
Journal of Combinatorial Optimization 3, 379–397 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Hybrid Evolutionary Algorithms for Graph Coloring

PHILIPPE GALINIER galinier@eerie.fr
LGI2P, EMA-EERIE, Parc Scientifique Georges Besse, F-30000 Nι̂mes, France

JIN-KAO HAO Jin-Kao.Hao@univ-angers.fr
LERIA, Universit́e d’Angers, 2 bd Lavoisier, F-49045 Angers, France

Received August 4, 1998; Revised June 2, 1999; Accepted June 2, 1999

Abstract. A recent and very promising approach for combinatorial optimization is to embed local search into
the framework of evolutionary algorithms. In this paper, we present such hybrid algorithms for the graph coloring
problem. These algorithms combine a new class of highly specialized crossover operators and a well-known tabu
search algorithm. Experiments of such a hybrid algorithm are carried out on large DIMACS Challenge benchmark
graphs. Results prove very competitive with and even better than those of state-of-the-art algorithms. Analysis of
the behavior of the algorithm sheds light on ways to further improvement.

Keywords: graph coloring, solution recombination, tabu search, combinatorial optimization

1. Introduction

A recent and very promising approach for combinatorial optimization is to embed local
search into the framework of population based evolutionary algorithms, leading to hybrid
evolutionary algorithms (HEA). Such an algorithm is essentially based on two key elements:
an efficient local search (LS) operator and a highly specialized crossover operator. The basic
idea consists in using the crossover operator to create new and potentially interesting confi-
gurations which are then improved by the LS operator. Typically, a HEA begins with a set of
configurations (population) and then repeats an iterative process for a fixed number of times
(generations). At each generation, two configurations are selected to serve as parents. The
crossover operator is applied to the parents to generate a new configuration (offspring). Then
the LS operator is used to improve the offspring before inserting the latter into the population.

To develop a HEA for an optimization problem, both the LS and crossover operators
must be designed carefully. Nevertheless, it is usually more difficult to develop a meaning-
ful crossover operator than a LS operator. Indeed, while various good LS algorithms are
available for many well-known optimization problems, little is known concerning the de-
sign of a good crossover. In general, designing a crossover requires first the identification of
some “good properties” of the problem which must be transmitted from parents to offspring
and then the development of an appropriate recombination mechanism. Note that random
crossovers used in standard genetic algorithms are meaningless for optimization problems.

HEAs have recently been applied to some well-known NP-hard combinatorial prob-
lems such as the traveling salesman problem (M¨uehlenbein et al., 1988; Freisleben and
Merz, 1996), the quadratic assignment problem (Freisleben and Merz, 1996; Merz and
Freisleben, 1997) and the bin-packing problem (Falkenauer, 1996). The results obtained

380 GALINIER AND HAO

with these HEAs are quite impressive. Indeed, they compete favorably with the best algo-
rithms for these problems on well-known benchmarks. These results constitute a very
strong indicator that HEAs are among the most powerful paradigms for hard combinatorial
optimization.

In this paper, we are interested in tackling with HEAs a well-known combinatorial op-
timization problem: the graph coloring problem (GCP) (Pardalos et al., 1998). The GCP
consists in coloring the vertices of a given graph with a minimal number of colors (chro-
matic number, denoted byχ(G)) with the constraint that two adjacent vertices receive
different colors. This problem allows one to model many practical and important applica-
tions (Leighton, 1979; Gamst, 1986; Chaitin, 1982). Unfortunately, the problem is very
difficult to solve because it belongs to the NP-complete family (Garey and Johnson, 1979).
Even approximating the problem proves to be difficult: no polynomial algorithm is able
to color any graph using a number of colors smaller than 2× χ(G) (unless P=NP). Em-
pirical results on coloring random graphs confirmed the hardness of the problem. For
instance, Johnson et al. observed that no known exact algorithm is able to color optimally
even relatively small (90 vertices) random graphs of density 0.5 (Johnson et al., 1991).
Given that there is almost no hope to find an efficient exact algorithm, various heuristic
algorithms have been developed including greedy algorithms, local search algorithms, and
hybrid algorithms.

This paper aims at developing powerful hybrid evolutionary algorithms to find sub-
optimal solutions of high quality for the GCP. To achieve this, we devise a new class of
highly specialized crossover operators. These crossovers, combined with a well-known
tabu search algorithm, lead to a class of HEAs. We choose to experiment a particular HEA.
Results on large benchmark graphs prove very competitive with and even better than those
of state-of-the-art algorithms. Also, we study the influence of some critical parameters of
the HEA and analyze its behavior, shedding light on several ways to further improve the
performance of these HEAs.

The paper is organized as follows. We first review heuristic methods for graph coloring
(Section 2). Then, we present the general principles of the specialized crossovers (Section 3).
Section 4 presents the different components of our hybrid algorithms. Sections 5–6 present
computational results and analyze the behavior of the algorithm. The last two sections give
some discussions and conclusions.

2. Heuristic methods for graph coloring

Let G = (V, E) be an indirected graph with a vertex setV and an edge setE. A subset of
G is called an independent set if no two adjacent vertices belong to it. A k-coloring ofG is
a partition ofV into k independent sets (called proper color classes). An optimal coloring
of G is a k-coloring with the smallest possiblek (the chromatic numberχ(G) of G). The
graph coloring problem is to find an optimal coloring for a given graphG.

Many heuristics have been proposed for this problem. We review below the main classes
of known heuristics.

Greedy constructive methods: The principle of a greedy constructive method is to color
successively the vertices of the graph. At each step, a new vertex and a color for it are

HYBRID EVOLUTIONARY ALGORITHMS 381

chosen according to some particular criteria. These methods are generally very fast but
produce poor results. Two well-known techniques are the saturation algorithm DSATUR
(Brélaz, 1979) and the Recursive Largest First algorithm (Leighton, 1979).

