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Abstract. This paper examines the b est current algorithm for solving the Chromatic Number Problem, due
to Galinier and Hao (Journal of Combinatorial Optimization, vol. 3, no. 4, pp. 379–397, 1999). The algorithm
combines a Genetic Algorithm with Tabu Search. We show that the algorithm remains powerful even if the Tabu
Search component is eliminated, and explore the reasons for its success where other Genetic Algorithms have
failed. In addition we propose a generalized algorithm for the F requency Assignment Problem.
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1. Introduction

The Chromatic N umber Problem is one of the most studied Combinatorial Optimization
problems. The challenge is, given a graph, to find the least number of colors for which

there is a coloring of the vertices of the graph in which no two adjacent vertices b ear the

same color. This is most often implemented b y using a conflict minimization algorithm.

Given K colors, a coloring is sought which minimizes the number of conflicts (i.e., the
number of adjacent vertices bearing the same color). The b est current algorithm for solving

this problem is due to Galinier and Hao (1999). It is a hybrid coloring algorithm (HCA)

which combines a new type of Genetic Algorithm (GA) with a Tabu Search. By contrast,

most other recent improvements in tackling the Chromatic Number Problem have been



achieved by incorporating maximum independent sets within existing non-GA approaches
(David et al., 1991; Hertz and De W erra, 1987; M orgenstern, 1996). Traditional Genetic
Algorithms gave poor results for graph coloring (Davis, 1991). Hybrid algorithms which
combine local search within a population b ased approach (Morgenstern, 1996; Costa et al.,
1995; Fleurent and Ferland, 1996; Glass and Pr¨ ugel-Bennett, 1998) have enjoyed a certain
degree of success although crossover has played only a small part in the success. In contrast,
the success of Galinier and Hao is a direct consequence of their crossover operator.

GalinierandHao tested outtheir algorithmextensively onbenchmarkgraphs, thus demon-
strating its competitiveness. For example, for a random graph in G1000,1/2 (graphs with 1000
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vertices and adjoining edges each of which occurs with a probability 1/2), they achieved
colorings with only 83 colors against the previous best result of 84.

In this short note we r eport on experiments to replicate Galinier and Hao’s results, and
explore the reasons behind the success of their approach. W e also wish to highlight the use
of their approach for more general problems such as Frequency Assignment in telecommu-
nications.

2. Replication of HCA without Tabu Search

Galinier and Hao’s hybrid algorithm, HCA, evolves a p opulation using a novel crossover
operator and apowerful local search method, Tabu Search, within a steady-state GA. At each
generation, two members of the current population are selected and crossed to produce a
child. Tabu Search is applied onthe child, which thenreplaces one memberofthepopulation.
The crossover operator selects color classes alternately from each of the two parents. The
largest remaining class of the chosen parent is taken for the child, and vertices in that class
are eliminated from both parents. W hen all K color classes are established, the remaining
vertices are assigned arbitrarily. Tabu Search p lays a repair r ole, taking the new members
of the population close to a local optimum with respect to vertex coloring. At the same time
it decorrelates the p opulation.

As well as developing a new crossover operator, Galinier and Hao also introduced some
novel modifications within Tabu Search to give superior p erformance to previous Tabu
Search algorithms. This rather obscures the question of whether their success was due to
their Tabu Search, their crossover or a combination of the two. W e implemented HCA
without the Tabu Search component, relying instead upon a Vertex Descent algorithm to
perform local search upon members of the GA population. The Vertex Descent algorithm
is the standard one in which a neighborhood arises from all the possible colorings of



a single vertex. The full set of vertices is subjected to vertex descent repeatedly until
no further improvement occurs for 100 iterations, although we cannot b e sure that we
have actually reached a local minima. We used a population size of 100 and a very mild
selection procedure. A larger population, of 500, was used for the largest r andom graphs.
A new population is generated from the current one by retaining a single best member
and adding to it the children, produced by HCA p rocedure, of 99 (or 4 99) arbitrarily
selected pairs of the current population. Using a large population eliminates the difficulties
ofpremature convergence ofthe GA, though apopulation size of 10 was adequate for smaller
problems.

