
?c1 999K luwerJoA ucrandaelmo ifc CP oumbblisinhaetrosr.iaM l Oanputifmacitzuaretidoni n3 T ,3 h7e9N –e3t9h7er(l1a9n9d9s.)

Hybrid Evolutionary Algorithms for Graph Coloring

PHILIPPE GALINIER galinier@eerie.fr
LGI2P, EMA-EERIE, Parc Scientifique Georges B esse, F-30000 N ˆι mes, France

JIN-KAO HAO Jin-Kao.Hao@univ-angers.fr
LERIA, Universite ´ d’Angers, 2 bd L avoisier, F-49045 Angers, F rance

ReceivedA ugust 4 , 1998; Revised J une 2, 1999; Accepted J une 2, 1999

Abstract. A recent and very p romising approach for combinatorial optimization is to embed local search into
the framework of evolutionary algorithms. In this p aper, we present such hybrid algorithms for the graph coloring
problem. T hese algorithms combine a new class of h ighly specialized crossover operators and a well-known t abu
search algorithm. Experiments of such a hybrid algorithm are carried out on large D IMACS C hallenge b enchmark
graphs. Results prove very competitive with and even b etter than t hose o f state-of-the-art algorithms. Analysis of
the behavior of the algorithm sheds light on w ays to further improvement.

Keywords: graph coloring, solution recombination, tabu search, c ombinatorial optimization

1. Introduction

A recent and very promising approach for combinatorial optimization is to embed local
search into the framework of population b ased evolutionary algorithms, leading to h ybrid

evolutionary algorithms (HEA). Such an algorithm is essentially based on two key elements:

an efficient local search (LS) operator and a highly specialized crossover operator. The basic
idea consists i n u sing the crossover operator to create new and potentially interesting confi-

gurations which are then improved by the LS operator. Typically, a HEA begins with a set of

configurations (population) and then repeats an iterative process for a fixed number oftimes

(generations). At each generation, two configurations are selected t o serve as parents. The
crossover operatoris applied to the parents to generate a new configuration (offspring). Then

theLS operatoris used to improve the offspring before insertingthe latterinto the population.

To develop a HEA for an optimization problem, b oth the LS and crossover operators

must be designed carefully. Nevertheless, it i s usually more difficult t o develop a meaning-

ful crossover operator than a LS operator. Indeed, while various good L S algorithms are
available for many well-known optimization problems, little is known concerning the de-
sign of a good crossover. In general, designing a crossover requires first the identification of
some “good properties” ofthe problem which must be transmitted from parents to offspring
and then the development of an appropriate recombination mechanism. N ote that r andom
crossovers used in standard genetic algorithms are meaningless for optimization p roblems.

HEAs have recently b een applied to some well-known NP-hard combinatorial prob-
lems such as the traveling salesman problem (M¨u ehlenbein et al., 1988; F reisleben and
Merz, 1996), the quadratic assignment problem (Freisleben and Merz, 1996; Merz and
Freisleben, 1997) and the bin-packing problem (Falkenauer, 1996). The results obtained

380 GALINIER AND HAO

with these HEAs are quite impressive. Indeed, they compete favorably with the best algo-
rithms for t hese problems on well-known b enchmarks. T hese results constitute a very
strong indicator that HEAs are among the most powerful p aradigms for hard combinatorial
optimization.

In this p aper, we are interested in tackling with HEAs a well-known combinatorial op-
timization problem: the graph coloring problem (GCP) (Pardalos et al., 1998). The GCP
consists in coloring the vertices of a given graph with a minimal number of colors (chro-
matic number, denoted by χ (G)) with the constraint that two adjacent vertices receive
different colors. This problem allows one to model many p ractical and important applica-
tions (Leighton, 1979; Gamst, 1986; Chaitin, 1982). Unfortunately, the problem is very
difficult to solve because it belongs to the NP-complete family (Garey and Johnson, 1979).
Even approximating the problem proves to be difficult: no p olynomial algorithm is able
to color any graph using a number of colors smaller than 2 ×χ (G) (unless P= NP). Em-
pirical rr e asnuyltg s on coloring ruamndboemro graphs cs omnfalilremret dh tnhe2 h ×a rχdn(Ges)s uofn tehses problem. EFmor-
instance, Johnson et al. observed that no known exact algorithm is able t o color optimally
even r elatively small (90 vertices) r andom graphs of density 0.5 (Johnson et al., 1991).
Given that there is almost no hope to find an efficient exact algorithm, various heuristic
algorithms have b een developed including greedy algorithms, local search algorithms, and
hybrid algorithms.

This paper aims at developing powerful hybrid evolutionary algorithms to find sub-
optimal solutions of h igh quality for the GCP. T o achieve this, we devise a new class of
highly specialized crossover operators. These crossovers, combined with a well-known
tabu search algorithm, lead to a class of HEAs. W e choose to experiment a p articular HEA.
Results on large b enchmark graphs p rove very competitive with and even b etter than t hose
of state-of-the-art algorithms. Also, we study the influence of some critical parameters of
the HEA and analyze its behavior, shedding light on several ways to further improve the

performance of these HEAs.
The p aper is organized as follows. W e first review h euristic methods for graph coloring

(Section 2). Then, we presentthe general principles ofthe specialized crossovers (Section 3).
Section 4 presents the different components of our hybrid algorithms. Sections 5–6 present
computational results and analyze the behavior of the algorithm. The last two sections give
some discussions and conclusions.

2. Heuristic methods for graph coloring

Let G = (V, E) b e an indirected graph with a vertex set V and an edge set E . A subset of
LGe itsG Gca= lled(V an independent rseectt iefd n gor tawpoh adjacent vrteerxtics eest b elong tno eitd. Ae k-coloring bofs eGt oisf
a p artition of V into k independent sets (called p roper color classes). An optimal coloring
of G is a k-coloring with the smallest possible k (the chromatic number χ (G) of G). The
graph coloring problem is to find an optimal coloring for a given graph G.

Many heuristics h ave been proposed for this problem. We r eview below the main classes
of k nown heuristics.

Greedy constructive methods: The p rinciple of a greedy constructive method is to color
successively the vertices of the graph. At each step, a new vertex and a color for it are

HYBRID EVOLUTIONARY ALGORITHMS 381

chosen according to some p articular criteria. These methods are generally very fast but
produce p oor results. Two well-known techniques are the saturation algorithm DSATUR
(Bre ´laz, 1979) and the Recursive Largest First algorithm (Leighton, 1979).

Genetic algorithm (GA): The main principles of GAs are presented in Holland (1975),
Goldberg (1989). Davis proposed to code a coloring as an ordering ofvertices. The ordering
is decoded (transformed into a coloring) b y u sing a greedy algorithm. This algorithm gives
poor results (Davis, 1991). No other work u sing p ure GA has been reported since then.
It is believed that pure GAs are not competitive for the problem. Recently, Falkenauer
introduced a set ofgenetic operators for the so-called “grouping problems”. These operators
are applicable to the GCP which is a special grouping problem, but no results are available
on b enchmark graphs.