Genetic algorithm (GA): The main principles of GAs are presented in Holland (1975),
Goldberg (1989). Davis proposed to code a coloring as an ordering of vertices. The ordering
is decoded (transformed into a coloring) by using a greedy algorithm. This algorithm gives
poor results (Davis, 1991). No other work using pure GA has been reported since then.
It is believed that pure GAs are not competitive for the problem. Recently, Falkenauer
introduced a set of genetic operators for the so-called “grouping problems”. These operators
are applicable to the GCP which is a special grouping problem, but no results are available
on benchmark graphs.

Local search (LS): Several LS algorithms have been proposed for the GCP and prove very
successful. These algorithms are usually based on simulated annealing or tabu
search. They differ mainly by their way of defining the search space, the cost function
and the neighborhood function. Hertz and de Werra proposed a penalty approach and
a simple neighborhood. They tested simulated annealing and tabu search (Hertz and de
Werra, 1987; Chams et al., 1987). Johnson et al. compared three different neighborhoods
using simulated annealing and presented extensive comparisons on random graphs
(Johnson et al., 1991). A more powerful LS algorithm was recently reported in
Morgenstern (1996), which is based on a quite different neighborhood from the previous
ones.

Hybrid algorithms: Hybrid algorithms integrating local search and crossovers were recently
proposed in Fleurent and Ferland (1996), Costa et al. (1995). Fleurent and Ferland (1996)
shows that crossovers can improve on the performance of LS, but this happens only for a few
graphs and needs important computational efforts. Hybrid algorithms using a population
and local search but without crossover are proposed in Morgenstern (1996), producing
excellent results on benchmark graphs.

Successive building of color classes: This particular strategy consists in building suc-
cessively different color classes by identifying each time a maximal independent set and
removing its vertices from the graph. So the graph coloring problem is reduced to the
maximal independent set problem. Different techniques to find maximal independent sets
have been proposed for building successive color classes (Johnson et al., 1991; Hertz and de
Werra, 1987; Morgenstern, 1996), including local search methods (Fleurent and Ferland,
1996). This strategy proves to be one of the most effective approaches for coloring large
random graphs.

3. New crossovers for graph coloring

Standard genetic algorithms were initially defined as a general method based on blind
genetic operators (crossover, mutation, ...) able to solve any problem whose search space
is coded by bit strings. But it is now admitted that the standard GA is generally poor for

382 GALINIER AND HAO

Table 1. Assignment approach vs. partition approach.

Assignment approach Partition approach

Configuration Assignment of colors to vertices Partition of the vertices
s : V → {1, . . . , k} s= {V1, . . . ,Vk}

Elementary characteristic Couple vertex-color(v, i): Pair{v1, v2} or set{v1, . . . , vq}:
color i assigned to vertexv vertices all included in a sameVi

Crossover Assignment crossover Partition crossover
s(v) := s1(v) or s2(v)

solving optimization problems and that genetic operators, notably crossover, must incor-
porate specific domain knowledge (Greffenstette, 1987). More precisely, designing cross-
overs requires to identify properties that are meaningful for the problem and then to develop
a recombination mechanism in such a way that these properties are transmitted from parents
to offspring.

Concerning graph coloring, there are essentially two different approaches according
to whether a coloring is considered to be an assignment of colors to vertices or to be a
partition of vertices into color classes. Before presenting these approaches, we show their
main characteristics in Table 1.

Theassignment approachconsiders a configuration (a proper or improper) coloring as an
assignment of colors to vertices, i.e. a mappings : V→{1 · · · k} from the vertex setV into
a set ofk colors. So, it is natural to present a configurationsby a vector(s(v1), . . . , s(vn)) of
sizen = |V |, eachs(vi) being the color assigned to the vertexvi . It is now possible to define
an uniform assignment crossover as follows: given two parentss1 = (s1(v1), . . . , s1(vn))

ands2 = (s2(v1), . . . , s2(vn)), build the offsprings= (s(v1), . . . , s(vn)) by performing for
each vertexv eithers(v) := s1(v) or s(v) := s2(v) with an equal probability 1/2.

Assignment crossovers have been proposed for coloring problem in Fleurent and Ferland
(1996), Costa et al. (1995). In Fleurent and Ferland (1996), the uniform assignment cross-
over is enhanced in the following way: if a vertexv is conflicting in one of the two parents,
it systematically receives the color assigned tov in the other parent.

We can observe that with the assignment approach, the property transmitted by crossovers
is a couple (vertex, color): a particular vertex receives a particular color. Nevertheless, such
a couple, considered isolatedly, is meaningless for graph coloring since all the colors play
exactly the same role.

For the coloring problem, it will be more appropriate and significant to consider apair
or aset of verticesbelonging to a same class. This leads to a different approach, that we
call partition approach. With this approach, a configuration is considered as a partition of
vertices into color classes and a crossover is required to transmit color classes or subsets of
color classes. Given this general principle, many different crossovers are now imaginable.

One possibility is to build first a partial configuration of maximum size from subclasses of
the color classes of the two parents and then to complete it to obtain a complete configuration.
More precisely, given two parents (colorings or partial colorings)s1 = {V1

1 , . . . ,V1
k } and

s2 = {V2
1 , . . . ,V2

k }, the partial configuration will be a set{V1, . . . ,Vk} of disjoint sets of
vertices having the following properties:

HYBRID EVOLUTIONARY ALGORITHMS 383

• each subsetVi is included in a class of one of the two parents:∀i (1≤ i ≤ k) ∃ j : Vi ⊆ V1
j

or ∃ j : Vi ⊆ V2
j , hence allVi are independent sets.

• the union of theVi has a maximal size:| ∪1≤i≤k Vi | is maximal.
• about the half of theVi is imposed to be included in a class of parent 1 and the other

half in a class of parent 2, because it is desirable to equilibrate the influence of the two
parents.

One way to construct the partial configuration is to build eachVi successively in a greedy
fashion: both parents are considered successively and we choose in the considered parent the
class with the maximal number of unassigned vertices to become the next classVi . Note
that this crossover, named Greedy Partition Crossover (GPX), generates each time one
offspring. The GPX crossover is presented in detail in Section 4. More partition crossovers
will be presented in Section 7.1.

