
European Journal of Operational Research 174 (2006) 1519–1539
www.elsevier.com/locate/ejor

Discrete Optimization

Iterated local search for the quadratic assignment problem

Thomas Stu¨ tzle
FG I ntellektik, F B Informatik, TU Darmstadt, Hochschulstr. 10, 64283 Darmstadt, Germany

Received 7 May 2001; accepted 10 January 2005
Available online 13 May 2005

Abstract

Iterated local search (ILS) is a simple and powerful stochastic local search method. This article presents and analyzes
the application of ILS to the quadratic assignment problem (QAP). We justify the potential usefulness of an ILS
approach to this problem by an analysis of the QAP search space. However, an analysis of the run-time behavior of
a basic ILS algorithm reveals a stagnation behavior which strongly compromises its performance. To avoid this stag-
nation behavior, we enhance the ILS algorithm using acceptance criteria that allow moves to worse local optima and we
propose population-based ILS extensions. An experimental evaluation of the enhanced ILS algorithms shows their
excellent performance when compared to other state-of-the-art algorithms for the QAP.
? 2005 Elsevier B.V. All rights reserved.

Keywords: Iterated local search; Quadratic assignment problem; Run-time distributions; Search space analysis

1. Introduction

The quadratic assignment problem (QAP) is an

important problem in theory and practice. Many

practical problems like backboard wiring [41],

campus and hospital layout [13, 16], typewriter

keyboard design [9] and m any others can be for-

mulated as QAPs. The QAP can best be described
as the problem of assigning a set of items to a set
of locations with given distances between the loca-
tions and given flows between the items. The goal
is to p lace the items on locations in such a way that

E-mail address: stuetzle@informatik.tu-darmstadt.de

the sum of the product between flows and dis-
tances is minimal.

Given n items and n locations, two n · n matri-
ces A and B, where aij is the distance between
locations iand j and brs is the flow between items
r and s, the objective in the QAP is to find an
assignment of items to locations such that every
item is assigned to exactly one location and no
location is assigned more than one item. Since in
the QAP the number of items is the same as the
number of locations, such an assignment corre-
sponds to a permutation of the integers in
{ 1, . . . , n} . The objective for the QAP can then
be formulated as

0377-2217/$ - see front m atter ? 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2005.01.066

1520 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

Xn Xn

m/2inUXi¼1Xj¼1bija/i/j; ð1Þ

where U is the set of all permutations of
{ 1, . . ., n} , and /i gives the location of item iin
a solution / 2 U.

Tohluet iQonA/P i2s an NP-hard optimization problem
[38]. It is considered as one of the hardest optimi-
zation problems as the largest instances that can be
solved today w ith exact algorithms have instance
size around 30 [1,20]; in fact, the largest non-trivial
instance from QAPLIB, a benchmark library for
the QAP, ever being solved to optimality has 36
locations [8]. Only rarely larger but specially struc-
tured instances have been solved by exact algo-
rithms [15]. In practice, the only feasible way to
solve large QAP instances is to apply heuristic
algorithms w hich find very high quality solutions
in short computation time. Several such algo-
rithms have been proposed which include algo-
rithms like simulated annealing [11], tabu search
[4,39,47], memetic algorithms [14, 17,33], ant algo-

rithms [19,30,43], and scatter search [12].
In this article, w e investigate the performance of

iterated local search (ILS) [29] on the QAP. ILS is
a very simple and powerful stochastic local search
method that has proved to be among the best per-
forming approximation algorithms for the well-
known Traveling Salesman Problem (TSP) [25]
and a number of other problems [29]. The essential
idea of ILS is to perform a biased, randomized
walk in the space of locally optimal solutions in-
stead of sampling the space of all possible candi-
date solutions. This w alk is build by iteratively
applying first a p erturbation to a locally optimal
solution, then applying a local search algorithm,
and finally using an acceptance criterion which
determines to which locally optimal solution the
next perturbation is applied.