Local search (LS): Several LS algorithms h ave b een proposed for the GCP and prove very
successful. These algorithms are usually based on simulated annealing or tabu
search. They differ mainly by their way of defining the search space, the cost function

and the neighborhood function. Hertz and de W erra proposed a penalty approach and
a simple neighborhood. They tested simulated annealing and tabu search (Hertz and de
Werra, 1987; Chams et al., 1987). Johnson et al. compared t hree different neighborhoods
using simulated annealing and presented extensive comparisons on random graphs
(Johnson et al., 1991). A more powerful LS algorithm was recently reported in
Morgenstern (1996), which is b ased on a quite different neighborhood from the previous
ones.

Hybridalgorithms: Hybrid algorithms integrating local search and crossovers were recently
proposed in Fleurent and Ferland (1996), Costa et al. (1995). Fleurent and Ferland (1996)
shows that crossovers can improve on the performance ofLS, but this happens only for a few
graphs and needs important computational efforts. Hybrid algorithms using a population
and local search but without crossover are proposed in Morgenstern (1996), producing
excellent results on b enchmark graphs.

Successive building of color classes: This particular strategy consists in building suc-
cessively different color classes b y identifying each time a maximal independent set and
removing its vertices from the graph. So the graph coloring problem is reduced to the
maximal independent set problem. Different techniques to find maximal independent sets
have been proposed for building successive color classes (Johnson et al., 1991;Hertz and de
Werra, 1987; M orgenstern, 1996), including local search methods (Fleurent and Ferland,
1996). This strategy p roves to be one of the most effective approaches for coloring large
random graphs.

3. New crossovers for graph coloring

Standard genetic algorithms were initially defined as a general method based on blind
genetic operators (crossover, mutation, ...) able to solve any problem whose search space
is coded b y bit strings. But it is now admitted that the standard GA is generally p oor for

382 GALINIER AND HAO

Table 1. Assignment approach vs. partition approach.

Assignment approach Partition approach

Configuration Assignment of colors to vertices Partition of the vertices
s : V → {1, . . . ,k} s = {V1 , . .. , Vk}

Elementary characteristic Couple vertex-color (v, i): Pair {v1 , v2} or set {v1, . .., vq }:
color i assigned to vertex v ivre r{vtices a}lol rinsc elutd {evd in a same Vi

Crossover Assignment crossover Partition crossover

s (v) := s1(v) or s2 (v)
s(v): =s

solving optimization problems and that genetic operators, notably crossover, must incor-
porate specific domain k nowledge (Greffenstette, 1987). More precisely, designing cross-
overs requires to identify properties that are meaningful for the problem and then to develop
a recombination mechanism in such a way that these properties are transmitted from parents
to offspring.

Concerning graph coloring, there are essentially two different approaches according
to whether a coloring is considered to be an assignment of colors to vertices or to be a
partition of vertices into color classes. Before p resenting these approaches, we show their
main characteristics in Table 1.

The assignment approach considers a configuration (a proper or improper) coloring as an
assignment of colors to vertices, i.e. a mapping s : V → {1· · · k} from the vertex set V into
a ssseitg onfmke cnotl oorfsc . Sloor,s sitt ios vnearttuicraels ,toi . present a configuration s by a }vef rctoomr (tsh(evv1)e,r . . . , set(v Vn)i n) toof
size n = | V |, each s(vi) being the color assigned to the vertex vi . It is now possible to define
an eunnif= orm| V assignment crossover as follows: given two parents s1 = (s1(v1), . . . ,s1(vn))
and s2 = (s2(v1), . . . ,s2(vn)), b uild the offspring s = (s(v1), . . . , s(=vn())s b y performing for
each ve=rte(xs v either s(v) := s1 (buv)i or hs(ev o)f := is2ng(vs) =wi(ths an equal probability 1/2.

Assignment crossovers h=avs e (bve)eo nr proposed sfor coloring problem in Fleurent and Ferland
(1996), Costa et al. (1995). In Fleurent and Ferland (1996), the uniform assignment cross-
over is enhanced in the following way: if a vertex v is conflicting in one of the two parents,
it systematically receives the color assigned to v in the other parent.

We can observe that with the assignment approach, the property transmitted by crossovers
is a couple (vertex, color): a particular vertex receives a particular color. N evertheless, such
a couple, considered isolatedly, is meaningless for graph coloring since all the colors play
exactly the same role.

For the coloring problem, it will be more appropriate and significant to consider a p air
or a set of vertices b elonging to a same class. This leads to a different approach, that we
call p artition approach. With this approach, a configuration is considered as a partition of
vertices into color classes and a crossover is required to transmit color classes or subsets of
color classes. Given this general p rinciple, many different crossovers are now imaginable.

One possibility is to build first a partial configuration ofmaximum size from subclasses of
the colorclasses ofthe two parents andthento complete itto obtain acomplete configuration.
More precisely, given two parents (colorings or partial colorings) s1 = { V11 , . . . , Vk1 } and
s2 = {V12, . . . , Vk2}, the partial configuration will b e a set {V1, . . . , V=k} {oVf disjoint se}tas nodf
ver=tic{e sV having the} following properties:

HYBRID EVOLUTIONARY ALGORITHMS 383

• each subset Vi is included in a class ofone ofthe two parents: ∀ i (1 ≤ i ≤ k) ∃j : Vi ⊆ Vj1

or ∃j : Vi ⊆ Vj2, hence all Vi are independent sets.
• tohre ∃ ∃ujn :ioV n o⊆f tV he Vi has a maximal size: | ∪1≤i≤k Vi | is maximal.
• athbeouu nt tiohen ohfa lthf eofV thhea sVai ims imposed zteo: b |e ∪ included| i ins a calxaimss ol.f parent 1 and the other

haabolfu itnt a ech laaslsf o off parent 2, because it is desirable to equilibrate the influence of the two
parents.

One way to construct the partial configuration is to build each Vi successively in a greedy
fashion: b othparents are considered successively andwe choose inthe consideredparent the
class with the maximal number of unassigned vertices to b ecome the next class Vi . Note
that this crossover, named Greedy Partition Crossover (GPX), generates each time one
offspring. The GPX crossover is presented in detail in Section 4 . More partition crossovers
will b e p resented in Section 7.1.

Let us mention now two other partition crossovers. The first one is presented in Dorne
and Hao (1998) where each Vi is built from the union oftwo classes, each class coming from
one parent. The second one is a crossover defined for grouping problems and applicable
to the GCP (Falkenauer, 1996). This crossover is different from the GPX: to b uild a Vi,
two classes are randomly taken from the parents, contrary to the GPX where this choice is
carefully realized with particular optimization criteria.

Finally, let u s mention that we have carried out experiments to confirm the pertinence of
the characteristic considered by partition crossovers (i.e. set of vertices), limiting here to
pairs ofvertices. W e take a (random) graph and a fixed k and collect a sample ofk-colorings.
We look at the frequencies that two non-adjacent vertices are grouped into a same color
class. Analysis of these frequencies discloses that some pairs of non-adjacent vertices are
much more frequently grouped into a same class than others. This constitutes a positive
indicator of the p ertinence of the approach.