We repeated Galinier and Hao’s experiments using this simplified algorithm. Our pro-
gram, written in C++, was run on a 500 MHz Pentium PC. Identical solutions to those
reported riintt Gena liinniC er+ a+nd, Hwaaos (r1un99o 9n) were 0ac MhiHevzedP efnotri euamch P Cof. thI dee seven, bsoelnuctihomnasrtk o, prob-
lems, as illustrated in Table 1.The graphs are taken from the standard DIMACS challenge
benchmark set (Johnson and Trick, 1996). The random graphs (DSJC∗.5) have 250, 500 and
1000 nodes respectively, density 1/2 and unknown chromatic number. The r emaining four
graphs are each structured with known chromatic number. Two of the graphs are Leighton
graphs (le∗∗ ) with 450 vertices, and the remaining two are flat graphs with (flat∗ ∗) 300
and 1000 vertices respectively.
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Table 1. Results on a number of test problems.

No. of colors required
Chromatic

Graph number Others HCA GPB

DSJC250.5 –28 28 28

DSJC500.5 – 48 48 48
DSJC1000.5 – 84 83 83
le4501 5 15 15 15 15
le4502 5 25 25 26 26

flat3002 8 31 31 31 31
flat10007 6 76 84 83 83

Where known, the chromatic number is given for comparison. The minimum number of
colors for which a coloring without color conflict could b e found, is p resented for the
different algorithms. HCA and GPB are the results of Galinier and Hao’s Hybrid Coloring
Algorithm and the adapted algorithm given in this paper. The best known results using other
methods is also shown.



Both our simplified version of HCA and the original algorithm did as well as the b est

known algorithm for that problem in all but one of the cases, namely le4502 5c, and b etter

than the b est known results on the two largest graphs. For both the random and flat graphs

with 1000 vertices the algorithms each reduced from 84 to 83 the number of colors required

for a n o conflict solution.

From our experiments it appears that the Tabu Search was not necessary for obtaining

good performance of HCA. This is despite the enhanced search facilities of Tabu Search

over Vertex Descent.

WithoutTabu Searchmoreiterations between crossovers and alargernumberofcrossovers

are both t o be expected. The extent of the difference is evident from the performance statis-

tics presented for the two algorithms in Tables 2 and 3. Despite the apparent additional

Table 2. Performance statistics for GPB on different graphs.

Parameters No. of No. of No. of
Graph K P/L successes generations iterations (×106) Time
iterations( ×10

DSJC250.5 28 100/100 3 118 11.7 9 min

DSJC500.5 48 100/500 3 686 485 11 hr

DSJC1000.5 83 500/100 1 239 690 49.9 hr

le4501 5 15 100/100 3 11 1.9 55 sec

le4502 5 26 100/500 3 1571 2341 19 hr

flat3002 8 31 100/100 3 435 52.7 47.8 h r

flat10007 6 83 100/200 3 305 177 13.3 hr

K r epresents the number of colors used. The p arameters give the population size P and the number of descent
cycles L between crossovers. Also shown is the number of successes out of 3, the number of generations (the
number of crossovers is P times the number of generations), the number of iterations (i.e., the total number of
descent moves), and the time taken for one complete run b y the program on a 500 MHz Pentium IIp rocessor.
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Table 3 . Performance statistics for HCA on different graphs, taken from Galinier and Hao (1999), Tables 4
and 5.