Let us mention now two other partition crossovers. The first one is presented in Dorne
and Hao (1998) where eachVi is built from the union of two classes, each class coming from
one parent. The second one is a crossover defined for grouping problems and applicable
to the GCP (Falkenauer, 1996). This crossover is different from the GPX: to build aVi ,
two classes arerandomlytaken from the parents, contrary to the GPX where this choice is
carefully realized with particular optimization criteria.

Finally, let us mention that we have carried out experiments to confirm the pertinence of
the characteristic considered by partition crossovers (i.e. set of vertices), limiting here to
pairs of vertices. We take a (random) graph and a fixedk and collect a sample of k-colorings.
We look at the frequencies that two non-adjacent vertices are grouped into a same color
class. Analysis of these frequencies discloses that some pairs of non-adjacent vertices are
much more frequently grouped into a same class than others. This constitutes a positive
indicator of the pertinence of the approach.

4. The hybrid coloring algorithm

To solve the GCP, i.e. to color a graph with a minimum possible number of colors, a
particular approach consists in applying a coloring algorithm to look for a k-coloring for
a (sufficiently high) number of colorsk = k0. Then whenever a k-coloring is found, one
re-applies the same algorithm to look for k-colorings with decreasing numbers of colors
(k = k0 − 1, k0 − 2, . . .). Therefore, the graph coloring problem is reduced to solving
increasingly difficult k-coloring problems. In this section, we present the components of
our Hybrid Coloring Algorithm (HCA) for finding k-colorings.

4.1. Search space and cost function

Recall that the k-coloring problem consists in coloring a graphG = (V, E) with a fixed
number ofk colors. To solve a k-coloring problem, we consider the set of all possible
partitions ofV in k classes including those which are not proper k-colorings. Each partition
is attributed a penalty equal to the number of edges having both endpoints in a same class.

384 GALINIER AND HAO

Therefore, a partition having a 0 penalty corresponds to a proper k-coloring (a solution).
The purpose of the search algorithm is then to find a partition having a penalty as small as
possible. So the k-coloring problem can be solved by solving the minimization problem
(S, f) where:

• A configurations ∈ S is any partitions= {V1, . . . ,Vk} of V in k subsets.
• ∀s ∈ S, f (s) = |{e∈ E : both endpoints ofe are in the sameVi ∈ s}|.

In the following we call configuration any element of the search spaceSand reserve the
word solution for a proper k-coloring.

4.2. The general procedure

In HCA, the population P is a set of configurations having a fixed constant size|P|. We
present below the general algorithm:

The hybrid coloring algorithm

Data : graph G = (V, E), integer k
Result : the best configuration found
begin

P=InitPopulation(|P|)
while not Stop-Condition () do

(s1,s2)=ChooseParents(P)
s=Crossover(s1,s2)
s=LocalSearch(s, L)
P=UpdatePopulation(P,s)

end

The algorithm first builds an initial population of configurations (InitPopulation) and then
performs a series of cycles calledgenerations. At each generation, two configurationss1

ands2 are chosen in the population (ChooseParents). A crossover is then used to produce an
offsprings from s1 ands2 (Crossover). The LS operator is applied to improves for a fixed
numberL of iterations (LocalSearch). Finally, the improved configurations is inserted in
the population by replacing another configuration (UpdatePopulation). This process repeats
until a stop condition is verified, usually when a pre-fixed numberMaxIter of iterations is
reached. Note however that the algorithm may stop before reachingMaxIter, if the population
diversity becomes too small (see Section 6.2).

Let us notice that this hybrid algorithm differs from a genetic algorithm by some fea-
tures. The fundamental difference is naturally that the random mutation operator of a GA
is replaced with a LS operator. Another difference concerns the selection operator of a
GA, which encourages the survival and reproduction of the best individuals in the popu-
lation. In the hybrid algorithm, the selection is ensured jointly byChooseParentsand
UpdatePopulation.

HYBRID EVOLUTIONARY ALGORITHMS 385

The initialization operator. The operatorInitPopulation(|P|) initiates the populationP
with |P| configurations. To create a configuration, we use the greedy saturation algorithm
of Brélaz (1979) slightly adapted in order to produce a partition ofk classes. The algorithm
works as follows. We start withk empty color classesV1 = · · · = Vk = φ. At each step,
we chose a vertexv ∈ V such thatv has the minimal number of allowed classes (i.e. a
class that does not contain any vertex adjacent tov). To putv in a color class, we chose
among all the allowed classes ofv the oneVi that has the minimal indexi . In general, this
process cannot assign all the vertices. Each of unassigned vertex is then put into one color
class randomly chosen. Once a configuration is created, it is immediately improved by the
LS operator forL iterations.

Due to the randomness of the greedy algorithm and the LS improvement, the configu-
rations in the initial population are quite different. This point is important for population
based algorithms because a homogeneous population cannot efficiently evolve.

The crossover operator.The crossover used here is the GPX crossover presented in
Section 3. Let us show now how this crossover works. Given two parent configurations
s1 = {V1

1 , . . . ,V1
k } ands2 = {V2

1 , . . . ,V2
k } chosen randomly by theChooseParentoperator

from the population, the algorithmCrossover(s1,s2)builds an offsprings = {V1, . . . ,Vk}
as follows.

The GPX crossover algorithm

Data : configurations s1 = {
V 1

1 , . . . , V 1
k

}
and s2 = {

V 2
1 , . . . , V 2

k

}
Result : configuration s = {V1, . . . , Vk}
begin

for l(1 ≤ l ≤ k) do
if l is odd, then A := 1, else A := 2
choose i such that V A

i has a maximum cardinality
Vl := V A

i
remove the vertices of Vl from s1 and s2

Assign randomly the vertices of V − (V1 ∪ · · · ∪ Vk)

end

The algorithm builds step by step thek classesV1, . . . ,Vk of the offspring: at step
l (1 ≤ l ≤ k), the algorithm builds the classVl in the following way. Consider parent
s1 (A = 1) or parents2 (A = 2) according to whetherl is odd or even. In the considered
parent, choose the class having the maximum number of vertices to become classVl and
remove these vertices from parentss1 ands2. At the end of thesek steps, some vertices
may remain unassigned. These vertices are then assigned to a class randomly chosen.