This article contains several further contribu-
tions. First, we present results of an analysis of
the QAP search space which indicates that, espe-
cially for high quality solutions, in structured
and real life QAP instances a significant correla-
tion exists between the solution cost and the dis-
tance to optimal solutions. This result intuitively

justifies a basic ILS approach, in which the accep-
tance criterion only accepts better solutions. How-
ever, a following analysis of the run-time behavior
of such an ILS algorithm shows that it suffers from
a stagnation behavior that severely compromises
its performance for long runs. Therefore, as sug-
gested by the run-time analysis, we introduce vari-
ants of the initial ILS algorithm including new,
population-based ones that significantly improve
ILS performance. Computational results show
that the best performing variants obtain v ery high
performance, comparable to or better than several
state-of-the-art algorithms for the QAP.

The paper is structured as follows. In Section 2,
we present the details of the initial ILS application
to the QAP. Section 3 gives the results of a search
space analysis of the QAP. In Section 4 we present
an analysis of the run-time behavior of the initial
ILS approach and based on the results of this ana-
lysis we propose several extensions to the initial
ILS algorithm. These extensions are then com-
pared in Section 5 to state-of-the-art algorithms
for the QAP and Section 6 contains some conclud-
ing remarks.

2. Iterated local search

Iterated local search (ILS) is a simple and gen-
erally applicable stochastic local search method
that iteratively applies local search to perturba-
tions of the current search point, leading to a ran-
domized w alk in the space of local optima [29]. To
apply an ILS algorithm, four procedures have to
be specified: GenerateInitialSolution generates the
starting point of this w alk; Perturbation generates
new starting points of the local search by perturb-
ing some solution; the AcceptanceCriterion decides
from which solution the w alk is continued; the
LocalSearch procedure implements the local search
and also defines (by the solutions it generates as its
output) the space in which the w alk actually takes
place. Fig. 1 gives an algorithmic scheme for ILS.
The history component in Perturbation and Accep-
tanceCriterion indicates that also the search history
may influence the decisions made in these proce-
dures. Yet, often Markovian implementations of
ILS are applied, that is, the output of Perturbation

and AcceptanceCriterion is independent of the
search history.

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1521

Fig. 1. General algorithmic outline for an iterated local search
method.

ILS is conceptually a rather simple stochastic
local search method. This is due to the simple
underlying principle and the fact that typically
only few lines of code have to be added to an al-
ready existing local search procedure to implement
an ILS algorithm. Despite its simplicity, it is at the

basis of several state-of-the-art algorithms for
problems like the TSP [25] or scheduling problems
[2,10]. Probably the conceptual simplicity of ILS
also led to the phenomenon that its general idea
has been rediscovered by m any authors and has
lead to many different names for ILS like iterated
descent [5], large-step Markov chains [32], chained
local optimization [31] etc. Nevertheless, the term
iterated local search now becomes widely accepted
[29].

To apply ILS to the QAP, the four component
procedures have to defined. In our ‘‘standard’’ ILS
approach these procedures are defined as follows.

GenerateInitialSolution
As the initial solution we use a random assign-

ment of items to locations, mainly because high
performing construction heuristics for the QAP
are not known.

LocalSearch
We apply an iterated descent algorithm for

LocalSearch, which uses the 2-opt neighborhood
like many other local search approaches to the
QAP: The neighborhood Nð/Þof a solution / is

dQeAfiPne:dT hbye ntheieg hsbeto rohfo opderm Nuðt/atÞioo nfsa aw shoiluchti can bi se
obtained by exchanging two items r and s at posi-
tions /r and /s, i.e. Nð/Þ¼ f/0 j /r0 ¼ /s; /s0 ¼
/r; r ¼ s and /i0 ¼, /i.ei .8Ni N¼ð r;Þs¼g . Tjh/e o /bjectiv¼e
fu;ncrt ¼6ions dnifdfe /ren¼ce/ d8(/i ¼,6 r, ;s)s o.f exchanging the
location of two items r and s can be computed in
O(n) [48].

