecd teodi nt hosew hichh avet heα m aximum

Algorithm 9: Choose function for the tabu search with the RVCF

Table 1shows the power of the RVCF mechanism when it is added to the standard
tabu search. Tests are realized on instances detailed in section 7.1.2. The n umber

Evolutionary Computation Volume 14, Number 2 235

F. Lardeux, F. Saubion and J .-K. Hao

of p erformed flips (number of single bit flips n eeded to find the b est configuration)
is limited to 101 ×105 (the same number is used for the experiments performed in
section 7) and the tabu list length is set to 10% of the number of v ariables (empir-
ical result b ased on (Mazure et al., 1997)). The algorithm runs 20 times on each instance.

Comparison criteria A s mentioned above, since w e are interested in b oth model-
finding and MAX-SAT problems (due to the intrinsic nature of incomplete algorithms),
the configuration quality is most likely related to the number of false clauses (f.c.) in
the b est configuration found during an execution than to the success rate. The average
number of performed flips for finding the b est configuration (fl.) and the average
time of execution (sec.) are also used to characterize the power of the algorithms.
To compare the efficiency of the algorithms, a 95% confidence Student t-test3 has
been performed in order to assess if the difference in the number of false clauses
left b y the two algorithms was statistically significant (Stat.). Finally, the percentage
of improvement (%) in the n umber of false clauses due to the new mechanism is
computed.

BenchmarksTSTS+RCVFStat.Imp.

ghghlggaleasensnss2y2y--f-sf-sss11215300022160002559007115901209561141T043878a40b21l45530e059000009000 01:I41 2118278n517505056f020l000uenNNNNNNceo f151850t05h00790000e00R 1 0 1 0 0 0..V....400820C300908F2 23 1841m 3866465e251270ch2 1 a466560n979328ism180551.. ...o.050950n000050t 0 0 0 0 2 h.....1050e24.000947T a2 3 4 b70941u026369877747 Sea221283r028180c725h570YNNNNN+−−4600011
The results p resented in Table 1show the influence of the RVCF mechanism. On

structured instances, good results are observed for the RVCF mechanism but on ran-
dom instances, n o clear dominance appears. Random instances are more homogeneous
in their constraint structures and the improvement due to the RVCF mechanism is too
poor to compensate its cost: even if the RVCF improves the TS, it dramatically increases
the execution time. This weakness is compensated b y the good results for structured
instances but this is not the case for random instances. The RVCF mechanism improves

3The9 5%S tudent’st -testi s b ased on the average, thes tandard deviation and thec ardinality of a seto f
runs and used a p-value equal to 1.96. It i s computed to i nsure that the difference of two sets is significant.

236 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

the number of false clauses but it has n o impact on the standard deviation. Finally, the
number of performed flips has the same order of magnitude for the two algorithms.

5.3 Reinforcing T S with Diversification

During the TS, it is not unusual to observe the number of false clauses decreasing dra-
matically to reach a small value w hich never drops to 0. The last false clauses are often
the same and they b lock the TS which stumbles over them. These clauses are called
stumble clauses.

To avoid this problem, a new diversification mechanism has b een developed
(Algorithm 10). When a stumble clause appears MaxFalse times (whose typical value
is 5), it is forced to b ecome true b y flipping one of its variables. This flip induces new
false clauses which are forced to b ecome true too and so on, recursively Rec times. The
flipped variables cannot b e flipped again b efore k flips which maintains these clauses
true.

Data: an assignment Z, MaxFalse, k, Rec

Result: an assignment
begin

Algorithm 10: Diversification

This mechanism allows the search to escape from the local optima more easily than
with a standard TS as highlighted b y the p eaks in Figure 4 . Tests have b een p erformed
on several instances and the same effect has b een observed. Figure 4 w hich is repre-
sentative of the diversification mechanism effect presents the evolution of one run on a
random instance (f10 00).

This mechanism is introduced in the TS algorithm at the end of the While loop,
just after the introduction of the flipped variable in the tabu list.

5.4 Combination of the Previous Mechanisms

The two specific mechanisms slow down the algorithm but allow us to improve the
results in terms of quality. The tests are p resented on two instances using all possible
combinations of the p reviously described mechanisms. Each instance is a represen-
tative of one family of problems (f 10 0 0 for random instances and color10-3 for

Evolutionary Computation Volume 14, Number 2 237

F. Lardeux, F . Saubion and J .-K. Hao

Figure 4 : TS without diversity (left) and TS w ith diversity (right)

structured instances (see section 7.1.2)).
The parameters are a TS of 101 ×105 performed flips and a tabu list length of 10%

of the n umber of variables. Each instance is run 20 times. A new criteria of comparison
is added to characterize m ost precisely the power of the mechanisms. Four values are
given: the success r ate (%) which is the n umber of successful runs divided b y the total
number of runs, the average n umber of false clauses (f.c.), the number of p erformed
flips (fl.) and the average time in second (sec.) for finding the b est configuration.

STTTSStSa+nT ++ da RD RbaVVilrvedCCe 2FTFr :sS+ Ci fioD cmaivtpioearnrsiisfiocnastio ofnR V46%42 50C55F 10 01fa c7608n019.0dff d1 l.40223×i0119v0108892e019r317si3 3f049is9c0244eaI....cn8877ti.5s55o2tan1 n% f011o9c0055rest 0 1 1 0 fh.....003ce0c09.65T oaf lolb.r3×42u31628210 S30842-e131643ar1 cs5591he6349c....9155.3248
Table 2 shows the i nteraction between the two m echanisms for random and struc-

tured instances. Only two instances are presented but others w ere tested and similar
results were obtained.