In the shown example (see Table 2), there are 3 color classes(k = 3) and 10 vertices
represented by capital letters A,B,. . . ,J. At step 1, class{D, E, F,G} in parent 1 is chosen
to become the first classV1 of the offspring. Because vertices D,E,F and G are now assigned,
they are removed from boths1 ands2: in s1, we remove the complete class{D, E, F,G}, ins2

we remove the vertices D,E,F and G from their respective classes. Similarly, we build

386 GALINIER AND HAO

Table 2. The crossover algorithm: an example.

classesV2 andV3 from parents 2 and 1 respectively. At the end of these 3 steps, vertex I is
the only one to be randomly assigned to a class. Let us notice that the edges of the graph,
which are used in the cost function f, are not involved in the crossover operator.

The LS operator. The purpose of the LS operatorLocalSearch(s, L) is to improve a
configurations produced by the crossover for a maximum ofL iterations before insertings
into the population. In general, any local search method may be used. In our case, we use
tabu search (TS), an advanced local search meta-heuristic (Glover and Laguna, 1997).

TS performs guided search with the help of short and eventually long term memories.
Like any LS method, TS needs a neighborhood function defined over the search space
N : S 7→ 2S. Starting with a configuration, a typical TS procedure proceeds iteratively to
visit a series of locally best configurations following the neighborhood. At each iteration,
a bestneighbor is chosen to replace the current configuration, even if the former does not
improve the current one. This iterative process may suffer from cycling and get trapped in
local optima. To avoid the problem, TS introduces the notion ofTabu lists. The basic idea
is to record each visited configuration, or generally its attributes and to forbid to re-visit
this configuration during nexttl iterations (tl is called the tabu tenure).

The TS algorithm used in this work is an improved version of the TS algorithm proposed
by Hertz and de Werra (1987). Here aneighborof a given configurations is obtained
by moving a single vertexv from a color class to another color classVi . To make the
search more efficient, the algorithm uses a simple heuristic: the vertexv to be moved
must be conflicting with at least another vertex in its original class. Thus a neighboring
configuration ofs is characterized by amovedefined by the couple〈v, i 〉 ∈ V × {1 · · · k}.
When such a move〈v, i 〉 is performed, the couple〈v, s(v)〉 is classified tabu for the next
tl iterations, wheres(v) represents the color class of vertexv in s. Therefore,v cannot
be reassigned to the classs(v) during this period. Nevertheless, a tabu move leading to a
configuration better than the best configuration found so far is always accepted (aspiration
criterion). The tabu tenuretl for a move is variable and depends on the numbernbCFL

of conflicting vertices in the current configuration:tl = Random(A) + α × nbCFL where
A andα are two parameters and the functionRandom(A) returns randomly a number in
{0, . . . , A− 1}. To implement the tabu list, it is sufficient to use aV × {1 · · · k} table.

HYBRID EVOLUTIONARY ALGORITHMS 387

The algorithm memorizes and returns themost recentconfigurations∗ among the best
configurations found: after each iteration, the current configurations replacess∗ if f (s) ≤
f (s∗) (and not only if f (s) < f (s∗)). The rational to return the last best configuration is that
we want to produce a solution which is as far away as possible from the initial solution in
order to better preserve the diversity in the population (see Section 6.3 for more discussion
on this topic). The skeleton of the TS algorithm is given below.

The TS operator

Data : graph G = (V, E), configuration s0

Result : the best configuration found
begin

s := s0

choose a best authorized move
introduce the couple in the Tabu list for tl iterations
perform the move

end

while not Stop-Condition() do
< v, i >

< v, s(v) >

< v, i > in s

The configuration created by a crossover and improved by TS is now to be inserted in
the population. To do this, the worst of the two parents is replaced.

5. Experimental results

In this section, we present experimental results obtained by HCA and make comparisons
with other algorithms. In particular, detailed comparisons are presented between HCA and
the TS algorithm.

5.1. Experimental settings

Test instances. The following graphs from the well-known second DIMACS challenge
benchmarks are used (Johnson and Trick, 1996).1

• Threerandom graphs: DSJC250.5, DSJC500.5 and DSJC1000.5. They have 250, 500
and 1000 vertices respectively and a density of 0.5 with unknown chromatic number.
• Two Leighton graphs: le45015c and le45025c. They are structured graph with known

chromatic number (respectively 15 and 25).
• two flat graphs: flat30028 and flat100076. They are also structured graph with known

chromatic number (respectively 38 and 76).

We are interested in these graphs because they were largely studied in the literature
and constitute thus a good reference for comparisons. Moreover these graphs are difficult
and represent a real challenge for graph coloring algorithms. Note that according to the

388 GALINIER AND HAO

optimization approach used (Section 4), each graph defines in reality a set of k-coloring
instances for different values ofk.

Evaluation criteria. To evaluate the performances of HCA and compare with other algo-
rithms, we consider several criteria. Given a particular graph, the first criterion used is the
quality of the best solution found, i.e. the smallest value ofk for which the algorithm is
able to find a k-coloring.

We are also interested in evaluating HCA for different values ofk for a graph. Given a
particular k-coloring instance (a graph and a value ofk) and a particular stop criterion, we
consider two criteria:robustnessandcomputational effortor solving speed. Robustness is
evaluated by the success rate “succruns/totalruns” (a successful run is one which finds a
k-coloring for the fixedk). To measure computational effort, we use the (average) number
of iterations and of crossovers needed for successful runs.

These criteria are also valid for TS, making it possible to compare the performance of
HCA and TS.