Our iterated descent algorithm uses a first-
improvement pivoting rule: once an improving
move is found, it is immediately applied. A disad-
vantage of the first-improvement algorithm is that
every full neighborhood scan has a complexity of
Oðn3Þ. To avoid this, we adopted the technique
Oofð ndoÞ.n?tT loooa kv obidits,t hinisi,tiaw lley apdroopptoesdedt teo tsepcheendi up
local search algorithms for the TSP [6,32], to the
QAP: W hen applied to the QAP, a don?t look bit
is associated with every item. W hen starting the
local search, all don?t look bits are turned off (set
to 0). If during the neighborhood scan for an item
no improving move is found, the don?t look bit is
turned on (set to 1) and the item is not considered
as a starting item for a neighborhood scan in the
next iteration. Yet, if an item is involved in a move
and changes its location, the don?t look bit is

turned off again. The don?t look bits restrict the
attention to the most interesting part of the local
search, where still further improvement can be
expected.1

Perturbation
The Perturbation exchanges k randomly chosen

items, corresponding to a random m ove in the
k-opt neighborhood. In initial experiments (not
reported here), we tested several fixed values for
k. W e found that the best p arameter setting for k
was rather dependent on the particular instance
under solution. To make the particular choice of
the perturbation strength, i.e., the value of k, m ore
robust (obviously, a best choice of k is a priori not
known and appropriate settings for k may depend
on the particular search space region), we finally
decided to adapt k as done in variable neighbor-
hood search [21]. We vary k between two values
kmin and kmax starting at kmin: If after the perturba-
tion and the subsequent local search no better
solution is found, k is increased by one; otherwise
it is set to k min. If w e have k = kmax, we set k back
to k min.

In the procedure Perturbation one can easily ex-

ploit the don?t look bits: only the don?t look bits of

1 Note that this technique was proposed already for the f irst
version of this paper that was published as a Technical Report
[46] and it was adopted independently also in [33] to the QAP.

1522 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

items which change their location due to the per-
turbation are reset to 0. This resetting strategy of
the don?t look bits results in a very significant
speed improvement of the local search algorithm
at only a minor loss of solution quality, as we
could verify in preliminary experiments.

AcceptanceCriterion
As acceptance criterion in our basic ILS algo-

rithm we use Better(s, s00) that is defined as follows:

s Betterðs;s00Þ¼ ?ss00 iofth feðrsw00Þis< e;f ðsÞ; ð2Þ
where f (s) is the objective function value of solu-
tion s. This choice of the acceptance criterion
appears to be the standard w hen applying ILS
algorithms [21,25,26,31] and has the advantage
that it implements a randomized descent in the
space of locally optimal solutions. It is not clear,
whether using a high v alue for k in the perturba-
tion alone is sufficient to allow the algorithm to es-
cape from bad solutions in combination w ith the

Better acceptance criterion. Our analysis of the
run-time behavior of ILS in Section 4 shows that
this is actually not the case. Other p ossibilities like
allowing moves to w orse solutions by the accep-
tance criterion have to be used to yield signifi-
cantly improved performance.

3. Analysis of the QAP search space

3. 1. Classes of QAP instances

It is known that the particular type of a QAP
instance has a considerable influence on the per-
formance of heuristic methods [48]. According to
Taillard [48], m ost instances of QAPLIB we use
in this article can be classified into four classes.
These are unstructured, randomly generated in-
stances in which the distance and flow matrix en-
tries are integers randomly chosen from the
interval [1, 100] (class i); instances with the dis-
tance m atrix based on the Manhattan distance
on a grid (class ii); real-life instances stemming
from practical applications of the QAP [9, 16,

28,41] (class iii); and instances which are randomly
generated in a way that they resemble the structure
of the real-life instances (class iv).

To differentiate among the classes of QAP
instances, the flow dominance (fd) is commonly
used. It is defined as the coefficient of v ariation
of the flow matrix entries m ultiplied by 100:

fdðBÞ¼ 1 00? lr; ð3Þ

where

l¼ n12?Xi¼n1Xj¼n1bij and

r ¼tvuuiffnfif2ffiffiff?1fififffiifffiffifif1 ffifififfff?fiifffXfiififf¼finif1fffiiffffiifXfffiifj¼ffififnfffi1iffffiifðfffiifbfffiififffijiffffiif?fffiiffffil iffffiifÞfffffiiif.
At high flow dominance indicates that a large

part of the overall f low is exchanged among rela-
tively few items. Hence, class i instances have a
rather low flow dominance whereas real-life p rob-
lems, in general, have a large flow dominance. A
disadvantage of the flow dominance is that it cap-

tures only the structure of one of two m atrices,
neglecting that of the distance matrix. Therefore,
analogously to the flow dominance, we use the dis-
tance dominance (dd).