Parameters No. of No. of No. of
Graph K P/L successes crossovers iterations (×106)
iterations( ×10

DSJC250.5 28 10/2000 9 (1) 235 0.49

DSJC500.5 48 10/5600 5 (5) 865 4.9

DSJC1000.5 83 10/16000 1 2015 28.4

le4501 5 15 10/5600 6 (4) 24 0.194



le4502 5 26 10/1000 10 790 0.8
flat3002 8 31 10/2000 6 (4) 308 0.637

flat10007 6 83 10/16000 4 (1) 1008 17.5

As in the previous table we show the number of colors used and the parameters (population size and
number oflocal moves). Also shown is the number of successes (failures shown in brackets), the number
of crossovers and the t otal number of local moves. Galinier and Hao gave no p erformance time so it is
difficult to j udge the cost of a Tabu Search move compared to a naive descent move.

computational burden, the run-time ofour algorithm on the benchmark problems, presented
in T able 2, were not excessive. Curiously, although it took 50 hours to find a no-conflict
coloring of DSJC1000.5 with 83 colors, all the other r andom graphs of the same size which
we tested were quick to solve (ranging from 8 to 4 2 hours).

It should be said that although we used a standard Vertex Descent algorithm, it was
carefully coded to run quickly, as described in Appendix A. The Vertex Descent algorithm
(run as a population, but without selection or crossover) was capable of finding colorings
of G1000, 1/2 using 94 colors within approximately 30 minutes. (It failed to find a 93 coloring
oinf G130 hours.) Combined with kick-start it has f ound 89-colorings, as reported in Glass
and Pr¨ ugel-Bennett (1998). However, u sing Galinier and Hao’s crossover (GH-crossover)
we always managed to find a 84-coloring and, given sufficient time, we usually find an 83
coloring. Clearly, the GH-crossover operator is significantly improving the search.

3. The role of large color classes in the Genetic A lgorithm

The idea behind crossover is to combine building blocks from different solutions to produce
a child exhibiting the strengths of both parents. The difficulty with using a traditional GA
crossover is that it does not preserve building blocks. T his is, in p art, caused by the per-
mutation redundancy of the traditional graph coloring r epresentation. The graph coloring
problem is really a partitioning problem. That is, the graph needs t o be partitioned into
subgraphs with none (or few) edges in each subgraph. B y treating the problem as a coloring
problem we assign an arbitrary label to the p artitions, and in so doing introduce a massive
redundancy due to the labeling p ermutation symmetry. Traditional crossover does not re-
spect this symmetry. That is, if we permute either of the parents and perform crossover we
would get a very different child than if we had left the p arent unpermuted. The achievement
of Galinier and Hao is that they managed to find a crossover operator that overcomes the

GENETIC ALGORITHM FOR GRAPH COLORING 233



permutation problem. Permuting either of both parents before a GH-crossover does not
change the child.

Removing the permutation symmetry is not, however, the only reason for the success
of HCA. We experimented with replacing the GH-crossover with a new crossover where
we first permuted one parent so that it was as highly correlated as possible with the other
parent. (It is possible to do this efficiently by r ecognizing that the problem is a linear as-
signment problem—this is discussed in Appendix B.) However, this new crossover was no
more effective than running the Vertex Descent algorithm with a kick-start to prevent the
solutions getting trapped in local minima. T hus, HCA is doing more than j ust solving the
permutation problem, t hey seem to have identified the important building blocks, namely
the color classes. T hese, after all, are the p artitions of the graph. They are similar to inde-
pendent sets, except that they can contain conflicts and so they are, in this respect, more
general than independent sets (we return to this later).

It is still not obvious that GH-crossover should work. In the traditional independent set
formalism many different combinations of independent sets are tried to find one combina-
tion which covers the whole graph. In GH-crossover only a single combination of color
classes are tried and then a local search is used to repair the damage. We would expect all
the systematic damage or disruption caused by crossover to come from these unassigned
vertices—the conflicts within the color classes will be inherited from the parents and should
be close to the average cost of the parents. However, the number of unassigned vertices
is typically large—after choosing K color classes there is still a substantial number of
vertices that are unassigned. If we consider two random colorings, where the color classes
are chosen at r andom from either parent, we would expect 25% of the vertices to be left
unassigned. In GH-crossover the color classes are chosen in order ofsize. Empirically it was
observed that around 18% of the vertices are unassigned at the b eginning of the run. Later
in the run the members of the population become correlated so that only about 5% of the
vertices are unassigned b y the end of a run. These u nassigned vertices need to be assigned
a color and this will usually result in one or more conflict for each of these vertices. Thus,
a child produced by GH-crossover will typically have many more conflicts that its parents.
Remarkably, local search very effectively repairs t his disruption—an empirical finding that
would be hard to guess apriori.