Parameters. The two main parameters for HCA are the population size|P| and the LS
lengthL after a crossover. To fix|P|, we tested several different sizes and chose the size
10 for most of our experiments(|P| = 5 is chosen for easy instances). Let us notice that
this choice remains consistent with other existing HEAs which use also small populations.

Compared with|P|, the lengthL of LS chain is more critical on the performance of the
algorithm. We study in detail the role of this parameter later (Section 6). Here we show
simply its influence with an example. We take the graph DSJC500.5 and fixk = 49. We
run the HCA with different valuesL : L = 250, 500, 1000, 2000, 4000. For each value
of L we perform 30 runs, count the number of successful runs and compute the average
number of iterations needed for a successful run. Table 3 gives the results obtained with
these values ofL.

We observe from Table 3 that increasingL increases the success rate but also the number
of iterations used for successful runs. Therefore largerL makes the algorithm more robust
but also slower. This implies that there is no absolute best value for this parameter and that
we must find a best compromise between robustness and speed for a given instance.

In addition to|P| andL, the HCA requires two other parameters related to the TS algo-
rithm. These parameters areA andα which are necessary to determine the tabu tenuretl.
Experiments of various combinations suggested that(A = 10, α = 0.6) is a robust combi-
nation for the chosen graphs.

Table 3. Influence of the length of LS on the results of HCA.

Graph k Param Succ Iter Cross

DSJC500.5 49 (10,250) 0 — —

(10,500) 2 214,000 418

(10,1000) 16 505,000 495

(10,2000) 29 854,000 417

(10,4000) 30 1,475,000 358

HYBRID EVOLUTIONARY ALGORITHMS 389

5.2. Comparing HCA with TS

HCA uses TS as one of its main components. It is therefore interesting to know if HCA is
able to improve on the results of the TS algorithm. To do this, we take each of the above
presented graphs and fix different values fork, leading to different k-coloring instances.
The chosen values fork begin from an initial value greater than the smallest one ever found
for the graph and finishes at the best known value. For instance, the best k-colorings for
DSJC500.5 require 48 colors. Then we takek = 52 to 48 (greater values gives too easy
instances). In this way, we get a set of increasingly difficult k-coloring instances for each
graph.

To solve a k-coloring instance, we run both the HCA and the TS algorithms several
times (from 5 to 10), each run being given the same number of iterations (10 millions in
general, more for the most difficult instances). Note that while unsuccessful TS runs stop
always when the allowed number of iterations is reached, HCA may stop before reaching
this number when the diversity in the population becomes too low(D < 20). Tables 4 and
5 show comparative results of HCA and TS for the chosen graphs.

In these tables, each line corresponds to an instance. For both algorithms, we indicate
the number of successful runs (the number of fails appears in parenthesis) and the average
number of iterations for successful runs. For HCA, the tables indicate in addition the

Table 4. Comparative results of HCA and TS on random graphs.

TS HCA

Graph k Succ Iter Succ Iter Cross Param T [s]

DSJC250.5 28 10 2,500,000 9(1) 490,000 235 (10,2000) 79

29 10 578,000 10 96,000 86 (10,1000) 18

30 10 97,000 10 18,000 62 (10,250) 8

DSJC500.5 48 — — 5(5) 4,900,000 865 (10,5600) 1,608

49 (10) — 10 871,000 425 (10,2000) 301

50 10 1,495,000 10 185,000 254 (10,700) 115

51 10 160,000 10 62,000 119 (5,500) 34

52 10 43,000 10 34,000 63 (5,500) 24

DSJC1000.5 83 — — 1∗ 28,400,000 1741 (10,16000) 13,550

84 — — 3(2) 20,700,000 1283 (10,16000) 11,103

85 — — 4(1) 4,600,000 565 (10,8000) 3,590

86 — — 5 3,500,000 615 (10,5600) 2,962

87 — — 5 1,900,000 668 (10,2800) 1,417

88 (5) — 5 613,000 427 (10,1400) 561

89 3(2) 4,922,000 5 350,000 490 (10,700) 440

90 5 3,160,000 5 220,000 430 (10,500) 344

91 5 524,000 5 114,000 157 (5,700) 155

92 5 194,000 5 731,000 141 (5,500) 117

390 GALINIER AND HAO

Table 5. Comparative results of HCA and TS algorithms on structured graphs.

TS HCA

Graph k Succ Iter Succ Iter Cross Param T [s]

le45015c 15 (10) — 6(4) 194,000 24 (10,5600) 47

16 8(2) 319,000 10 45,000 54 (10,700) 25

17 10 18,000 10 29,000 72 (10,350) 20

le45025c 25 (10) — — (10) — — —

26 10 107,000 10 800,000 790 (10,1000) 327

27 10 7,300 10 94,000 13 (10,4000) 18

flat30028 31 (10) — 6(4) 637,000 308 (10,2000) 118

32 10 149,000 10 84,000 230 (10,350) 29

flat100076 83 — — 4(1) 17,500,000 1008 (10,16000) 8,827

84 — — 5 5,300,000 652 (10,8000) 3,601

85 — — 5 2,000,000 490 (10,4000) 1,599

86 (5) — 5 1,100,000 540 (10,2000) 1,016

87 1(4) 7,400,000 5 473,000 463 (10,1000) 587

88 2(3) 4,000,000 5 288,000 566 (10,500) 576

average number of crossovers, the parameters|P| andL used and the average running time
in seconds.2

Table 4 presents the results of 18 k-coloring instances of the 3 random graphs. We notice
first that TS and HCA can reach the same minimal value ofk for the graph of 250 vertices.
For the graph of 500 and 1000 vertices, HCA finds better solutions than TS and gains 2
colors and 6 colors respectively. Notice that our TS algorithm is very powerful compared
with other TS coloring algorithms (Hertz and de Werra, 1987; Fleurent and Ferland, 1996;
Dorne and Hao, 1999). Taken this fact into account, it is remarkable that HCA is able
to outperform largely the TS algorithm. Now if we consider the values ofk for which
both algorithms find a k-coloring and compare the number of iterations necessary to find a
solution, we observe that HCA is faster for all the considered instances.