In general, real life problems often have m any
zero entries and the sparsity of the matrix can give
an additional indication of the instance type. Let
n0 be the number of ‘‘0’’ entries in a matrix, then
we define its sparsity s p as sp = n0/n2.

In Tables 1and 2 are given the flow and the dis-
tance dominance and the sparsity of the sparser of
the two matrices (typically, at most one matrix of
these QAP instances has a sparsity larger than 0.1)
for some instances of QAPLIB, ordered according
to the four instance classes (the other table entries
are explained in the following). In general, class iii
and iv instances have the highest dominance val-
ues; the instances of class ii still have significantly
larger flow dominance than the unstructured, ran-
domly generated instances of class i.

3.2. Search s pace analysis of the QAP

Central to the search space analysis of combina-

torial optimization problems is the notion of

search landscape [40,50]. Intuitively, the search

landscape can be imagined as a (multi-dimen-

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1523

Table 1
Given are the instance identifier, the flow, the distance dominance and the sparsity of some QAPLIB instances (columns 1–4)

Instancedd(A)fd(B)spNoptavgdl?soptavgdil?soptrlsrils
Unstructured, randomly g enerated instances, class i
tai20a 67.02 64.90 0.015 1
tai25a 61.81 64.29 0.016 1
tai30a 58.00 63.21 0.013 1
tai35a 61.64 61.57 0.010 1
tai40a 63.10 60.23 0.009 1
tai60a 61.41 60.86 0.01 1 1
tai80a 59.22 60.38 0.009 1
rou20 65.65 64.43 0.010 1

Instances with g rid-distances, class ii
nug30 52.75 112.48 0.316 4
tho30 59.25 137.86 0.484 4
tho40 53.20 155.54 0.585 4
sko42 51.96 108.48 0.292 4
sko49 51.55 109.38 0.304 8
sko56 51.46 110.53 0.305 4
sko64 51.18 108.38 0.308 8
sko72 51.14 107. 13 0.299 4

18.78 18.62 0.065 0.088

23.83 23.64 0.064 0.059

28.69 28.32 0.100 0.208
33.75 33.61 0.041 0.054
38.86 38.81 0.020 0.107
58.82 58.71 0.025 0.006
78.90 78.77 0.022 0.049
18.50 18.10 0.124 0.114

25.93 23.81 0.262 0.406
26.27 24.86 0.328 0.472
36.1 1 35.21 0.194 0.273
37.96 35.18 0.302 0.499
44.58 43.40 0.213 0.234
51.62 49.51 0.254 0.448
58.88 56.33 0.303 0.353
67.38 65.31 0.264 0.284
The dominance v alues are calculated for the first A and the second B matrix as given inQAPLIB. The number in the instance identifier

is the instance dimension. The instances are ordered according to the 4 classes described in Section 3.1. The remaining entries give

summary results of an analysis of the fitness–distance correlation of the QAP search space (see Section 3.2). In particular, Nopt is the

nreutumrbneerdo bf pysl eoucdalo-s oepatricmhaal s ndolui tteiroantsedf o luoncda,la s vegaldsr?cohpte axnedcua vtegdidls?f ooprta nre itt ehraeta iovnersa,gr eesd piestcatinvceelyt ,oa t nhdec r llossaenstdo r piltismaruem ths oelu retsiopnecf otirves of iltuntieosnss–
distance correlation coefficients.

sional) mountainous region with hills, craters, and
valleys and the performance of stochastic local
search methods strongly depends on the rugged-
ness of the landscape, the distribution of the val-

leys, craters and the local minima in the search
space, and the overall number of the local minima.

Formally, the search landscape is defined by

1. the set of all possible solutions S;
2. an objective function that assigns to every

s 2 S a numerical value f (s);
3. a 2dSi staa ncn eu measure adlu(s,e s f(0)s t;hat gives the dis-

tance between solution s and s0.