For random instances, the diversification m echanism and the RVCF mechanism
improve the results but the combination of both deteriorates them (see Table 1). T S w ith
the diversification mechanism seems to provide the b est results for random instances.

For structured instances, the combination of the RVCF mechanism and the diver-
sification mechanism improves the results. The RVCF mechanism intensifies the search
whereas the diversification mechanism allows the search to escape from local optima.

6 Combining Crossover and Tabu Search

The previous section p resented four crossovers and a reinforced TS. Even if crossovers
provide us w ith good results individually, it is not clear if they would b e efficient w hen
combined with the reinforced TS (RTS). In this section, the good results of the CC
crossover combined w ith RTS are shown. Then, results will b e presented in order to
show that the RTS benefits from the evolutionary algorithm.

238 Evolutionary Computation Volume 14, N umber 2

A Genetic Local Search Algorithm for SAT

6.1 Influence of the Crossover

To further assess the interaction between RTS and each crossover operator, each of the
four operators are inserted in G ASAT w ith the reinforced tabu search combining RVCF
and diversification mechanisms. Each of the four h ybrid algorithms is run 2 0 times on
some selected representative instances, namely, a b locks world instance (3blocks), a
parity function instance (par1 6-4 -c), a random instance (f10 0 0) and a chess-board
coloring instance (color 10-3). These instances are presented in detail in section 7.1.2.
They come from four different representative families of b enchmarks. The experimen-

tal conditions are the same for the four algorithms. The F&F crossover is used without
the selection process since it gives b etter results (Figure 3). A RTS of at most 104 per-
formed flips is applied to each child and the number of crossovers is limited to 103.
The flips w hich have b een done during the crossovers are taken into account in the to-
tal number of flips. A set of 20 populations has b een generated and each combination
has b een tested over each element of this set.

Four comparison criteria are used in order to evaluate the different crossovers im-
proved b y RTS. The success rate (%), which is the n umber of successful runs divided b y
the total n umber of runs, and the average number of false clauses highlight the search
power of the algorithm. The speed is evaluated using average n umber of crossovers
(cr.) in the successful runs and the average number of p erformed flips for finding the
best configuration.

Table 3:C omparisonpi3cf1noabb s0llraoto01as0cr6ne-k1-cds4e0-os -c3n1t %h810e0C505 sC u242 7 c3883cr.9578cesC%79 1 s0050Cr 1 a2 T2 c7Mt20re746.-o 6 f9 %0F0d 50i&f1 2 c f85Fer95.-r-en7 9 U%0t500nc irfoocs21rrs1.4mo86--versi ncludedi nt he
GASAT algorithm

Table4 :Cp3icf1noboam0slrltoo01apr0c6-nka-1c4rs0ie--scs3on 2000f.b... .c9160a.0060sCe fdlC.×6 o514n4390118703 th3 1 0 0 fe.....503c0C02.35a vCf elT.r×Ma116g90202e3.93224n u 2 1 0 0f.....m9c0100.073bFef &rl.×Fo 1277f00178.352f58 al2 1 0 0sfe.....702U0c5033c .nlaif fulo.×r1sem37010s6100.88513o fd ifferent
crossovers included in the GASAT algorithm

Table 3 and T able 4 give the same conclusion: the combination between CC and
RTS is more powerful than the others.

6.2 Improvement due to Each Process

To assess the benefit of the evolutionary process for the combination of T S and a
crossover operator, Table 5 presents a comparison between the RTS and the combi-
nation of this RTS and the CC crossover (RTS+CC). In the same way, Table 6 presents

Evolutionary Computation Volume 14, Number 2 239

F. Lardeux, F. Saubion and J .-K. Hao

a comparison between the evolution process only w ith the CC crossover and the hy-
bridization RTS+CC. Most of the results are improved i n the presence of the evolution-
ary process.

For this combination, our RTS using the RVCF (section 5.2) and the diversification
mechanism (section 5.3) is applied to each child. The number of crossovers is limited
to 103 and the n umber of p erformed flips per child is limited to 104. The flips w hich
are done during the crossovers are taken into account in the total flips number. A set of
20 populations is generated and each combination is tested over each element of this
set. Concerning the reinforced RTS without evolutionary process, the n umber of flips
is limited to 101 ×105 performed flips. The tabu list length is set to 10% of the number
of v ariables inall the TS.
For the evolutionary process alone, the n umber of crossovers is limited to 103 and the
crossover is the CC crossover.

Comparison criteria The configuration quality is given b y the number of false clauses
in the b est configuration found during an execution. The average of this number (avg.)
and its standard deviation (s.d.) are p resented for 20 executions. The average number
of p erformed flips for finding the b est configuration (fl.) is also used to characterize
the p ower of the algorithms. Again, to compare the efficiency of the algorithms, a 95%
confidence Student t-test allows us to check that the number of false clauses of the two
algorithms is significantly different. Finally, the p ercentage of i mprovement (%) in the
average number of false clauses due to the evolutionary process (Table 5) or to the RTS
(Table 6) is computed.