Notice also that for a particular graph, solving a more difficult instance (a smallerk)
requires a largerL. For instance, for the graph DSJC250.5,L = 250, 1000 and 2000 for
k = 30, 29 and 28 respectively. This complements the information presented in Table 3.

Table 5 presents the results of the 14 k-coloring instances of the 4 structured graphs.
We can observe similar results as for random graphs. Notice however an exception for the
graph le45025d for which HCA needs more iterations than TS to find 26 and 27 colorings.
For this graph, we observe a different behavior as decreasingL does not make the search
faster. On other graphs, HCA finds better solutions and is faster than TS.

To summarize, we see that quite often HCA improves strongly on the results of a long
tabu search. This points out that the crossover is able to produce new starting points which
are very useful to make the search more efficient. Moreover, contrary to the believe that
hybrid algorithms are computationally expensive, we see that the HCA algorithm is not only

HYBRID EVOLUTIONARY ALGORITHMS 391

Table 6. Comparison between HCA and the best known results.

Graph χ Best-known TS HCA Difference

DSJC250.5 — 28 28 28 0

DSJC500.5 — 48 49 48 0

DSJC1000.5 — 84 89 83 −1

le45015c 15 15 16 15 0

le45025c 25 25 26 26 1

flat30028 28 31 32 31 0

flat100076 0.col 76 84 87 83 −1

DSJC1000.1 — 21 — 20 −1

DSJC1000.9 — 226 — 224 −2

powerful, but also fast compared with TS. Next section will allows us to further appreciate
the search power of the HCA.

5.3. Comparisons with the best known results

Now we compare the results of HCA with the best ones published in the literature (Johnson
and Trick, 1996). To do this, we are interested in the quality criterion, i.e. the lowest
value ofk for which a k-coloring can be found. Table 6 presents comparative results on the
7 graphs. We also include the results for two other large random graphs of 1000 vertices
(DSJC1000.1 and DSJC1000.9).

Each line in Table 6 corresponds to a particular graph. When the chromatic number is
known, it is indicated in column 2. Column 3 (best-known) indicates the smallest values ofk
for which a solution (k-coloring) has ever been found by an algorithm. Most of these results
are produced by a population based LS algorithm combining two specific neighborhoods
and using the strategy of successive building of color classes (Section 2) (Morgenstern,
1996). Column 4 (TS) gives the results of our TS algorithm. Column 5 (HCA) shows the
results of our hybrid coloring algorithm. Finally, column 6 indicates the difference in
number of used colors between HCA and the best known result.

From the table, we observe that HCA finds the best known result for each graph except
for le45025c. What is more impressive is that HCA improves on the best known results
for four large graphs (DSJC1000.5, flat100076 0.col, DSJC1000.1 and DSJC1000.9).

Note that for large random graphs (more than 300 vertices), the best algorithms use the
strategy of successive building of color classes. No algorithm without this strategy is really
efficient. HCA is the only algorithm able to compete with this strategy and even to improve
on some best known results.

6. Analysis of HCA

As mentioned before, both the performance and the behavior of HCA is largely dependent
on the value of the lengthL of TS chain after a crossover. Note first that the parameter

392 GALINIER AND HAO

L reflects the relative proportion of crossovers and LS in the algorithm, asL corresponds
to the number of iterations performed after each crossover. In this section, we analyze the
influence of the parameterL on two particularly interesting points: a) running profile of
the cost functionf and b) diversity of the population. For this purpose, experiments were
performed on various graphs. We present below in detail the results on a single graph, but
these results are valid for other tested graphs.

The considered graph is DSJC500.5 withk = 49. We recall that this instance is very
difficult for TS since TS alone is unable to find 49-coloring (50-coloring is the best result
for TS). To solve this instance, we consider 4 different values of the parameterL: L =
500, 1000, 2000 and 4000. For each of these values, we perform 30 runs, each run being
given a maximum of 3 millions iterations.

6.1. Running profile

A running profile is defined by the functioni 7→ f∗(i) wherei is the number of iterations
and f∗(i) the best cost value known at iterationi . Running profile is a natural way to
observe the evolution of the best values of the cost function during a search. Figure 1
(left) shows the running profiles of HCA on the graph DSJC500.5 withk = 49 obtained
with different values forL. The figure shows also the running profile for TS (right) for
comparative purpose.

From the left figure, we first notice that HCA fails to find a solution withL = 500 and
L = 1000, but is successful withL = 2000. ForL = 4000, the algorithm finds also a
solution, but needs more iterations (more than 1 millions, but smaller than 3 millions, not
observable from the figure). We observe also that withL = 500 andL = 1000, the value
of f∗ dcreases more quickly at the beginning than withL = 2000 andL = 4000. However,
L = 500 andL = 1000 make the search blocked (atf∗ = 4 for L = 500 and f∗ = 1
for L = 1000) beforef∗ reaches a solution(f∗ = 0). On the contrary,L = 2000 and
L = 4000 make the search progress more slowly, but for a longer time.

Concerning the running profile of TS (right), we see thatf∗ decreases quickly at the
beginning of the run and then much more slowly, reaching a value of about 6 after 1

Figure 1. Running profile of HCA (left) and TS (right).

HYBRID EVOLUTIONARY ALGORITHMS 393

millions iterations. Comparing the running profiles of HCA and TS shows a clear interest
of the crossover operator.

6.2. Evolution of diversity in HCA

For genetic algorithms, it is well-known that the population diversity has an important
influence on the performance. A fast lost of the diversity in the population leads to a
premature convergence. It is therefore crucial to be able to control correctly the evolution
of the diversity.

For hybrid evolutionary algorithms, however, little is known yet on this topic. This section
aims at studying the evolution of diversity during the search, by varying the parameterL. To
do this, we need first a meaningful distance to measure the diversity. For many problems,
hamming distance may be used. But for the coloring problem, this distance is no more
meaningful. So we introduce the following specific distance applicable to partitions.