An ILS algorithm follows a discontinuous tra-
jectory in such a search landscape if we consider
the search landscape that is defined by the neigh-
borhood graph with respect to the iterative
improvement method. For the global ILS guiding
mechanism to be effective the characteristics of the
search landscape topology like the relative location
of locally optimal solutions, the average distance
between local optima and the relative location of
locally optimal solutions with respect to global op-
tima are important. In particular the study of the
correlation between cost and the distance to global
optima (or best known solutions if global optima
are not available) has proved to be a useful tool

to j udge the suitability of a search landscape for
adaptive multi-start algorithms like ILS [7,18,27,
36]. This correlation is captured by the fitness–
distance correlation (FDC) coefficient [27], which
measures the linear correlation of the solution
cost to the distance to the closest global optimum.
Given a set of pairs CD = {(c1, d1), . . . , (cm, dm) }
of cost values and distances, the correlation coeffi-
cient is defined as

rðC;DÞ ¼sCcC?D sD; ð4Þ
where

cCD¼m1Xi¼m1ðci?c ? Þðdi?d?Þ; ð5Þ

and c, d? are the average cost and the average dis-
tance, and s C and sD are the standard deviations
of the costs and distances, respectively.
1524 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

Table 2

Results of a search space analysis of the QAP search space

Instancedd(A)fd(B)spNoptavgdl?soptavgdil?soptrlsrils

Real-life instances, class iii

bur26a 15.09 274.95 0.223 96
bur26b 15.91 274.95 0.223 690
bur26c 15.09 228.40 0.257 96

bur26d 15.91 228.40 0.257 790
bur26e 15.09 254.00 0.3 12 96
bur26g 15.09 279.89 0.211 96
chr25a 424.27 57.97 0.883 2
els19 52.10 531.02 0.637 1
kra30a 49.22 149.98 0.6 256
kra30b 49.99 149.98 0.6 128
s te36a 55.65 400.30 0.707 8
ste36b 100.79 400.30 0.707 8

Real-life like instances, class iv
tai20b 128.25 333.23 0.410 1
tai25b 87.02 3 10.40 0.387 1
tai30b 85.20 323.91 0.432 1
tai35b 78.66 309.62 0.524 1
tai40b 66.75 317.22 0.503 1
tai50b 73.44 313.91 0.548 1
tai60b 76.83 317.82 0.548 1
tai80b 64.05 323. 17 0.552 1
tai100b 80.42 321.34 0.552 1

21.12 20.15 0.027 0.457

21.26 19.72 0.021 0.678

22.31 15.39 0.569 0.867

20.29 18.19 0.471 0.787

18.43 14.91 0.479 0.853

18.47 13.89 0.666 0.876

22.92 21.71 0.252 0.359

16.85 13.76 0.550 0.654
25.23 24. 10 0.251 0.413
24.83 23.25 0.3 12 0.379
30.98 28.37 0.295 0.504
29.59 24.76 0.381 0.778

17.32 14.69 0.420 0.576
21.65 23.83 0.456 0.703
27.71 25.47 0.264 0.518
32.04 30.17 0.328 0.525
37.76 35.39 0.329 0.626
47.94 45.39 0.156 0.363
56.88 52.28 0.366 0.540
77.47 75.56 0.150 0.457
95.23 92.34 0.546 0.608
See Table 1for an explanation of the entries.

Here, we analyze the fitness–distance correlation
for QAP instances. As the distance between solu-
tions we measure the number of items which are
placed on distinct locations in two solutions /
and /0, i.e., dð/; /0Þ ¼ j fij /i ¼ /i0gj. This is a di-

rect ex,te in.es.,iond ð /o;f/ thÞe¼ wj felijl-/kn6o¼w/ n jH.aT mhimsii nsg ad disi--
tance for bit strings. In the FDC analysis, w e
measure the distance to a globally optimal solution
if available. Where optimal solutions are not avail-
able, we measure the distance to the best known
solution. These best known solutions are conjec-
tured to be optimal for instances of class ii, iii,
and iv with up to 80 items, because they are the
best solutions found by several algorithms includ-
ing our ILS variants presented later. We refer to
such solutions as p seudo-optimal.