BenchmarksRTSRTS+CCStat.Imp.

ghhgglaglaeessnsnsy2y2--s--ffsss1121532000120060255900171509210965T11a041483b4780le1 52 55 4300:050900I 00090n0fl184 u 121281e577655n005020000ceo YYfYYYY thee 501830v......016009o090400lu 00 20 0 0 t.i.....0700o037080n00a2 2 r2 y95763216470p 967816roc0118e51...s...120009s600003 in0 0 0 0 0 0G ..8400099000A06S6 1 A436139T100501741742YNYNNY−−++2137000197
From T ables 5 and 6, it appears that the combination of the evolutionary process

and the RTS improves m ost of the time the results of RTS alone or of the evolutionary

240 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

BenchmarksCCRTS+CCStat.Imp.

hgghgllgaeaesnssns2y2y--s-s-ffss1121352000210060250905175109210965114014384708Ta12 435 b5000059l0e0900000 6: 128114I 57287n10056f55l020000uenYYYYYcYe of3722t23 h525740e......749117R 005050TS653433i8445n43293398G A101851S......A1200096000T030 0 0 0 0 0840009900006YYYYYY++++++11900999900567
instaBnecnechv mara.rkscls.PeCrCfor /m GeAdSF AliTpsCPCerTfMorm/ eG dAF SliApsT
3pfab1lr0o30c20k-s513 2018703601 49 0263592005000...000000000010832456000...000000000102071255

Table 7: Cost of crossovers w .r.t. RTS

process alone.
Finally, the cost of the crossovers has b een evaluated with respect to the RTS in

term of flips. Table 7 shows that the CC and the CCTM crossovers do not perform a
signifiant number of flips w .r.t. the number of flips p erformed b y RTS. Note that CC
and CCTM execute approximatly the same n umber of p erformed flips.

From now on, GASAT is used to denote the hybridization between RTS and CC
crossover which obtains the b est results.

7 Experimental Results

In this section, the GASAT algorithm is evaluated. First, GASAT is compared with five
well-known evolutionary algorithms and then w ith two state-of-the-art SAT solvers:
Walksat (Selman et al., 1994) and UnitWalk (Hirsch and Kojevnikov, 2001). Walksat
is h istorically one of the b est incomplete solvers while UnitWalk is a winner of the
SAT2003 competition. Tests are realized on a cluster w ith L inux and A linka (5 n odes
each of them w ith 2 CPU Pentium IV 2.2 Ghz and 1GB of RAM) used sequentially.

Evolutionary Computation Volume 14, N umber 2 241

F. Lardeux, F. Saubion and J .-K. Hao

7.1 Comparisons w ith Evolutionary Algorithms

Results presented in (Gottlieb et al., 2 002) are used to compare GASAT w ith some
evolutionary algorithms and test FlipGA (Marchiori and Rossi, 1999) and GASAT on
different b enchmarks.

7.1.1 Comparisons with Results Presented in Gottlieb et al.

Gottlieb et al. proposed several evolutionary algorithms for SAT (Gottlieb et al., 2002).
Results p resented in that paper (Gottlieb et al., 2002) are considered and GASAT results
are added w .r.t. the same comparisons criteria. To get the same search power for all
the algorithms the p arameters of (Gottlieb et al., 2002) are used: each instance is tested
between 5 to 50 times and the number of performed flips is limited t o 3 ×105. The data
provided in Table 8 are: the success rate (%) w hich is the number of successful runs
divided b y the total number of runs and the average n umber of p erformed flips for
successful runs.

The solvers tested in (Gottlieb et al., 2002) are:

• SAWEA (Eiben and van der Hauw, 1997): using the Stepwise A daptation of Weights,
it increases only weights that correspond to unsatisfied clauses and implicitly forc-
ing the evolutionary search to focus on these difficult clauses.

• RFEA2 and RFEA2+ (Gottlieb and Voss, 2000): they use a refining function b ased
on associating weights w ith each v ariable, h igh positive weights indicate that cor-
responding v ariables are favored to b e true whereas negative weights express a
preference to false.

• FlipGA (Marchiori and Rossi, 1999): it is an evolutionary local search algorithm

which generates a child b y standard genetic operators and then improves it b y
means of local search (Flip H euristic). It shares some similarities w ith GASAT.

• ASAP (Rossi et al., 2000): it is obtained from FlipGA b y changing the Flip H euristic
in a tabu search process.

All the used instances are generated with the problem generator mkcnfw ritten b y Allen
van Gelder (Van Gelder, 1993). They are random 3 -SAT instances w ith a ratio clauses-
to-variables of 4 .3:

• suite A, 4 groups of 3 instances with 30, 40, 50 and 100 variables,

• suite B, 3 groups of 50 instances w ith 50, 75 and 100 v ariables,

• suite C, 5 groups of 100 instances w ith 20, 40, 60, 80 and 100 v ariables.

Table 8 shows that GASAT does not h ave the b est success rate for random
instances with few v ariables. But, in the next section, we will show that, for large
instances, GASAT is v ery competitive w.r.t. one of the b est evolutionary solver
(FlipGA).

242 Evolutionary Computation Volume 14, N umber 2

A Genetic Local Search Algorithm for SAT

InstancesGASATSAWEARFEA2RFEA2+FlipGAASAP
Suiten .b.v ar.%fl.%fl.%fl.%fl.%fl.%fl.