Given two configurations (partitions)s1 ands2, the distance betweens1 ands2 is defined
as the minimum number of elementary transformations necessary to transforms1 into s2.
An elementary transformation corresponds to the operation of moving one element from a
class to another class. The diversity of the population is then defined as the average distance
D between all the configurations in the population. In the following, we useD(i) to denote
the diversity of the population afteri iterations.

Figure 2 (left) presents the evolution of the functioni 7→ D(i) for L = 500, 100, 2000
and 4000. We first observe that the diversity decreases quite regularly for all the tested
values ofL. Moreover, we observe that the diversity is better preserved forL = 2000 and
L = 4000 than for the two smaller values. Indeed, the diversity with smaller values ofL
decreases down to a value close to 0 while this is not the case for the two larger values.
We remark also that the moment when the diversity reaches about 0 corresponds to the
moment when the algorithm is blocked (see figure 1). Note that this is not surprising since
low diversity means high similarity among the configurations of the population. When this
happens, crossovers will have no more effect because offspring created by a crossover will
resemble its parents. Consequently, the population can no more evolve.

Figure 2. Diversity in function ofi (left) and f∗ (right).

394 GALINIER AND HAO

We see above that a too smallL makes the algorithm blocked because the diversity
decreases to 0 beforef∗ reaches 0. So it is interesting to study the relationship between
quality f∗ and diversityD, depending on the value ofL. Figure 2 (right) shows this rela-
tionship for the 4 studied values ofL. From the figure, we observe that for a fixed value of
f∗, the diversity is higher for a larger value ofL, indicating that a longer TS chain preserves
better the diversity in the population.

6.3. Why a longer LS chain preserves the diversity

Now we try to understand why a longer LS helps preserve the diversity. Note first that
figure 1 does not allow us to draw any conclusion about the relationship betweenf∗ andD,
though it shows a largerL makes both functionsi 7→ f∗(i) andi 7→ D(i) decrease more
slowly (figure 1).

We present now the evolution of qualityf∗ and diversityD in function of the number of
generationsx instead of the number of iterationsi (recall that a generation is a complete
cycle of HCA, see Section 4.2).

A first point shown in figure 3 (left) is that a largerL makes the functionx 7→ f∗(x)
decrease more quickly than a smallerL does. This is not surprising as a longer LS helps
to find better configurations at each generation. A second point observed in figure 3 (right)
is that a largerL makes the functionx 7→ D(x) decrease more slowly. An intuitive
explanation is that a longer LS chain makes the offspring generated by a crossover far
from its parents, in particular from the parent remaining in the population. Consequently,
for a same number of generationsx, D must be larger for a samef∗ with a largerL.

Now let us summarize the main results of this analysis. A long LS chain (less crossover)
has two implications. The first one is that the search becomes slower. The second one is
that the diversity of the population is better preserved. Reversely, a short LS chain (more
crossover) makes the search faster, but reduces rapidly the diversity. Consequently, if one
wants to find better results in terms of quality, one must use sufficiently large value forL.
This is especially true if the problem to be solved is difficult. On the contrary, small values
of L help find solutions more quickly for easy problems.

Figure 3. Quality f∗ (left) and diversityD (right) in function ofx.

HYBRID EVOLUTIONARY ALGORITHMS 395

7. Discussion

7.1. Other partition crossovers

In previous sections, we presented and experimented a particular partition crossover. Now
we present other partition crossovers that we have developed and experimented. These
crossovers are based on the idea of renaming the color classes of one of the two parents.
More precisely, to rename the color classes of the chosen parent, says2, we use a mapping
σ : {1 · · · k} → {1 · · · k} such that6i |V1

i ∩ V2
σ(i)| is maximized. Once the renaming is

done, the two parents may be recombined in several manners to generate offspring. Three
crossovers were tested. The first one realizes simply a uniform recombination. In the second
one, eachVi receives the intersectionV1

i ∩ V2
σ(i) and the configuration is completed with a

greedy algorithm. In the third one, theVi are built successively as follows: To buildVi , a)
choosej such that|V1

j ∩ V2
σ(j)| is maximum, b) buildVi from the unionVi

j ∪ V2
σ(j) and c)

remove the vertices ofVi from their respective classes in the two parents.
Experiments with these crossovers show that they are generally able to produce interesting

results. Taking into account the results reported in Dorne and Hao (1998), we conclude
that the basic principles behind the family of partition crossovers are really useful to design
powerful crossovers for the GCP.

For comparative purpose, we also experimented some assignment crossovers within
our HCA, including the uniform assignment crossover (Section 3) and the conflict-based
crossover (Fleurent and Ferland, 1996). Results show that these crossovers sometimes
improve on the results of TS, but cannot compete with the partition operators. All these
results and those of Fleurent and Ferland (1996) support the above conclusion concerning
the importance of partition crossovers.

7.2. How to improve HCA

As seen in Section 6, the population diversity plays an important role on the performance of
the algorithm. As shown before, one way to preserve the diversity is to apply a longer LS
after each crossover. However, a longer LS makes the algorithm slower. At the same time,
we have shown that short LS makes the algorithm fast. Therefore, the algorithm may use
short LS (to be fast) and at the same time use other mechanisms to preserve the population
diversity. To achieve this, there are several possibilities.

First, one may use a larger population. Although existing HEAs use often small popula-
tions, it should be interesting to see what happens with large ones. Second, one may design
crossovers able to create offspring sufficiently different from its two parents. Third, the LS
may be biased in order to prevent the offspring from becoming too close to its parents.
Finally, selected solutions can be memorized when they are deleted from the population
and re-inserted into the population when the diversity becomes to low.

8. Conclusions

In this paper, we introduced a new class of crossover operators for graph coloring and
studied a particular member of this class. These crossovers are based on two initially simple

396 GALINIER AND HAO

ideas: a) a coloring is a partition of vertices and not an assignment of colors to vertices,
b) a crossover should transmit subsets of color classes from parents to offspring. These
new crossover operators are integrated into an hybrid algorithm using a well-known tabu
search algorithm. The hybrid algorithm is evaluated on a set of difficult and large DIMACS
challenge graphs.