4. The hybrid coloring algorithm

To solve the GCP, i.e. to color a graph with a minimum possible number of colors, a
particular approach consists in applying a coloring algorithm to look for a k -coloring for
a (sufficiently high) number of colors k = k0. Then whenever a k-coloring is found, one
re-applies nthtley same algorithm ftoc ol looorks fko=r k-colorings with decreasing numbers of colors
(k = k0 − 1,k0 − 2, . . .). Therefore, the graph coloring problem is reduced to solving
increasingly d,kiffi−cul2 t k -coloring problems. gIrna tphhis c soelcotriionng, we present trhedeu components nogf
our Hybrid Coloring Algorithm (HCA) for finding k -colorings.

4.1. Search space and costf unction

Recall that the k-coloring problem consists in coloring a graph G = (V, E) with a fixed
Rnuemcabller t hoaft t kh ceo klo-crso.l Trino gsp orlvoeb a k -coloring problem, we gcroanpshidG er =the(Vse,t E Eo)f waillt possible
partitions of V in k classes including those which are not proper k-colorings. Each partition
is attributed a penalty equal to the number of edges having both endpoints in a same class.

384 GALINIER AND HAO

Therefore, a partition having a 0 penalty corresponds to a proper k-coloring (a solution).
The purpose of the search algorithm is then to find a partition having a penalty as small as
possible. So the k-coloring problem can be solved by solving the minimization problem
(S, f) where:

• A configuration s ∈ S is any p artition s = {V1, . . . , Vk} of V in k subsets.
• ∀As ∈ Sfi,g f (s) = |s s{e∈ ∈ E is : bnoyt hpa endpoints =o{ fV e are in the} same iVni ∈ us}b b| .

In the following we call configuration any element of the search space S and reserve the
word solution for a proper k -coloring.

4.2. The general p rocedure

In HCA, the population P is a set of configurations having a fixed constant size |P | . We
present b,et lhoewp tohpeu general algorithm:

The hybrid coloring algorithm

Data :graph G = (V, E), integer k
DRaetsualt: : rtahep hbG est= configurationf ound

ebnegdwPin=hsIsPi(l=s=n=e1iLtC, nPUsooo2rpcto)pdasS =ualstlooStCaeevphPtae-ioorCor(ocnpsohs(u1n|e(lsP,dPas,t2ia|tL i))irooe)nnn(tP(s)(,sPd))o

The algorithm firstbuilds an initial population ofconfigurations (InitPopulation) and then
performs a series of cycles called generations. At each generation, two configurations s1

and s2 are chosen inthe population (ChooseParents). A crossover is then used to produce an
offspring s from s 1 and s 2 (Crossover). The LS operator is applied to improve s for a fixed
number L of iterations (LocalSearch). Finally, the improved configuration s is inserted in
the population by replacing another configuration (UpdatePopulation). This process repeats
until a stop condition is verified, usually when a pre-fixed number MaxIter of iterations is
reached. Note howeverthatthe algorithm may stop before reachingMaxIter, ifthe population
diversity becomes too small (see Section 6.2).

Let us notice that this h ybrid algorithm differs from a genetic algorithm b y some fea-
tures. The fundamental difference is naturally that the random mutation operator of a GA
is replaced with a LS operator. Another difference concerns the selection operator of a
GA, which encourages the survival and reproduction of the b est individuals in the popu-
lation. In the h ybrid algorithm, the selection is ensured jointly b y ChooseParents and
UpdatePopulation.

HYBRID EVOLUTIONARY ALGORITHMS 385

The initialization o perator. The operator InitPopulation(| P|) initiates the population P
with |P | configurations. To creTahtee a configuration, we use (t|hPe greedy esast tuhreat ipoonp algorithm
wofi Bthr´| e Pla|z c(o1n9f7i9gu) slightly adapted iena ao crdoenrfi gtou produce a p artition goref ekd cylas sasteusr.a Ttiohne algorithm
works as follows. W e start with k empty color classes V1 = · · · = Vk = φ. At each step,
we chose a vertex v ∈ V such that v has the minimal num=b· e·r· o =f a Vllo=wedφ .cl Aatsse easc h(is .et.e a
wclaes sc thoaset a do veesr nteoxt vco∈ ntaV in any v therattevx adjacent tion v). lTno put v i onf a lcloolwore dclc alsass, we ci.he.osae
among all the allowed classes of v the one Vi that has the minimal index i. In general, this
process cannot assign all the vertices. Each of unassigned vertex is t hen put into one color
class randomly chosen. Once a configuration is created, it is immediately improved b y the
LS operator for L iterations.

Due to the randomness of the greedy algorithm and the LS improvement, the configu-
rations in the initial p opulation are quite different. This point is important for p opulation
based algorithms because a homogeneous population cannot efficiently evolve.

The c rossover o perator. The crossover used here is the GPX crossover presented in
Section 3. Let us show now how this crossover works. Given two parent configurations
s1 = {V11 , . . . , Vk1} and s2 = {V12, . . . , Vk2} chosen randomly by the ChooseParent operator
from= {thVe p opulation, nthde s algorithm Crosso}v cehro(sse1,ns2r)a n bduoilmdsly an offspring s = {r eVn1 , . . . , aVtok}r

as fmolt lohwep s.o

The GPX crossover algorithm

Data : configurations s1 = 'V11, . . . , Vk1 “ ands 2 = 'V12,
Result : configuration s = {' V1, . . . , Vk}

benedgiAfnosrsiVcrifgehllmn ol:(= io1r osvaso≤ ne eVddii t Adolhs m,eu≤ t hcv lyhk ee)nrt thhtieA acdteov : sV e=rio Atfi1 c,hV ee alslsfso a reofm mA V a: s − x=1ima(2 nVud1m∪s 2c · ar·d·i∪ naV likty)
The algorithm builds step b y step the k classes V1, .

. .. , Vk2“

. . , Vk of the offspring: at step
l(1 ≤ l≤ k), the algorithm b uilds the class Vl in the following way. Consider parent
s1 (1A≤ = 1 ≤) or parent s 2 (riAt = 2 b)u according atsos swV hether lis odd or even. In the considered
parent, =c h1o)oo sre ptharee cnlta sss having)tha ec cmoardxiinmgut mo wnhuemtbheerr oli fs svo erdtdico esr etov e bne.coI nm the ecc laossn Vidl arendd
remove these vertices from parents s1 and s2. At the end of these k steps, some vertices
may remain unassigned. These vertices are then assigned to a class randomly chosen.