For the FDC analysis, we have to take into ac-
count that many QAP instances have multiple
optimal solutions. For example, for instances with
a distance matrix defined by the distance between
positions on a grid (class ii), it is known that these
optimal solutions are at the maximally possible
distance from the other optimal solutions (due to
symmetries in the distance matrix). Hence, as also
suggested in [27], we measure the distance to the
closest g lobal optimum. Unfortunately, the exact
number of global optima for these instances is
not known. Therefore, we determined in prelimi-
nary runs of our ILS algorithm a (possibly large)

number of pseudo-optimal solutions: For small in-
stances w ith n < 4 0 w e stopped searching for more
pseudo-optimal solutions if in 1000 trials of our
ILS algorithm, each trial of at least 500 iterations,
we did not find any more a pseudo-optimal solu-
tion which differed from any previously found
pseudo-optimal solution; only on the larger in-
stances of class ii we searched for the expected
number of optimal solutions (either four or eight
depending on the grid dimension).2 In this process,

2 It should be noted that after our research, Hahn et al.
verified that, for example, on instance kra30a we actually had
identified all optimal solutions [20].

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1525

for the instances of classes i and iv we found in
each case only one single pseudo-optimal solution.
Therefore, w e conjecture that these instances have
unique optimal solutions. The number of pseudo-
optimal solutions found for each instance is indi-
cated by Nopt in Tables 1 and 2.

We run two experiments in the fitness–distance

analysis: In a first experiment (denoted as E-ls)
we generated 5000 local optima (identical solutions
at distance 0 have been eliminated) with 2-opt and
measured the distance to the closest pseudo-opti-
mal solution; in a second series of experiments
(denoted as E- ils) we run 1000 times the ILS
algorithm for n iterations (indicated by ILS(n)),
again eliminating identical solutions. This second
series of experiments is motivated by the fact that
ILS (and several other stochastic local search
methods) typically deal with solutions that are of
a much better average quality than local optima
that are obtained after only one single local search
starting from a random solution. Hence, it is of
strong interest how is the fitness–distance relation-
ship between high quality solutions such as those
that are typically found by (short) ILS runs.

Tables 1 and 2 also give the average distances
of the local minima to the closest global optimum
in E-l s (avgdls?opt) and E- ils (avgidls?opt), and the
empirical FDdC?o Cp ctoefficients found di?no np tE-l s and
E- ils (rls and rils, respectively). Fig. 2 gives plots
of the fitness versus the distance to the closest opti-
mum for one instance of each problem class.

The fitness–distance analysis shows clear differ-
ences among the behavior for the different prob-
lem classes. For class i, all correlation coefficients
are close to zero. Also the better solutions gener-
ated by ILS(n) do not show a significantly higher
correlation. Regarding the average distances from

caglvloogsbidela?slo ptt oopat thrimeea v m,ea irytx ci malanarglb ee poo f osbsrsiebt rlhveeesvd ea tlQ huaAet,Pa w vi ghndliss?cthoaptni acsnen sd,,
and the difference between avgdls?opt and avgdils?opt is
minimal. Differently, for most oinptstances od?fo p tthe
other three classes, significant correlations exist.
In fact, all correlations are statistically significant
at the a = 0.05 level with the only exception of
rls for instances bur26a and bur26b. Comparing
rls and rils for instances of classes ii to iv we find
that rils is typically much larger than rls. It is also

ni0so.9o t6af.tbe lInet s itshmaa atlllsfe oorr ti nh nao nthtea t osvgeodls?t s womptoabll lyat a itnef sratacp ntoocirenso tsfa va w gbdihlo?seuorpett
the instances of classes ii to iv show significant
differences to those of class i. Comparing the
instances of classes ii to iv we find that the correla-

tion coefficients for instances of classes iii and iv
are typically higher than those of class ii, which
may indicate that the instances of these later two
classes are easier for the ILS algorithms than those
of class ii. Additionally, one can observe that for
the instances with a high flow or distance domi-
nance and high sparsity also a significant FDC
can be observed. Hence, these m ore simpler mea-
sures already give a strong indication whether a
significant fitness–distance correlation can be
expected.3

In summary, we can conclude that—on aver-
age—the better the solution quality the closer a
solution is to an optimal solution for the instances
of classes ii to iv. These instances show a structure
in the following sense: The more locations of items
a solution has in common with an optimal solu-
tion, the better will be that solution on average.
However, the FDC analysis also indicates that,
when compared to the Traveling Salesman Prob-
lem, the local optima for the QAP are much m ore
spread across the search space. This may also be
an indication for the fact that QAP instances of
a same dimensionality as TSP instances are m uch

harder to solve.

How can the observation on the fitness–distance

correlations be exploited by an ILS algorithm?