Experimental results show clearly that the HCA improves strongly on the results of its TS
operator making evident the importance of crossovers in the search process. Comparisons
with other well-known coloring algorithms show that HCA is one of the most efficient
algorithm and that hybrid algorithms are very powerful for this problem. Indeed, our HCA
is able to find the best known results for most of the tested graphs and even able to improve
on the best results for some largest graphs. Moreover, a hybrid evolutionary algorithm like
the HCA is not computationally expensive to obtain high quality solutions, contrary to
previous results reported in the literature.

Experiments are also realized to study the behavior of the HCA, especially the evolution
of the cost function and of the diversity in the population. The experiments first confirm
the necessity to preserve enough diversity for the search to be efficient. We analyze why
more crossover, i.e. short LS, makes the search faster and at the same time tends to reduce
the diversity while less crossover leads to opposite effects.

To conclude, this work confirms the potential power and interest of hybrid evolutionary
algorithms for tackling hard combinatorial problems.

Acknowledgments

We would like to thank the referees of the paper for their useful comments.

Notes

1. Available via ftp from ftp:// dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.
2. The timing for HCA is based on a C++ implementation which is compiled without optimization option and

executed on an UltraSPARC-IIi 333 MHz with 132MB RAM.

References

D. Brélaz, “New methods to color vertices of a graph,”Communications of ACM, vol. 22, pp. 251–256, 1979.
G.J. Chaitin, “Register Allocation and Spilling via Graph Coloring,” inProc. of ACM SIGPLAN 82 Symposium

on Compiler Construction, New York, 1982, pp. 98–105.
M. Chams, A. Hertz, and D. de Werra, “Some experiments with simulated annealing for coloring graphs,”European

Journal of Operational Research, vol. 32, pp. 260–266, 1987.
D. Costa, A. Hertz, and O. Dubuis, “Embedding of a sequential procedure within an evolutionary algorithm for

coloring problems in graphs,”Journal of Heuristics, vol. 1, no. 1, pp. 105–128, 1995.
L. Davis,Handbook of Genetic Algorithms, Van Nostrand Reinhold: New York, 1991.
R. Dorne and J.K. Hao, “Tabu search for graph coloring, T-coloring and set T-colorings,” inMeta-Heuristics:

Advances and Trends in Local Search Paradigms for Optimization, S. Voss, S. Martello, I.H. Osman and C.
Roucairol (Eds.), Kluwer Academic Publishers, 1999, Chapter 6, pp. 77–92.

R. Dorne and J.K. Hao, “A new genetic local search algorithm for graph coloring,” Lecture Notes in Computer
Science 1498, Springer-Verlag, 1998, pp. 745–754.

HYBRID EVOLUTIONARY ALGORITHMS 397

E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”Journal of Heuristics, vol. 2, no. 1, pp. 5–30,
1996.

C. Fleurent and J.A. Ferland, “Object-Oriented Implementation of Heuristic Search Methods for Graph Col-
oring, Maximum Clique, and Satisfiability,” inProceedings of the 2nd DIMACS Implementation Challenge,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, D.S. Johnson and M.A. Trick
(Eds.), American Mathematical Society, vol. 26, 1996, pp. 619–652.

B. Freisleben and P. Merz, “New genetic local search operators for the travelling salesman problem,” Lecture
Notes in Computer Science 1141, Springer-Verlag, 1996, pp. 890–899.

A. Gamst, “Some lower bounds for a class of frequency assignment problems,”IEEE Transactions on Vehicular
Technology, vol. 35, no. 1, pp. 8–14, 1986.

M.R. Garey and D.S. Johnson,Computer and Intractability, Freeman: San Francisco, 1979.
F. Glover and M. Laguna,Tabu Search, Kluwer Academic Publishers, 1997.
D.E. Goldberg,Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
J.J. Greffenstette, “Incorporating problem specific knowledge into a genetic algorithm,” inGenetic Algorithms

and Simulated Annealing, L. Davis (Ed.), Morgan Kauffmann Publishers, 1987, pp. 42–60.
A. Hertz and D. de Werra, “Using tabu search techniques for graph coloring,”Computing, vol. 39, pp. 345–351,

1987.
J.H. Holland,Adaptation and Artificial Systems, University of Michigan Press: Ann Arbor, 1975.
D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon, “Optimization by simulated annealing: an ex-

perimental evaluation; part II, graph coloring and number partitioning,”Operations Research, vol. 39, no. 3,
pp. 378–406, 1991.

D.S. Johnson and M.A. Trick (Eds.), inProceedings of the 2nd DIMACS Implementation Challenge, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, American Mathematical Society,
1996.

F.T. Leighton, “A graph coloring algorithm for large scheduling problems,”Journal of Research of the National
Bureau Standard, vol. 84, pp. 489–505, 1979.

P. Merz and B. Freisleben, “A Genetic Local Search Approach to the Quadratic Assignment Problem,” inProc. of
the 7th International Conference of Genetic Algorithms, Morgan Kauffman Publishers, 1997, pp. 465–472.

C. Morgenstern, “Distributed Coloration Neighborhood Search,” inProceedings of the 2nd DIMACS Implemen-
tation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, D.S. Johnson
and M.A. Trick (Eds.), American Mathematical Society, vol. 26, 1996, pp. 335–358.

H. Müehlenbein, M. Gorges-Schleuter, and O. Kr¨amer, “Evolution algorithms in combinatorial optimization,”
Parallel Computing, vol. 7, pp. 65–88, 1988.

P.M. Pardalos, T. Mavridou, and J. Xue, “The graph coloring problem: A bibliographic survey,” inHandbook
of Combinatorial Optimization, D.-Z. Du and P. Pardalos (Eds.), Kluwer Academic Publishers, vol. 2, 1998,
pp. 331–395.