In the shown example (see Table 2), there are 3 color classes (k = 3) and 10 vertices
represented b y capital plleette(rsse eA T ,Ba,b . . . ,)J., At hte step 1e, 3clca soslo {rDc ,l aE s,s e Fs, Gk}= =in p arent 11 0isv cehrtoisceens
rtoe pbreecsoenmtee dthb ey yfic rsatp citlaaslsl e Vtt1e orsf Athe,B offspring. Bsteecpa1 u,sc e lvaesrst{i cDes, ED,,EF ,F, aGn}d i Gn are now assigned,

they areremovedfromboth s1ands2: in s1, weremove the complete class {D, E , F, G}, ins2
we remove the vertices D,E,F and G fro,mwe trhemeiro r espective clleatsescelsa.s Similarly, we ,biunisld

386 GALINIER AND HAO

Table 2. The crossover algorithm: an example.

classes V2 and V3 from parents 2 and 1r espectively. At the end of these 3 steps, vertex Iis
the only one to be randomly assigned to a class. Let us notice that the edges of the graph,
which are used in the cost function f, are not involved in the crossover operator.

The L S o perator. The purpose of the LS operator L ocalSearch(s, L) is to improve a
configuration s produced by the crossover for a maximum of L iterations before inserting s
into the p opulation. In general, any local search m ethod may b e u sed. In our case, we use
tabu search (TS), an advanced local search meta-heuristic (Glover and Laguna, 1997).

TS performs guided search with the help of short and eventually long term memories.
Like any LS method, TS needs a neighborhood function defined over the search space
N : S → 2S. Starting with a configuration, a typical T S procedure proceeds iteratively t o
Nvis:i t a s→eri2e s of locally b est configurations following the neighborhood. A t each iteration,
a best neighbor is chosen to replace the current configuration, even if the former does not
improve the current one. This iterative process may suffer from cycling and get trapped in
local optima. To avoid the problem, TS introduces the notion of Tabu lists. The b asic idea
is t o r ecord each visited configuration, or generally its attributes and to forbid to re-visit
this configuration during next tl iterations (tl is called the t abu tenure).

The TS algorithm used in this work is an improved version of the TS algorithm proposed
by Hertz and de Werra (1987). Here a neighbor of a given configuration s is obtained
by moving a single vertex v f rom a color class to another color class Vi . To make the
search more efficient, the algorithm uses a simple heuristic: the vertex v to b e moved
must b e conflicting with at least another vertex in its original class. Thus a neighboring

configuration of s is characterized b y a move defined by the couple hv, ii ∈ V ×{1 · · · k}.
Wconhfeing usuracthio a move h cvh, aiir cist performed, mthoev couple hdvb, s(v)i ciso ucplalsesh ivfie,dii ta ∈b uV f× or 1the· n·ekx}t.
tWl hiteernas tiuocnhs,a awm hoevree s hv(v,i) r epresents tehde, ct hoelocr culaplsse ohvf, vse(vrte)ix v cilna s. iTehdet raebfourf eo, v hcea nnneoxtt
be r eassigned to the class s(v) during this period. Nevertheless, a tabu move leading to a
configuration better than the best configuration found so far is always accepted (aspiration
criterion). The tabu tenure tl for a move is variable and depends on the number nbCFL
of conflicting vertices in the current configuration: tl = R andom(A) + α ×nbCFL where
oAf acondn α are gtwv oer p arameters acnurdr etnhet cfounnfcitgiuonra tR ioann:dt olm= (AR) a rnedtuormns(randomly a number in
{0, . . . , A − 1}. To implement the tabu list, it is sufficient to use a V ×{ 1 · · · k} table.

HYBRID EVOLUTIONARY ALGORITHMS 387

The algorithm memorizes and returns the most recent configuration s∗ among the best
configurations found: after each iteration, the current configuration s replaces s ∗ if f (s) ≤
f(s∗) (and not only iff (s) < f (s∗)). The rational to return the lastbest configuration i (ss t)ha ≤t
we want to produce a solution which is as far away as possible from the initial solution in
order to b etter preserve the diversity in the p opulation (see Section 6.3 for m ore discussion
on this topic). The skeleton of the TS algorithm is given below.

The TS operator

Data :graph G = (V, E), configuration s0

DRaetsualt: : rtahep h bG est= configuration ffigouunrdat

ebnedgsiwn :h=ipicleh sne0trorfooondsoruemtca Se ttb ht oeehpsem t-Cca oouovtunehpdol<ietriivo<z,enivd()> ,m so(i dnvvoe)s ><ivn,it h> eT abul istf ort li terations
The configuration created by a crossover and improved by TS is now to be inserted in

the population. To do this, the worst of the two parents is replaced.

5. Experimental results

In this section, we present experimental results obtained by HCA and make comparisons
with other algorithms. In p articular, detailed comparisons are p resented between HCA and

the TS algorithm.

5.1. Experimental settings

Test i nstances. The following graphs from the well-known second DIMACS challenge
benchmarks are used (Johnson and Trick, 1996).1

• Three random graphs: D SJC250.5, DSJC500.5 and DSJC1000.5. They have 250, 500
aTnhdre 1e0r 0a0n vdeormticg ersa r espectively a5n0.d5 a density o0.f5 50a .5n wdD ithS uJnC1kn0o0w0.n5 .ch Trohmeya thiacv neu2 m5b0,er 5.

• Two Leighton graphs: le4501 5c and le4502 5c. They are structured graph with k nown
cTwhroomL aeitigch tnounmg brearp (respectively c1a5 nadn dle 2455)0.

• twof lat graphs: flat3002 8 and flat10007 6. They are also structured graph with k nown
ctwhorof mlaattgi cr anpuhmsb:ef rla (respectively 3la8t 1a0n0d0 077 6)6..

We are interested in these graphs because they were largely studied in the literature
and constitute thus a good r eference for comparisons. Moreover these graphs are difficult
and represent a real challenge for graph coloring algorithms. N ote t hat according to the

388 GALINIER AND HAO

optimization approach u sed (Section 4), each graph defines in reality a set of k -coloring
instances for different values of k.

Evaluation c riteria. To evaluate the p erformances of HCA and compare with other algo-
rithms, we consider several criteria. Given a particular graph, the first criterion used is the
quality of the b est solution found, i.e. the smallest value of k for which the algorithm is
able to find a k -coloring.

We are also interested in evaluating HCA for different values of k for a graph. Given a
particular k-coloring instance (a graph and a v alue of k) and a p articular stop criterion, we
consider two criteria: robustness and computational effort or solving s peed. Robustness is
evaluated b y the success rate “succr uns/totalr uns” (a successful run is one which finds a
k-coloring for the fixed k). To measure computational effort, we use the (average) number
of iterations and of crossovers needed for successful r uns.

These criteria are also valid for TS, making it possible to compare the p erformance of
HCA and TS.

Parameters. The two main p arameters for HCA are the p opulation size |P | and the LS
length L after a crossover. Tnop fairxa |Pe t|,e we oters HteCdA Aseav reerat lh deipf foepreulnat sioizness azned | Pch|o asned dtt hhee esL izSe

1le0n fgothr m Lo asftt eorf our experiments (|P |P | = w5e i tse cstheodsse nev feorra easy einresntatns ciezess). Lnedt u s snoet tihcee tshizaet
t1h0is f cohr moicoes tr oe mfoa iunrs ecxopnesriismteenntt ws(it|hP o|t= her5 existing HnE fAorse washyici nh use caelsso). .s mLeatlul populations.