AAAA333314350000019909195071118511355203051 807952036 3 85 0643762043183591 1 1109000090 286335255303051161 1 1 090070003 43727048888201121 1 1 008070001 1 11226757664959903300 1 1 11 00000000562898275475686003
BBB5550001750050869963 2682477330323------1 790750 71 4 1210490573781 809016 1 83 0192338952601 8052071 2020938861078051 085079634193166850691

TableCC C8CC: C11111o00000m00000p 18264a000000ris1o17n690074600a m97119551o00935n39373g 1e 85705v31209o66 l14 3u2279568t619i35385o17948na1 1 r90709y92020 a6 5 1l3088g03108o5695139r557ith1 197m90090590s7 4 1 (4929n4399351.565b92157.i 1 s1 1 67000 t23000he1 2212n 09417u93053527m2170309b1 1 e1 700r0620001 of1 4183i 56n4496645s44414t248a98nces

and var. is the number of v ariables)

7.1.2 Comparison between GASAT and FlipGA

To compare GASAT w ith an existing evolutionary algorithm on large instances,
FlipGA, w hich is one of the ones most similar to GASAT, is used. Due to the spe-
cific local search (hill-climbing) of FlipGA, it is more convenient to limit the n umber
of crossovers instead of the n umber of flips. I n fact, since the n umber of crossovers is
not controlled in FlipGA, all the flips can b e done during the local search process. T hus
FlipGA and GASAT are limited to 102 crossovers. Each instance is tested 20 times.

Tests are performed on two classes of instances: structured instances and random
instances including satisfiable and u nsatisfiable p roblems. All these instances4 were
presented at the SAT2002 (Simon et al., 2002) or SAT2003 competitions.

• structured instances (real problems translated in SAT format):
· 3blocks (a b locks w orld p roblem),
· color-10-3, color- 18-4coloring problems (Beresin et al., 1989)),
· difp 19 0a rrr cr, difp 199 9 arrr cr (integer factorization p roblems),
· mat 2 5 .shuffled, mat 2 6 .shuffled (n ×nmatrix multiplication with m p rod-
ucts (Li et al., 2002)),
· par 16-4 -c, par32 -5, par32 -5-c (problems of learning the p arity function).

• random instances:
· f10 00, f2 0 0 0 (DIMACS instances(Mitchell et al., 1992)),
· 2 instances of 500 variables generated b y hgen2 with seeds 1205525430 (hgen2-a)
and 5 12100147 (hgen2-b),
· 2 instances generated b y glas sy one w ith 399 v ariables and seed 1069116088
(glassy-a) the other w ith 450 v ariables and seed 325799114 (glasst-b).

FlipGA specificity : FlipGA w orks only on exact-3-SAT instances. Therefore, all the
instances must b e transformed b y the following mechanism:

4Available at ht tp :/ / www .info .univ-ange rs .fr/pub / la rdeux/ SAT /benchma rks -EN .html

Evolutionary Computation Volume 14, Number 2 243

F. Lardeux, F. Saubion and J .-K. Hao

(x) → (x ∨ X1 ∨ X2) ∧ (x ∨ ¬X1 ∨ X2)
∧(x ∨ X1∨ ¬X2) ∧ (x ∨ ¬X1 ∨ ¬X2)

(x1 ∨ x2) → (x1 ∨ x2 ∨ X1) ∧ (x1∨ x2 ∨ ¬X1)
(x1 ∨ x2 ∨ x3) → (x1 ∨ x2 ∨ x3)
(x1 ∨ x2 ∨ x3 ∨ x4) → (x1 ∨ x2 ∨ X1) ∧ (¬X1 ∨ x3 ∨ x4)
(x1 ∨ x2 ∨ . . . ∨ xi ∨ . . .∨ xn− 1 ∨ xn) → (x1 ∨ x2 ∨ X1) ∧ . . .∧ (¬Xi−2 ∨ xi ∨ Xi− 1)

∧ . . .∧ (¬Xn−3 ∨ xn−1 ∨ xn)

This transformation increases the n umber of clauses and the n umber of variables
but preserves the minimal n umber of false clauses for unsatisfiable instances. Now the
precisep arameters arep rovided for each algorithm.

GASAT: GASAT uses the CC crossover w ith a p opulation of 102 individuals. During
the initialization of this p opulation, a RTS of 103 performed flips is applied to each
individual. The selection process for the parents and the insertion condition for the
children are activated. The number of possible parents for the crossover is limited
to 15 different individuals. The number of allowed crossovers is 102 and a RTS of at
most 104 performed flips is applied to each child. The size of the tabu list is set to 10%
of the n umber of variables in the problem. The RVCF mechanism is applied only on
structured instances. The diversification mechanism is activated when a unique false
clause remains unsatisfied during 5 p erformed flips. False clauses are recursively set
to true 10 times. The n umber of times that a flipped variable must w ait b efore it can b e
flipped again is set to 10% of the n umber of variables.

FlipGA: Here a version provided b y Claudio Rossi is used. The p ool size is equal to
10 because larger p opulations affect the efficiency of FlipGA as it was indicated in
(Marchiori and Rossi, 1999). The generation process stops after 102 generations and
uses the convergence mechanism. FlipGA uses a uniform crossover and the mutation
is disabled. The other p arameters are standard values stored in a configuration file
which is provided w ith the FlipGA algorithm.