Note that the task of adaptive restart algorithms

like ILS is to guide the search towards search space

regions which contain very high quality solutions

and, possibly, the global optimum. The most

important guiding m echanism of these methods

3 An analysis of the FDC was also independently presented
in [33]. However, the results of that FDC study were less
conclusive than ours; this is probably due to the fact that the
results in [33] do not consider, different from our study, that
multiple optimal solutions exist at maximal distance for
several instances and that distances should be measured to
the closest global optimum. A dditionally, the FDC analysis
based on the short ILS runs for the QAP is done the f irst
time here.

1526 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

Distance to closest pseudo-optimum

Distance to closest pseudo-optimum

Distance to closest pseudo-optimum

Distance to closest pseudo-optimum
Fig. 2. Shown are the fitness–distance plots for four QAP instances, from top: tai60a (class i), sko64 (class ii), kra30a (class iii),
and tai60b (class iv). It is given for e ach instance on the left side a plot corresponding to 5000 2-opt solutions, on the right a plot
based on 1000 solutions found by ILS(n). On the x-axis is given the distance to the closest pseudo-optimal solution (the x-axis ranges
from the minimum to the maximum possible distance for each instance) and on the y -axis the percentage deviation from the best
known or optimal solutions.

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1527

is the objective function value of solutions. It relies
on the general intuition that the better a solution
the more likely it is to find even better solutions
close to it. On the other side, the notion of s earch
space region is tightly coupled to the notion of dis-
tance between solutions, as defined by an appro-
priate distance measure. In particular, the FDC
describes the relation between the solution cost
and the distance to the global optimum. For mini-
mization problems a high, positive correlation
indicates that the better the solution, the closer—
on average—it is to the global optimum. Hence,
if such a correlation exists, this gives an intuitive
explanation why it is reasonable that an ILS
algorithm focuses strongly on the best solutions
found so far.

4. Run-time behavior of ILS

In this section, we investigate the run-time

behavior of the proposed ILS algorithm. ILS algo-
rithms are randomized algorithms because they
use random choices like random initial solutions
and random mutations. For such algorithms, the
time needed to reach a certain bound c on the solu-
tion cost is a random variable Tc with an associ-
ated distribution function F (Tc). Knowledge on
this distribution function can yield significant
insights into the behavior of the algorithm
and, therefore, we measure qualified run-time dis-
tributions along the lines proposed in [23,24,
42,45].

4.1. Empirical run-time distributions

We empirically measure the distribution of Tc
by running the ILS algorithm several times up to
some maximal run-time tmax reporting each time
a new improved solution is found the necessary
run-time. For a given bound c on the solution cost,
one can then determine a posteriori for each trialj
the smallest time tj required to find a solution with-
in the given cost bound. The empirical RTD can
be derived by first sorting the tj values in non-

decreasing order and then computing

Fb ðTc 6 tÞ ¼ jfj j t½j? 6 t ^f ð/½j?Þ 6 cgj=l; ð6Þ

where t[j] is the run time of thej th longest trial and
lis the total number of trials.

Fig. 3 gives empirical run-time distributions,
measured across 100 independent trials, for one in-
stance from each of the four classes with respect to
various cost bounds given as the percentage excess
over the pseudo-optimal solutions; the computa-
tion times refer to an UltraSparc II 167 MHz pro-
cessor. The instances tested are tai30a (class i),
sko42 (class ii), s t e36a (class iii), and tai35b
(class iv). Additionally we give the cumulative dis-
tribution function of an exponential distribution
(indicated by ed(x)) that approximates the lower
part of one empirical distribution for each instance
(the meaning of this curve is explained below).

The empirical RTDs show that the ILS algo-
rithm is able to find the pseudo-optimal solutions
with a high probability on three of the four in-
stances. The only exception is instance tai30a,

where only in one of 100 trials the pseudo-optimal
solution was found. However, it is well known
that for this type of instances optimal solutions
are very hard to find [48].