Compared with |P|, the length L of LS chain is more critical on the p erformance of the
algorithm. dWw e study i,nt deelt aeinlg tthhe L Lroo lef LoSf tc hhiasi p arameter lraitteicra l(So enctt hioenp 6er).f oHrmerean we osfh tohwe
simply its influence with an example. W e take the graph DSJC500.5 and fix k = 49. We
run ptlhye iHtsCi nAf uweinthc edwi ffiterhe nant evxaalumesp l Le : Le = 2e5t 0he, 5 g0r0ap, h10D 00S,J 2C050000,. 540a 0n0d. iF xo rk e= ac h49 .vaW luee
orufn nL t we perform h3d0 runs, tcov ualnut ethse L Ln u:mL b= er 2of5 0s,uc5c00es,s1fu0l0 r uns 0an0,d4 compute r te hea average
number of iterations needed for a successful r un. Table 3 gives the results obtained with
these values of L .

We observe from Table 3 t hat increasing L increases the success r ate but also the number
of iterations used for successful runs. Therefore larger L makes the algorithm more r obust
but also slower. This implies that there is no absolute b est value for this parameter and that
we must find a best compromise between r obustness and speed for a given instance.

In addition to |P| and L , the HCA requires two other parameters related to the TS algo-
rithImn .a dTdhietisoen p arameters are h Ae aHnCdA α weqhuicirhe are necessary rt aom deeteterrsmr ienleat tehde t otat bhue t TeSnua relg otl.-
Experiments of various combinations suggested that (A = 10, α = 0.6) is a r obust combi-
nEaxtpioenri fmoern ntthseo cfhv oasreinou graphs.

Table 3. Influence of the l ength of L S on the results of HCA.

Graph k Param Succ Iter Cross

DSJC500.5 49 (10,250) 0 — —

(10,500) 2 214,000 418

(10,1000) 16 505,000 495
(10,2000) 29 854,000 417

(10,4000) 30 1,475,000 358

HYBRID EVOLUTIONARY ALGORITHMS 389

5.2. Comparing HCA with TS

HCA uses TS as one of its main components. It is therefore interesting to know if HCA is
able to improve on the results of the TS algorithm. To do this, we take each of the above
presented graphs and fix different values for k, leading to different k-coloring instances.
The chosen values for k b egin from an initial value greater t han the smallest one ever f ound
for the graph and finishes at the b est k nown value. For instance, the b est k-colorings for
DSJC500.5 require 48 colors. T hen we take k = 52 to 4 8 (greater values gives too easy
DinsStJaCn5c0e0s)..5 I rne qthuiisr way, we get a hseetn o wf i ncreasingly 2dift ofic4 u8lt(k-coloring uiensstag nivceess ftooor e eaacsyh

graph.
To solve a k-coloring instance, we run both the HCA and the TS algorithms several

times (from 5 to 10), each run b eing given the same number of iterations (10 millions in
general, more for the most difficult instances). Note that while unsuccessful TS runs stop
always when the allowed number of iterations is reached, HCA may stop before reaching
this number when the diversity in the population becomes too low (D < 20). Tables 4 and
5 show comparative results of HCA and TS for the chosen graphs.

In these tables, each line corresponds to an instance. For b oth algorithms, we indicate
the number of successful runs (the number of fails appears in p arenthesis) and the average
number of iterations for successful runs. For HCA, the tables indicate in addition the

Table 4 . Comparative results of HCA and TS on r andom graphs.

TS HCA

Graph k Succ Iter Succ Iter Cross Param T[s]

DSJC250.5 28 10 2,500,000 9(1)

29 10 578,000 10

30 10 97,000 10

DSJC500.5 48 — — 5(5)

49 (10) — 10

50 10 1,495,000 10

51 10 160,000 10

52 10 43,000 10

DSJC1000.5 83 — — 1∗

84 — — 3(2)

85 — — 4(1)

86 — — 5

87 — — 5

88 (5) — 5

89 3(2) 4,922,000 5

90 5 3,160,000 5

91 5 524,000 5

92 5 194,000 5

490,000 235 (10,2000) 79

96,000 86 (10,1000) 18

18,000 62 (10,250) 8

4,900,000 865 (10,5600) 1,608

871,000 425 (10,2000) 301

185,000 254 (10,700) 115

62,000 119 (5,500) 34

34,000 63 (5,500) 24

28,400,000 1741 (10,16000) 13,550

20,700,000 1283 (10,16000) 11,103

4,600,000 565 (10,8000) 3,590

3,500,000 615 (10,5600) 2,962

1,900,000 668 (10,2800) 1,417

613,000 427 (10,1400) 561

350,000 490 (10,700) 440

220,000 430 (10,500) 344

114,000 157 (5,700) 155

731,000 141 (5,500) 117

390 GALINIER AND HAO

Table 5. Comparative results of HCA and TS algorithms on structured graphs.

TS HCA

Graph k Succ Iter Succ Iter Cross Param T[s]

le4501 5c 15 (10) —6(4)

16 8(2) 319,000 10

17 10 18,000 10

le4502 5c 25 (10) ——

26 10 107,000 10

27 10 7,300 10

flat3002 8 31 (10) —6(4)

32 10 149,000 10

flat10007 6 83 ——4(1)

84 ——5

85 ——5

86 (5) —5

87 1(4) 7,400,000 5

88 2(3) 4,000,000 5

194,000 24 (10,5600) 47

45,000 54 (10,700) 25

29,000 72 (10,350) 20

(10) — — —

800,000 790 (10,1000) 327

94,000 13 (10,4000) 18

637,000 308 (10,2000) 118

84,000 230 (10,350) 29

17,500,000 1008 (10,16000) 8,827

5,300,000 652 (10,8000) 3,601

2,000,000 490 (10,4000) 1,599

1, 100,000 540 (10,2000) 1,016

473,000 463 (10,1000) 587

288,000 566 (10,500) 576

average number of crossovers, the p arameters |P| and L u sed and the average running time
ainv esreacgoenn dusm.2

Table 4 presents the results of 18 k-coloring instances of the 3 r andom graphs. W e notice
first that TS and HCA can r each the same minimal value of k for the graph of 250 vertices.
For the graph of 500 and 1000 vertices, HCA finds b etter solutions than T S and gains 2
colors and 6 colors respectively. Notice that our TS algorithm is very powerful compared
with other TS coloring algorithms (Hertz and de W erra, 1987; Fleurent and Ferland, 1996;
Dorne and Hao, 1999). Taken t his fact into account, it is r emarkable that HCA is able
to outperform largely the TS algorithm. Now if we consider the values of k for which
both algorithms find a k-coloring and compare the n umber of iterations necessary to find a
solution, we observe that HCA is faster for all the considered instances.