Comparison criteria Four comparison criteria are used to evaluate GASAT versus
FlipGA. For each instance, the average n umber (avg.) of false clauses is indicated for
the b est configuration obtained after 20 runs, the standard deviation (s.d.) and the
average n umber of p erformed flips and the average running time for finding the b est
configuration. Success rate is not mentioned because for many instances, n o solution
is found. The statistical v alue (Stat.) of the Student t-test is also mentioned (see section
5.2). Finally, the percentage of improvement (%) in the n umber of false clauses due to
the use of GASAT is computed.

Table 9 shows a clear dominance in term of quality (i.e., f.c. and fl.) of GASAT on

structured instances and on random instances with more than 400 variables whereas
the execution time is larger. The h igh n umber of flips executed b y FlipGA confirm the
fact that few crossovers w ould b e applied if the number of flips was limited.

7.2 Comparison among GASAT, Walksat and UnitWalk

Due to the incomplete and non-deterministic character of GASAT, Walksat (Selman
et al., 1994) and UnitWalk (Hirsch and Kojevnikov, 2001), each algorithm has b een
run 20 times on each b enchmark. Tests are p erformed on a subset of the SAT2003

244 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

BenchmarksFlipGAGASATStat.Imp.

gghhff21glgla00aees0s0nns00s2y.2y.33----baSSba..A..A3333STSTSSAAAATTTT1205503405000990000014118272187555560000020011681677......294609400050111211......063201674879134454651778471105991421211781266218751......3308940050500 0 0 0 1 0962084008209421172060659886394428192526872YYYYYY++++++727375424487
Table 9: Comparison between F lipGA and GASAT

competition instances in which each family is represented b y at least one i nstance. The
search effort of Walksat and UnitWalk is essentially defined b y the n umber of allowed
flips. Therefore, when GASAT is compared w ith Walksat and UnitWalk, their n umber
of p erformed flips are limited to 101 ×105. A s in the SAT2003 competition, the running
time is limited to one h our for each run. W e w ill now provide the precise p arameters
for each algorithm.

Walksat: Walksat is a randomized local search algorithm. I t tries to determine the
best move b y randomly choosing an u nsatisfied clause and selecting a variable t o flip
within it. The version v 415 is used. The n umber of tries (Maxtries) is set to 10 w ith at
most 101 ×104 performed flips for each try. W hen one solution is found, the search
stops. Walksat uses the “novelty” heuristic w ith a n oise set to 0.5 (its default value).

UnitWalk: UnitWalk i s an incomplete randomized solver. I t is a combination of unit
clause elimination and local search. UnitWalk version 0.9816 is used. A function which
provides the b est assignment found has b een included, since the standard UnitWalk
solver only returns the last assignment found. The maximum n umber of allowed flips
is 101 ×105 for each try.

GASAT: GASAT uses the C C crossover w hich w orks with a p opulation of 102 indi-
viduals. During the initialization of this p opulation, a RTS of 103 performed flips is
applied to each individual. The selection process for the parents and the insertion
condition for the child are activated. The n umber of possible parents for the c rossover
is limited to 15 different individuals. The n umber of allowed crossovers is 103 and
an RTS of at most 104 performed flips is applied to each child. So, the maximum
number of p erformed flips allowed is 101 ×105. The size of the tabu list is set to 10%

5Walksati sa vailable: http://www.cs.washington.edu/homes/kautz/walksat/

6UnitWalk is available: http :/ /logi c . pdmi .ra s . ru/ ∼ari st /Un itWa lk /

Evolutionary Computation Volume 14, Number 2 245

F. Lardeux, F. Saubion and J .-K. Hao

of the n umber of v ariables i n the problem. The RVCF m echanism is applied only to
structured instances. The diversification m echanism is activated w hen a unique false
clause remains u nsatisfied for 5 iterations. False clauses are r ecursively set to true 10
times. The number of times that a flipped variable m ust wait b efore it can b e flipped is
set again to 10% of the n umber of v ariables.

Comparison criteria All the instances of the SAT 2 003 competition are v ery hard to
satisfy (when they are satisfiable). Therefore, it seems to b e more interesting and w iser
to use the n umber of false clauses in the b est configuration found during an execution
than success rate. The two first criteria are the average n umber of clauses (avg.) and
its standard deviation (s.d.) for 20 runs. The third criterion is the average n umber of
performed flips (fl.) to obtain this b est configuration. Although the CPU time is not
given in the tables, it is in the same order of magnitude for b oth UnitWalk and Walksat
whereas GASAT is more or less 20 % slower. Here, statistical v alues of the Student

t-test are not m entioned because, for each instance, the results obtained b y the b est
algorithm are, most of the time, significantly different w ith respect to the others.

Results
For each instance, a ranking b ased on the performance of each solver is proposed

taking into consideration the average number of false clauses and, if this number is the
same for several solvers, the average n umber of performed flips is taken into account.
The first place is attributed to the b est solver and the third place for the w orst. T hen, the
average ranking is computed for each solver. This scoring scheme is not p erfectbecause
it does not take into account the distances among the three results but it does let us
highlight the algorithms winning the most instances as in the SAT 2 003 competition.

Bold type is used in the three tables to emphasize the b est average n umber of false
clauses except w hen these results are similar for the three solvers.

Handmade instances (theoretical problems coded in SAT):
The results given in Table 10 show that GASAT is competitive on the handmade

instances. It obtains an average rank of 1.75 whereas UnitWalk obtains 1.88 and
Walksat 2.38.