This observation correlates with another empirical observation that comes from combin-
ing Vertex Descent with kick-starts. There, we found that if we start from a low conflict
coloring and perform a p erturbation by recoloring some randomly chosen fraction of the
vertices, although this would result in a large increase in the number of conflicts, Vertex
Descent would very rapidly find a coloring with the same small number of conflicts that
we started with, almost every time. For example, when testing problems from G1000,1/2,
we might spend s aelvmeroaslt ehvoeurrys btiemfoe.re F finding an e8,9 w coloring iwngithp only mtwso f croomnfliG cts, say.
Perturbing this b y r ecoloring 10% of the vertices would produce several hundred conflicts,



yet Vertex Descent could usually find a two conflict coloring in a fraction of a second. This
suggests that good solutions contain a fairly r obust ‘core’ . GH-crossover enables a rapid
and efficient search for good cores b y combining different color classes. Given a good core,
local search can find a good solution, although it is very slow at changing the core structure.
The GH-crossover and local search therefore complement each other nicely. In terms of a
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landscape picture, we can envision the cores as corresponding to local optima each with
a fairly large b asin of attraction. Kick-starts would allow an algorithm to explore nearby
basins of attractions with a similar number of conflicts. GH-crossover allows large j umps
to new local optima, but the good building blocks (partitions of the graph) are preserved.
Although this is an attractive picture which is consistent with our observations, we admit
that it is only hypothetical. W e cannot be sure if we have reached a local optimum as the
search space is too large to explore systematically. Furthermore, we have only a vague no-
tion of what constitutes a building b lock—whether this can be usefully formalised remains
an open question.

Using color class p artition actually has a significant advantage over independent sets, as
the former does not have to b e free from conflicts. This means that the GH-crossover can b e
used to find colorings below the chromatic number that have a small number of conflicts.
In addition, it can b e applied to weighted graph coloring problems. This opens up new
application areas such as the F requency Assignment Problem.

4. Application to related problems

The Frequency Assignment Problem arises in the context of allocating radio frequencies to
transmitter stations so as to minimize the total interference in the network. One variant ofthe
problem is to depict frequencies as colors and transmitters as vertices with potential inter-
ference r esulting from the same frequency being b roadcast from two adjacent transmitters
reduced to a penalty weight along the corresponding edge. The range of problems of this
nature are described in Eisenbla ¨tter and Koster (2000). In the basic version of the problem
the number of colors is fixed, and the total sum of weights on those edges which connect
vertices bearing the same color is to b e minimized. Many of the best methods for tackling
the Chromatic Number Problem do not adapt well to this context, as discussed in Glass
and Pr¨ ugel-Bennett (1998). In p articular, the involvement of maximum independent sets in
a solution method, which has proved so successful for the Chromatic Number Problem, is
unlikely to produce great benefits. However, the HCA algorithm is ideal. The GH-crossover
operator makes perfect sense in this more general context as it makes no r eference to color



conflicts along edges, while V ertex Descent adapts naturally to take account of the weights
of color conflicts, as described in Appendix A.

Another variant of the Chromatic Number Problem for which the HCA approach is well
suited, is when no color class is allowed to be larger than a certain size. Other, more general,
constraints on class size may also be accommodated.

5. Conclusion

From computational experiments, we conclude that the Genetic Algorithm component of
the hybrid algorithm proposed and tested b y Galinier and Hao (1999) is strong enough on
its own not to require T abu Search. We show that when run, on the same test set, with a
simple Vertex Descent mechanism in p lace of Tabu Search, their GA achieves equally good
results. This is not to say that their Tabu Search has no effect; it considerably reduces the
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number of local search iterations that are r equired. However, it is not essential for obtaining
the quality of the solutions they achieved.