Notice also that for a particular graph, solving a more difficult instance (a smaller k)
requires a larger L . For instance, for the graph DSJC250.5, L = 250, 1000 and 2000 for
rke = i3re0,s 2 a9 l aanrgde 2r8L respectively. eT,h foisr complements tJhCe2 i5n0f.o5r,mL ati= on2 p resented ainn dT2 a0bl0e0 3 f.

=Ta3 b0le, 259 presents ethspee rcetisvueltlsy .oT f htihsec o14m k -coloring iensi tnafnorcemsa otiof nthp er e4s estnrteudcti unreT da graphs.
We can observe similar results as for random graphs. N otice however an exception for the
graph le4502 5d for which HCA needs more iterations than TS to find 26 and 27 colorings.
For this graph, we observe a different behavior as decreasing L does not make the search

faster. On other graphs, HCA finds b etter solutions and is faster than TS.
To summarize, we see that quite often HCA improves strongly on the results of a long

tabu search. T his points out that the crossover is able to produce new starting points which
are very u seful to make the search more efficient. Moreover, contrary to the believe that
hybrid algorithms are computationally expensive, we see thatthe HCA algorithm is not only

HYBRID EVOLUTIONARY ALGORITHMS 391

Table 6. Comparison between HCA and the best known results.

Graph χ Best-known TS HCA Difference

DSJC250.5 — 28

DSJC500.5 — 48

DSJC1000.5 — 84

le4501 5c 15 15

le4502 5c 25 25

flat3002 8 28 31

flat10007 60 .col 76 84

DSJC1000.1 — 21

DSJC1000.9 — 226

28 28 0

49 48 0

89 83 − 1

16 15 0

26 26 1

32 31 0

87 83 −1

— 20 − 1

— 224 −2
−2

powerful, but also fast compared with TS. N ext section will allows u s to further appreciate
the search power of the HCA.

5.3. Comparisons with the best known results

Now we compare the results of HCA with the best ones published in the literature (Johnson
and Trick, 1996). To do this, we are interested in the quality criterion, i.e. the lowest
value of k for which a k-coloring can b e found. T able 6 presents comparative results on the
7 graphs. W e also include the results for two other large random graphs of 1000 vertices
(DSJC1000.1 and DSJC1000.9).

Each line in Table 6 corresponds to a particular graph. W hen the chromatic number is
known, itis indicated in column 2. Column 3 (best-known) indicates the smallest values ofk
for which a solution (k-coloring) has ever been found by an algorithm. Most ofthese results
are produced by a p opulation b ased LS algorithm combining two specific neighborhoods
and using the strategy of successive building of color classes (Section 2) (Morgenstern,
1996). Column 4 (TS) gives the results of our T S algorithm. Column 5 (HCA) shows the
results of our hybrid coloring algorithm. Finally, column 6 indicates the difference in
number of used colors between HCA and the b est k nown result.

From the table, we observe that HCA finds the best known r esult for each graph except
for le4502 5c. What is more impressive is that HCA improves on the b est known results
for four large graphs (DSJC1000.5, flat10007 60 .col, DSJC1000. 1and D SJC1000.9).

Note that for large random graphs (more than 300 vertices), the b est algorithms use the
strategy of successive building of color classes. No algorithm without this strategy is really
efficient. HCA is the only algorithm able to compete with this strategy and even to improve
on some b est k nown results.

6. Analysis of HCA

As mentioned before, b oth the performance and the behavior of HCA is largely dependent
on the value of the length L of TS chain after a crossover. Note first t hat the parameter

392 GALINIER AND HAO

L reflects the relative proportion of crossovers and LS in the algorithm, as L corresponds
to the number of iterations performed after each crossover. In t his section, we analyze the
influence of the parameter L on two p articularly interesting points: a) running profile of
the cost function f and b) diversity of the population. For this purpose, experiments were
performed on various graphs. W e present b elow in detail the results on a single graph, but
these results are valid for other tested graphs.

The considered graph i s DSJC500.5 with k = 49. W e r ecall that this instance i s very
difTficheultc ofnors iTdeSr seidn cger aTphS iasloD nSe JisC 5u0n0ab.5lew wtiot hfin kd 4 9-coloring (50-coloring i isn t shtaen bcees ti sre vseurylt
for TS). To solve this instance, we consider 4 different v alues of the p arameter L : L =
f5o0r0T, 1S0).00 T,o o2s 0o0l0v eant dhi 4s 0i 0n0st.a nFcoer, e waechc oofn sthideesre 4vad luiffese,r we perform f3t 0h runs, emacethe run being
given a maximum of 3 millions iterations.

6.1. Running profile

A running profile is defined b y the function i→ f ∗(i) where iis the number of iterations
Aanr du f ∗(i) tphreo fibleesit scd oesfti nveadlub ey kt nhoewf unn actti oitneri a→t7 ion i. Running profile is a natural way t o
observe the evolution of the best values of the cost function during a search. Figure 1
(left) shows the running profiles of HCA on the graph D SJC500.5 with k = 4 9 obtained
w(leiftht) ds ihffoewrsen tth evar luunesn nfogr pL r.o iTlehse figure Ash oonwt hs ealg sora pthhe running profile fok r = =TS4 (right) nfeodr
comparative purpose.

From the left figure, we first notice that HCA fails to find a solution with L = 500 and
L = 1m00t 0h,e b leuftt i fsi suurcec,ew sesfuf ilr swt nitoh i Lc = a2t0 0H0C. AF f oari l Ls = i4n0d0a 0,s ot hleu algorithm fi= nd 5s a0lsa on a
Lsol=u tio1 n00, b 0u,t b nutee idsss more sitfeurlatw iiotnhs (more t 0h0a0n. 1F omril Llio= ns, 4 b0u0t0 ,smt haelle arl gthorainth 3m m fiilnldiosn asl,s nooa t
observable from the figure). We observe also that with L = 500 and L = 1000, the value
oofb f ∗ vdcabrelaesf eros more quickly .aWt theeo b eginning otht ahna tww ithith hL L = =25 00000 a anndd L L = 4 1000000. Ht hoewv eavlueer,
L = 5d0cr0e aasneds mL = q1u0i0c0k mya aktte h ethb ee sgeinarncihn gblt ohcakne wdi t(hat L f ∗ = 040 0fa orn dL L = 5 40000 a0n. dH f ∗ = r1,
fLor= =L = 1a 0n0d0)L L b=e for1 e0 f ∗ mreaakcehet sh a seoalructhiob nl (f ∗ = a0)t. On= t4 he f contrary, 0 L0 = 2d00 f0 =an1d
fLo = L 4= 0001 0m0a0k)e bthefeo sreear fch progress more slowly, =b ut0 0f)o.r a longer toinmter.a

Concerning etht eh running profile somf TorSe (right), we see athl aotn f ∗ rd tiemcree.ases quickly at the
beginning of the run and then much more slowly, reaching a value of about 6 after 1

Figure 1. Running profile of HCA (left) and T S (right).