Random instances:
Table 11 also shows that GASAT provides similar and sometimes b etter results

than Walksat and UnitWalk on the random instances. GASAT obtains an average rank
of 1.54 whereas Walksat obtains 2.00 and UnitWalk 2.46. We observe that GASAT gets
results with a v ery small standard deviation compared w ith the other solvers.

Industrial instances:
From Table 12, we observe that the results of GASAT are not as interesting

as for the handmade and random instances. Indeed, the average rank for GASAT
is 2.3, the one of Walksat is 1.6, and the one of UnitWalk is 2.1. The relatively
bad behavior of GASAT is particularly visible for four large instances (k2fix gr2 p-
invarw 9.shuffled-as.sat03-436, cnt10.shuffled-as.sat03-418, dp11u10.shuffled-as.sat03-
422, frg1mul.miter.shuffled-as.sat03-351). Analyzing the RCVF m echanism of G ASAT,
we suspect that the h igh n umber of clauses in these instances is a possible explanation
for this ”bad” performance. Indeed, the degree function requires the e xamination of
a lot of clauses and is as a result a time-consuming process. However, the one h our

246 Evolutionary Computation Volume 14, N umber 2

A Genetic Local Search Algorithm for SAT

BenchmarksGASATWalksatUnitWalk
instancesvar.cls.avg.f.c.s.d.×f1l.03avgf..c.s.d. ×f1l.03avg.f.c.s.d.× 1fl.03

Walksat and U nitWalk. The running time is limited to 1hour and the number of autho-
rized is 101 105. GASAT obtains the b est rank.

p erformed flips × average

lciumt-iotff fixl iemditb y ut sheed ni numt hbeer st oofpf lic opsnd (1it0io1n× d 1o0e5s).n I onto a rlldoewrt G oAc hSeAcTkt t hoisr e haycphot thheess ise,aw rceh
re-ran the three algorithms on the four large instances with the same condition except
the ”one hour cut-off limit”. Therefore, these algorithms stop only when the limit of
101 ×105 performed flips is reached. Results of this additional experiment are given in
Table 13. From this table, w e observe that the results of GASAT are greatly improved

Evolutionary Computation Volume 14, Number 2 247

F. Lardeux, F. Saubion and J .-K. Hao

BenchmarksGASATWalksatUnitWalk
instancesvar.cls.avgf..c.s .d.× f1l0.3avgf..c.s .d.× f1l.03avgf..c.s.d.× 1fl0.3

Walksat and U nitWalk. The running time is limited to 1h our and the n umber of autho-

rizedp erformed flips i s 101 ×105. GASATo btains theb est averager ank.

248 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

BenchmarksGASATWalksatUnitWalk
instancesvar.cls.avg.f.c.s.d.×f1l.03avgf..c.s .d. ×1fl0.3avg.f.c.s.d.× 1fl.03

Walksat and UnitWalk. The running time is limited to 1hour and the number of autho-
rized p erformed flips is 101 ×105. Walksat obtains the b est average rank.

BenchmarksGASATWalksatUnitWalk
instancesvar.cls.avgf..c.s .d.× 1fl0.3avgf..c.s .d.× f1l.03avg.f.c.s.d.× 1fl0.3

pauowthoerri izser desp terircfoterdmb eydt f hliepts im ise 1.0T 1h ×e r 1u05n.ningt imei sN OTL IMITEDa ndt hen umbero f

on three of the four instances. The results of Walksat and UnitWalk remain the same
since they had reached their maximum n umber of flips b efore the one h our cut-off limit.

All the instances:
The results presented in Tables 10, 11 and 12 show that GASAT behaves reliably

and that it provides competitive results on average. For the three tables, its overall rank

Evolutionary Computation Volume 14, Number 2 249

F. Lardeux, F. Saubion and J .-K. Hao

is 1.87 whereas Walksat obtains 1.98 and UnitWalk 2.15. A lot of studied instances are
not solvable and therefore GASAT appears v ery efficient for the MAX-SAT problem.

7.3 Remarks

Tables 8 and 11 show that evolutionary algorithms give very competitive results on
random instances w ith few v ariables in comparison w ith local search algorithms.
Evolutionary algorithms explore more quickly small search spaces with the crossover
process than the local search algorithms w ith their step b y step process. But usually,
incomplete solvers are used on large instances since, due to the size of the problem,
complete solvers b ecome impractical. GASAT is not compared w ith complete solvers
since some of the used instances are too large and seem to b e UNSAT. For these
instances, w e are more interested in solving the MAX-SAT problem in order to provide
fair comparisons with other incomplete solvers.

Computation time:

For all the tests, we h ave noticed that GASAT needs more time to execute the same
number of flips than the other solvers. This may b e due to the RCVF mechanism which
needs to compute the w eight of each possible variable. To compare it with state-of-the-
art solvers, w e h ave submitted it to the SAT 2004 competition where the execution time
is limited but not the number of moves. GASAT ranks fourth 7 (for random instances)
w.r.t. m ore than 50 SAT solvers, outperforming even UnitWalk and Walksat. Although
GASAT makes less flips than other solvers within the same time, it obtains very good
results in terms of quality.