The success of Galinier and Hao’s Genetic Algorithm confirms that it crystallizes the
essence of a graph coloring problem. By working with the partition of vertices into color
classes, it avoids K !-fold r eplication of solutions due to color naming. M oreover, their
algorithm provides a meaningful crossover operator, previously absent from the literature.
Comparison with uniform crossover demonstrates that the way in which Galinier and Hao
combine the classes of the p artition affords a great advantage.

An additional, h ighly attractive, feature of Galinier and Hao’s approach is that it adapts
easily t o the Frequency Assignment Problem (in which the number of colors is fixed, edges
may b e weighted, and the sum of weighted color conflicts is to b e minimized) and to the
Bounded Graph Coloring Problems (in which the number of vertices which may h ave any
particular color is r estricted).

Appendix A: Implementation of a Vertex Descent algorithm

We employed the following fairly standard Vertex Descent algorithm. For a given coloring
of a graph, each vertex i s t aken in t urn and a color selected for that vertex which gives
the lowest cost. W hen there is more than one such color a r andom choice is m ade. The
algorithm cycles through all the vertices of the graph in order many times, until no further
improvements occur.



Our implementation involves storing a matrix of the relative cost, c(i, µ), of coloring
vertex i, with the p articular color, µ, assuming the color of all other vertices remains
unchanged. The relative cost terms are calculated as follows,

c(i,µ) =j=1?|kµ=κjwi,j, (1)
where k is the total number of colors, and κj is the jth color, and wi,j indicates the presence
of edge (i, j),by taking the value 1 if there is such an edge and 0 otherwise. A best color,µ, for a vertex i is one for which c(i, µ) ≤ c(i, ν) for all colors ν. From our matrix we
compute a crtoeloxri lii sst,o nLe(i f)o orfw wbheiscth hco cl(oir,µs f)o≤r ≤eac c(hi, vertex, ail.l T coo perform rVomerteo xu rDm esactreinxt wfoer
a vertex i, we choose one of the colors in the color list L (i). W hen a vertex changes color
we update the color matrix for all its adjacent vertices and if necessary their color lists. We
also store the coloring degree of freedom of each vertex, defined as the length of this list
minus one.

The implementation described above p roved t o b e far more efficient than a more straight
forward one. The overhead in using this method is that ofcomputing the original cost matrix
c(i, µ)and list L (i), and then updating them after every color change. However, checking
to find a b etter coloring for a vertex becomes very quick. For any r easonable coloring, the
vast majority ofvertices have no coloring degree offreedom and therefore do not need to be
updated. The overhead of the initial calculations is further minimized by the large number
of times the set of vertices of the graph are scanned for improvement.
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Observe that our implementation adapts well to weighted graphs. The term wi,j in the
relative cost formula now refers to the weight on the edge (i, j).

Appendix B: Implementation of Uniform Crossover algorithm

Inordertoperformuniform crossover, in which no colorclass is givenpreferential treatment,
one must first p air the color classes of the two parents, or equivalently to color them. W e
need to permute the colors of one parent to make the two parents as closely colored as
possible. The measure of distance between parents is the usual Hamming Number, namely
the number of changes in coloring of individual vertices required to get from one parent
to the other. To minimize the distance between parents we produce the following linear
assignment problem. A K ×K-cost matrix is constructed whose ij-th element is the number
oasfs vigenrtmiceens wpirothb lceomlo.rA Ai Kin× ×thKe cfirosstt parent iasncdo cnostlorurc j dinw wthheo sseeicoj-ntdh.e Alemn optimal coloring



is achieved b y applying the so called Hungarian Algorithm (Carpaneto and Toth, 1980).

Uniform crossover is then performed, that is, vertices are colored according to one or other

parent arbitrarily. The coloring of the vertices of the child is more quickly performed with

a vertex string than a p artition representation.
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