HYBRID EVOLUTIONARY ALGORITHMS 393

millions iterations. Comparing the running profiles of HCA and T S shows a clear interest
of the crossover operator.

6.2. Evolution of diversity in HCA

For genetic algorithms, it is well-known that the population diversity has an i mportant
influence on the p erformance. A fast lost of the diversity in the p opulation leads to a
premature convergence. It is therefore crucial to b e able to control correctly the evolution
of the diversity.

Forhybrid evolutionary algorithms, however, little is known yet on this topic. This section
aims at studying the evolution ofdiversity during the search, by varying the parameter L . To
do this, we need first a meaningful distance to measure the diversity. For many p roblems,
hamming distance may be u sed. But for the coloring problem, this distance is no more

meaningful. So we introduce the following specific distance applicable to p artitions.
Given two configurations (partitions) s1 and s2, the distance between s1 and s2 is defined

as the minimum number of elementary transformations necessary to transform s1 into s2.

An elementary transformation corresponds to the operation of moving one element from a
class to another class. The diversity ofthe population is then defined as the average distance
D between all the configurations i n the population. In the following, we use D (i) to denote
the diversity of the population after i iterations.

Figure 2 (left) presents the evolution of the function i→ D (i) for L = 500, 100, 2000
andF 4g0ur0e02. W (lee fti)r sptr eosbesnetrsv teh ethe avto tlhutei diversity fduenccretioasneis quite r egularly =fo5r 0a0ll, t1h0e0 ,te2s0te0d0
values of L . Moreover, we observe that the diversity is better preserved for L = 2000 and
vLa = s40o 0f0L t.hM ano froero tvheer, t wwoe osmbsaelrlveer vthaaltute hs.e Idnivdeeresdi,t yt hi es diversity sweritvhe sdm foalrlLe r =va2l u0e0s0 0oa fn Ld
dLec= rea4 s0e0s0 d thowann otor a veat luweo c smlosael etor v0a lwuehisl.e Itnhdise eisd ,n tohet thd iev case yfw ori tt hhe s mtwalol larger evsa loufeLs .
We r emark also that the moment when the diversity reaches about 0 corresponds to the
moment when the algorithm is blocked (see figure 1). Note that this is not surprising since
low diversity means high similarity among the configurations of the population. When t his
happens, crossovers will have no more effect because offspring created b y a crossover will
resemble its parents. Consequently, the p opulation can no more evolve.

Figure 2 . Diversity in function of i (left) and f ∗ (right).

394 GALINIER AND HAO

We see above that a too small L makes the algorithm blocked because the diversity
decreases to 0 before f ∗ reaches 0. So it is interesting to study the relationship between
quality f ∗ and diversity D , depending on the value of L . F igure 2 (right) shows this rela-
tionship for the 4 studied values of L . F rom the figure, we observe t hat for a fixed value of
f∗, the diversity is h igher for a larger value of L , indicating that a longer T S chain p reserves
better the diversity in the p opulation.

6.3. Why a longer L S chain p reserves the diversity

Now we try to understand why a longer LS helps preserve the diversity. N ote first that
figure 1does not allow us to draw any conclusion about the r elationship between f ∗ and D ,
though it shows a larger L makes both functions i→ f ∗(i) and i→ D (i) decrease m ore
slowly (figure 1s)a.

We present now the evolution of quality f ∗ and diversity D in function of the number of
generations x instead of the number of iterations i (recall t hat a generation is a complete
cycle of HCA, see Section 4 .2).

A first p oint shown in figure 3 (left) is that a larger L makes the function x → f ∗(x)
decAref aisrest more quickly itnha fnig a sem3 al(lleerf L) sdot hesa.t a Thl iasr gise rnLo t surprising as a longer →LS h elps
to find b etter configurations at each generation. A second p oint observed in figure 3 (right)
is that a larger L makes the function x → D (x) decrease m ore slowly. An intuitive
explanation gise rthL at a longer eLf Su cnhctaiionn m xak →7es t Dhe(offspring generated b y a crossover fi vaer
from its parents, in p articular from the parent r emaining in the p opulation. Consequently,
for a same number of generations x , D must be larger for a same f ∗ with a larger L .

Now let us summarize the main results of this analysis. A long L S chain (less crossover)
has two implications. The first one is that the search becomes slower. The second one is
that the diversity of the p opulation is better p reserved. Reversely, a short LS chain (more
crossover) makes the search faster, but reduces rapidly the diversity. Consequently, if one
wants to find b etter results in terms of quality, one must use sufficiently large value for L .
This is especially true if the problem to b e solved is difficult. On the contrary, small values
of L help find solutions more quickly for easy p roblems.

Figure 3. Quality f ∗ (left) and diversity D (right) in function of x .

HYBRID EVOLUTIONARY ALGORITHMS 395

7. Discussion

7.1. Otherp artition crossovers

In previous sections, we p resented and experimented a p articular partition crossover. Now
we present other partition crossovers that we have developed and experimented. T hese
crossovers are b ased on the idea of renaming the color classes of one of the two parents.
More p recisely, to rename the color classes of the chosen parent, say s2, we use a mapping
σ : {1 · · · k} → {1 · · · k} such that 6i |Vi1 ∩ Vσ2(i) | is maximized. Once the renaming is
σdo: ne{ , 1t·he· ·tkw}o parents may sbuec hr ec thoamt b6in|eVd in∩ se Vvera|l manners tizoe generate offspring. iTnhgrei se

crossovers were tested. The first one realizes simply a uniform recombination. In the second
one, each Vi receives the intersection Vi1 ∩ Vσ2(i) and the configuration is completed with a
greedy algorithm. In the third one, the Vi are built successively as follows: T o b uild Vi, a)

rcehmooosvee jth seu cvhertt ihcaets| o Vfj1 V∩iVf rσ2o(mj)|t hi sei mr arexsipmeucmtiv,eb) clb ausisledsV inif trhoem twt hoe pau rneinotns.V ji∪V σ2(j)andc)
Experiments with these crossovers show that they are generally able to produce interesting

results. Taking into account the results reported in Dorne and Hao (1998), we conclude
that the basic principles b ehind the family of partition crossovers are r eally u seful to design
powerful crossovers for the GCP.

For comparative purpose, we also experimented some assignment crossovers within
our HCA, including the uniform assignment crossover (Section 3) and the conflict-based
crossover (Fleurent and Ferland, 1996). Results show that these crossovers sometimes
improve on the results of TS, but cannot compete with the p artition operators. All these
results and those of Fleurent and Ferland (1996) support the above conclusion concerning
the importance of p artition crossovers.

7.2. How to improve HCA

As seen in Section 6, the population diversity plays an important role on the performance of
the algorithm. As shown before, one way to preserve the diversity is to apply a longer L S
after each crossover. However, a longer LS makes the algorithm slower. At the same time,
we have shown that short LS makes the algorithm fast. T herefore, the algorithm may use
short LS (to be fast) and at the same time use other mechanisms to preserve the population
diversity. To achieve this, there are several possibilities.