8 Conclusion

In this p aper, we presented the GASAT algorithm, a h ybrid genetic algorithm for the
SAT (and MAX-SAT) problem. GASAT includes a crossover operator w hich relies on
the structure of the clauses and a Tabu Search with specific mechanisms. These two
processes are complementary and they allow GASAT to explore the search space and to
exploit p articular interesting areas in a more effective manner. Moreover, some mech-
anisms h ave b een added in order to insure a sufficient diversity in the involved popu-
lations. GASAT has b een evaluated on b oth random and structured instances and has
been compared w ith evolutionary algorithms like FlipGA and w ith two state-of-the-
art algorithms: Walksat and UnitWalk. Experimental results show that GASAT is very
competitive compared w ith existing evolutionary algorithms, Walksat and UnitWalk.
GASAT also provides very interesting results and appears v ery effective for the MAX-
SAT problem. T hese performances were confirmed during the SAT 2004 competition.

Our future work will consist of developing a b etter understanding of GASAT be-
havior w ith respect to the different families of b enchmarks. This will enable us to im-
prove our CC crossover w ith a dynamic approach and to develop more efficient in-
teractivity between crossovers and RTS. W e are also working on other hybridizations
including complete resolution techniques.

Acknowledgments

The w ork p resented in this p aper is partially supported b y the CPER COM program.
We w ould like to thank the referees of the p aper for their useful comments and Claudio
Rossi who has provided us w ith the FlipGA source code.

7The first three algorithms w ere adaptnovelty, saps and walksat rnp and all b ased on local search.

250 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

References

Benhamou, B. and Sais, L. (1992). T heoretical study of symmetries in propositional
calculus and applications. In CADE’92, p ages 281–294.

Beresin, M., Levine, E., and Winn, J . (1989). A chessboard coloring problem. T heC ollege

MathematicsJ ournal, 20(2):106–114.

Biere, A., Cimatti, A., Clarke, E. M., Fujita, M., and Zhu, Y. (1999). Symbolic model
checking using SAT procedures instead of BDDs. In P roc. of the Design A utomation
Conference (DAC’99), pages 317–320.

Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., and Price, K. V.,
editors (1999). New I deas in Optimization (Part 4: Memetic Algorithms). McGraw-Hill.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-

proving. C ommunicationso ft heA CM, 5(7):394–397.

De J ong, K. A. and Spears, W. M. (1989). Using genetic algorithm to solve N P-complete
problems. In Proc. oft he 3rd International Conference on Genetic A lgorithms (ICGA’89),
pages 124–132, V irginia,USA.

Dubois, O., Andr e´, P., Boufkhad, Y., and Carlier, J . (1996). SAT versus U NSAT. In Second
DIMACS I mplementation Challenge: Cliques, Coloring and Satisfiability, v olume 26 of
DIMACS Series in Discrete M athematics and Theoretical Computer Science, p ages 4 15–
436.

Dubois, O. and Dequen, G. (2001). A b ackbone-search heuristic for efficient solving of
hard 3-SAT formulae. In Nebel, B., editor, Proc. of the Seventeenth I nternational J oint
Conference on A rtificial I ntelligence (IJCAI’01), pages 248–253, San Francisco, CA.

Eiben, A. E. and van der Hauw, J . K. (1997). Solving 3 -SAT b y GAs adapting constraint
weights. In Proc. of The I EEE Conference on Evolutionary Computation, I EEE World
Congress o n Computational Intelligence, pages 81–86.

Fleurent, C. and Ferland, J . A. (1996). Object-oriented implementation of h euristic
search methods for graph coloring, maximum clique, and satisfiability. In Cliques,
Coloring, and Satisfiability: Second DIMACS I mplementation Challenge, v olume 26 of
DIMACS Series in Discrete M athematics and Theoretical Computer Science, p ages 619–
652.

Galinier, P. and Hao, J .-K. (1999). Hybrid evolutionary algorithms for graph coloring.

Journalo fC ombinatorialO ptimization, 3(4):379–397.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability ,A Guide to the Theory
of NP-Completeness. W .H. Freeman & Company, San Francisco.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

Gottlieb, J., M archiori, E., and Rossi, C. (2002). Evolutionary algorithms for the satisfi-
ability problem. E volutionaryC omputation, 10(1):35–50.

Gottlieb, J . and V oss, N. (2000). Adaptive fitness functions for the satisfiability problem.
In Hans-Paul Schwefel, M., editor, Parallel Problem Solvingf rom Nature - PPSN VI
6th I nternational Conference, Paris, France. Springer Verlag. LNCS 1917.

Evolutionary Computation Volume 14, Number 2 251

F. Lardeux, F. Saubion and J .-K. Hao

Gu, J . and Puri, R. (1995). Asynchronous circuit synthesis with boolean satisfiability.

IEEET ransactionso nC omputer-AidedD esign, 14(8):961–973.

Hansen, P. and Jaumard, B. (1990). Algorithms for the maximum satisfiability problem.

Computing, 4 4(4):279–303.

Hao, J .-K. and Dorne, R. (1994). A new population-based method for satisfiability p rob-
lems. In Proc. of the 11th European Conf. on A rtificial Intelligence, pages 135–139,
Amsterdam.

Hao, J .-K., Lardeux, F., and Saubion, F. (2003). Evolutionary computing for the satisfi-

ability problem. In A pplicationso fE volutionaryC omputing, volume 2611 of LNCS,
pages 258–267, University of Essex, England, UK.

Hart, W. E., Krasnogor, N., and Smith, J . E., editors (2004). R ecent Advances in Memetic
Algorithms and Related Search Technologies. Springer-Verlag.