First, one may use a larger p opulation. Although existing HEAs use often small popula-
tions, it should be interesting to see what happens with large ones. Second, one may design
crossovers able to create offspring sufficiently different from its two parents. Third, the LS
may b e b iased in order to prevent the offspring from becoming too close to its parents.
Finally, selected solutions can b e memorized when they are deleted from the p opulation
and r e-inserted into the population when the diversity becomes to low.

8. Conclusions

In this paper, we introduced a new class of crossover operators for graph coloring and
studied a particular member ofthis class. These crossovers are based on two initially simple

396 GALINIER AND HAO

ideas: a) a coloring is a partition of vertices and not an assignment of colors to vertices,
b) a crossover should transmit subsets of color classes from parents t o offspring. These
new crossover operators are integrated into an h ybrid algorithm using a well-known tabu
search algorithm. The hybrid algorithm is evaluated on a set of difficult and large DIMACS
challenge graphs.

Experimental results show clearly that the HCA improves strongly on the results ofits TS
operator making evident the importance of crossovers in the search process. Comparisons
with other well-known coloring algorithms show t hat HCA is one of the most efficient
algorithm and that h ybrid algorithms are very powerful for this problem. Indeed, our HCA
is able to find the b est known results for most of the tested graphs and even able to improve
on the b est results for some largest graphs. Moreover, a h ybrid evolutionary algorithm like
the HCA is not computationally expensive t o obtain high quality solutions, contrary to
previous results reported in the literature.

Experiments are also realized to study the behavior of the HCA, especially the evolution
of the cost function and of the diversity in the population. The experiments first confirm
the necessity to preserve enough diversity for the search to b e efficient. W e analyze why
more crossover, i.e. short LS, makes the search faster and at the same time tends to reduce
the diversity while less crossover leads to opposite effects.

To conclude, t his work confirms the potential power and interest of hybrid evolutionary
algorithms for tackling hard combinatorial problems.

Acknowledgments

We would like to thank the referees of the p aper for their useful comments.

Notes

1. Available via ftp from ftp:// dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.
2. The timing for HCA is b ased on a C++ implementation which is compiled without optimization option and

executed on an UltraSPARC-IIi 333 MHz with 132MB R AM.

References

D. Br´e laz, “New methods to color vertices of a graph,” Communications of ACM, vol. 22, pp. 251–256, 1979.
G.J. Chaitin, “Register Allocation and Spilling via Graph Coloring,” in P roc. of ACM SIGPLAN 82 Symposium

on Compiler Construction, New York, 1982, pp. 98–105.
M.Chams, A.Hertz, andD. deWerra, “Some experiments with simulated annealingforcoloring graphs,”European

Journal of Operational R esearch, vol. 32, pp. 260–266, 1987.
D. Costa, A. Hertz, and O. Dubuis, “Embedding of a sequential procedure within an evolutionary algorithm for

coloring problems in graphs,” Journal of Heuristics, vol. 1, no. 1,pp. 105–128, 1995.
L. Davis, Handbook of Genetic A lgorithms, Van Nostrand Reinhold: New York, 1991 .
R. D orne and J.K. Hao, “Tabu search for graph coloring, T -coloring and set T -colorings,” in Meta-Heuristics:

Advances and Trends in L ocal S earch P aradigms for Optimization, S. Voss, S. M artello, I .H. Osman and C.
Roucairol (Eds.), Kluwer Academic Publishers, 1999, Chapter 6,pp. 77–92.

R. Dorne and J.K. Hao, “A new genetic local search algorithm for graph coloring,” Lecture Notes in Computer
Science 1498, Springer-Verlag, 1998, pp. 745–754.

HYBRID EVOLUTIONARY ALGORITHMS 397

E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,” Journal ofHeuristics, vol. 2,no. 1,pp. 5–30,
1996.

C. Fleurent and J .A. Ferland, “Object-Oriented Implementation of Heuristic Search Methods for Graph Col-
oring, Maximum Clique, and Satisfiability,” in P roceedings of the 2nd D IMACS I mplementation Challenge,
DIMACS Series in Discrete M athematics and Theoretical Computer Science, D .S. Johnson and M.A. Trick
(Eds.), American Mathematical Society, vol. 26, 1996, pp. 619–652.

B. F reisleben and P . Merz, “New genetic local search operators for the travelling salesman p roblem,” Lecture
Notes in Computer Science 1141, Springer-Verlag, 1996, pp. 890–899.

A. Gamst, “Some lower bounds for a class of frequency assignment p roblems,” IEEE Transactions on Vehicular
Technology, vol. 35, no. 1, pp. 8–14, 1986.

M.R. Garey and D.S. Johnson, Computer and Intractability, Freeman: San F rancisco, 1979.
F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers, 1997.
D.E. Goldberg, Genetic A lgorithms in Search, Optimization and Machine L earning, Addison-Wesley, 1989.
J.J. Greffenstette, “Incorporating problem specific knowledge into a genetic algorithm,” in Genetic A lgorithms

and SimulatedA nnealing, L . Davis (Ed.), Morgan Kauffmann Publishers, 1987, pp. 4 2–60.
A. Hertz and D. de W erra, “Using tabu search techniques for graph coloring,” Computing, vol. 39, pp. 345–35 1,

1987.
J.H. Holland, A daptation andA rtificial Systems, University of Michigan Press: Ann Arbor, 1975.
D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon, “Optimization b y simulated annealing: an ex-

perimental evaluation; part II, graph coloring and number partitioning,” Operations R esearch, vol. 39, no. 3,
pp. 378–406, 1991.

D.S. Johnson and M.A. Trick (Eds.), in P roceedings of the 2nd D IMACS I mplementation Challenge, D IMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, American M athematical Society,
1996.

F.T. L eighton, “A graph coloring algorithm for large scheduling p roblems,” Journal of Research of the National
Bureau Standard, vol. 84, pp. 489–505, 1979.

P. Merz and B. Freisleben, “A Genetic Local Search Approach t o the Quadratic Assignment P roblem,” in Proc. of
the 7th I nternational Conference of Genetic A lgorithms, Morgan Kauffman P ublishers, 1997, pp. 465–472.

C. Morgenstern, “Distributed Coloration Neighborhood Search,” in P roceedings of the 2nd D IMACS I mplemen-
tation Challenge, DIMACS Series in Discrete Mathematics and T heoretical Computer Science, D.S. Johnson
and M.A. Trick (Eds.), American Mathematical Society, vol. 26, 1996, pp. 335–358.

H. M ¨uehlenbein, M. Gorges-Schleuter, and O. Kr¨a mer, “Evolution algorithms in combinatorial optimization,”
Parallel Computing, vol. 7,pp. 65–88, 1988.

P.M. Pardalos, T . Mavridou, and J. Xue, “The graph coloring problem: A b ibliographic survey,” in Handbook
of Combinatorial Optimization, D.-Z. Du and P. Pardalos (Eds.), Kluwer Academic Publishers, vol. 2, 1998,
pp. 331–395.