Hirsch, E. A. and Kojevnikov, A. (2001). UnitWalk: A new SAT solver that uses local
search guided b y unit clause elimination. PDMI preprint 9/2001, Steklov Institute
of Mathematics at St. Petersburg.

Jaumard, B., Stan, M., and Desrosiers, J . (1996). Tabu search and a quadratic relaxation
for the satisfiability problem. In Cliques, Coloring, and Satisfiability: Second DIMACS
Implementation Challenge, v olume 26 of DIMACS Series in Discrete M athematics and
Theoretical Computer Science, pages 457–478.

Kautz, H. A. and Selman, B. (2001). Workshop on theory and applications of satisfia-
bility testing (SAT2001). In Electronic N otes in Discrete M athematics, v olume 9.

Li, C. M . (2000). Integrating equivalency reasoning into davis-putnam p rocedure. In
Proc. of the AAAI’00, p ages 291–296.

Li, C. M. and Anbulagan, A. (1997). Heuristics b ased on unit p ropagation for satisfi-
ability p roblems. In Proc. of the F ifteenth International J oint Conference on A rtificial
Intelligence (IJCAI’97), p ages 366–371.

Li, C. M., J urkowiak, B., and Purdom, P. W . (2002). Integrating symmetry breaking into
a dll p rocedure. In F ifth International Symposium on the Theory and A pplications of
Satisfiability Testing (SAT2002), pages 149–155.

Marchiori, E. and Rossi, C. (1999). A flipping genetic algorithm for hard 3-SAT p rob-
lems. In Proc. of the Genetic and Evolutionary Computation Conference, volume 1,
pages 393–400.

Mazure, B., Sais, L., and Gr´e goire, E. (1997). Tabu search for SAT. In Proc. of the A AAI-
97/IAAI-97, pages 281–285, Providence, Rhode Island.

Merz, P. and Freisleben, B. (1997). Genetic local search for the TSP: New results. In IEEE-
CEP: P roc. of The I EEE Conference on Evolutionary Computation, IEEE World Congress
on Computational I ntelligence, p ages 159–164.

Mitchell, D. G., Selman, B., and Levesque, H. J . (1992). Hard and easy distributions for
SAT problems. In Proc. of AAAI’92, p ages 459–465.

252 Evolutionary Computation Volume 14, Number 2

A Genetic Local Search Algorithm for SAT

Monasson, R., Z ecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. (1999). Deter-
mining computational complexity from characteristic ‘phase transitions’. Nature,
400(8):133–137.

Rossi, C., Marchiori, E., and Kok, J . N. (2000). An adaptive evolutionary algorithm
for the satisfiability problem. In Proc. of the ACM Symposium on Applied Computing
(SAC ’00), p ages 463–470. ACM press.

Selman, B., Kautz, H. A., and Cohen, B. (1994). Noise strategies for improving local
search. In Proc. of the AAAI’94, Vol. 1, p ages 337–343.

Selman, B., Levesque, H. J., and Mitchell, D. G. (1992). A new method for solving h ard
satisfiability p roblems. In Proc. of the AAAI’92, pages 440–446, San J ose, CA.

Simon, L., Berre, D. L., and Hirsch, E. A. (2002). The SAT2002 competition. Technical
report, Fifth International Symposium on the Theory and Applications of Satisfia-

bility Testing.

Spears, W . M . (1996). Simulated annealing for h ard satisfiability problems. In Second
DIMACS I mplementation Challenge: Cliques, Coloring and Satisfiability, volume 26 of
DIMACS Series in Discrete M athematics and Theoretical Computer Science, pages 533–
558.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proc. of the 3rd Inter-
national Conference on Genetic A lgorithms (ICGA’89), pages 2–9, Virginia, USA.

Van Gelder, A . (1993). Problem generator mkcnf.c. DIMACS, Challenge archive.

Zhang, H. (1997). SATO: An efficient propositional prover. In Proc. of the 14th Inter-
national Conference o n A utomated Deduction, volume 1249 of LNAI, p ages 272–275,
Berlin.

Zhang, H. (2002). Generating college conference b asketball schedules b y a SAT solver.
In Proc. of 5th I nternational Symposium on the Theory and A pplications of Satisfiability
Testing, p ages 281–291.

Evolutionary Computation Volume 14, Number 2 253

This article has been cited by:

1.Xinsheng Lai, Yuren Zhou. 2011. The analysis of expected fitness and success ratio of two heuristic optimizations on two

bimodal MaxSAT problems. Journal of Global Optimization . [CrossRef]

2.Jorge Maturana, Frédéric Lardeux, Frédéric Saubion. 2010. Autonomous operator management for evolutionary algorithms.

Journal of Heuristics 16:6, 881-909. [CrossRef]

3. Yu-Hsin Liu. 2010. A genetic local search algorithm with a threshold accepting mechanism for solving the runway dependent
aircraft landing problem. Optimization Letters .[CrossRef]

4.Yousef Kilani. 2010. Improving GASAT by replacing tabu search by DLM and enhancing the best members. Artificial
Intelligence Review 33:1-2, 41-59. [CrossRef]

5. Yousef Kilani. 2010. Comparing the performance of the genetic and local search algorithms for solving the satisfiability
problems. Applied Soft Computing 10: 1, 198-207. [CrossRef]

6.Alex S. Fukunaga. 2008. Automated Discovery of Local Search Heuristics for Satisfiability Testing. Evolutionary
Computation 16:1, 31-61. [Abstract] [PDF] [PDF Plus]