4.2. Stagnation behavior and exponential
distributions

But what about the exponential distribution?
Intuitively, a stochastic search algorithm shows
stagnation behavior if for long trials, the probabil-
ity of finding a solution that is at least as good as a
given bound c can be improved by a random
restart of the algorithm at some appropriately cho-
sen cut-off time tr. In fact, random restart is j ust an
extreme form of diversification for an algorithm.
Such stagnation behavior may easily be detected
by comparing exponential distributions to the
empirical RTDs. Applied to randomized algo-
rithms, a well-known result from statistical the-
ory about exponential distributions (memoryless
property) [37] can be interpreted as follows: if for
a given algorithm the random variable Tc is
distributed exponentially, the probability of find-

ing a solution when running the algorithm ltimes
for time t is the very same as w hen running the
algorithm once for time lÆ t. Hence, to detect
whether an algorithm shows stagnation behavior,
we can compare the empirical RTDs against an

1528 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

CPU time in seconds

CPU time in seconds

CPU time in seconds

CPU time in seconds
Fig. 3. The p lots give empirical run-time distributions for QAP instances measured across 100 independent trials of an ILS algorithm
with Be tt er acceptance criterion w.r.t. several bounds on the required solution quality, given as the percentage deviation from the
best known solution (the optimum is only known for s te36a). Given are the distributions for tai 30a (upper left), sko42 (upper

right), s t e 36a (lower left) and tai35b (lower right).

exponential distribution. This leads to an easily
applicable m eans of visually (as well as analyti-
cally; for details see [23]) detecting stagnation
behavior. Intuitively, when using a logarithmic
scale on the x-axis, this can be done by shifting
an exponential distribution from the left to the
empirical RTD until it first touches it; if from

the tangential point on the empirical RTD devel-
ops (significantly) below the exponential curve,
this indicates stagnation behavior. The same data
can also be used to estimate optimal cutoffs for
restarting the algorithm [23,45].

In Fig. 3, the exponential distributions were
determined in the way described above and they
indicate that the empirical RTDs for obtaining
high quality solutions fall below this ‘‘idealized’’
exponential RTD. Therefore, by an appropriately
determined cutoff time w e easily can increase the
probability of finding high quality solutions in the
long run. This potentially large improvement is
best illustrated with an example. When trying to
solve instance tai35b to pseudo-optimality, con-
sider an cutoff time of tr = 26, with bF26 ¼ 0.4. If
the ILS is restart with this cutoff timbe te¼n 0t.im4.esI f,
one can easily compute that the resultinbg, estimated
solution probability w ould be 0.994, while the
empirical RTD of the ILS algorithm without re-
starts reaches only a solution probability of 0.60
after 10 Æ tr = 260 seconds. The resulting empirical
RTD of such an ILS algorithm with restarts, given
in Fig. 4, confirms the possible impressive improve-

ments of ILS behavior.

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1529

CPU time in seconds

Fig. 4 . Run-time distributions using an iterated 2 -opt algo-
rithm that only accepts better solutions (ILS-better) and a
restart version of ILS (ILS-restart) on instance tai35b for
finding pseudo-optimal solutions. The restart algorithm uses a
fixed cutoff of 26 seconds. Note that the run-time distribution of
ILS-restart is well approximated by an exponential solution
that is indicated by ed(x). The run-time distributions are based
on 100 independent trials of each algorithm.

The reason for the possible improvements by
restarting the ILS algorithm is that by accepting
only better solutions, the ILS algorithm was, de-
spite the fact that also rather large perturbations
were allowed, not capable to efficiently explore re-
gions of the search space w hich are at a larger dis-
tance from the current solution. It is important to
note that a restart w ith a fixed cutoff-time is only
an extreme form for increasing the exploration of
the search space. A main disadvantage of such a
restart is that (i) good solutions found in the past
are not exploited and (ii) fixed cutoff times are
not useful because good settings for the cutoff time
are not known a priori. In the following we there-
fore propose several means of alleviating these two
problems by exploring two main possibilities,
namely (i) to exploit other types of acceptance cri-
teria and (ii) to propose population-based ILS
extensions, where the solutions in the population
can explore different regions of the search space.

4.3. ILS with extended acceptance criteria

Instead of applying fixed cutoffs for restarting
an ILS algorithm, a better idea is to m ake the deci-
sion to restart depend on the search progress by
applying soft restarts. This suggests to m odel re-
starts by an acceptance criterion Restart(s, s 00, his-
tory) that returns a random, new solution if the
ILS algorithm does not find an improved solution
for a fixed number of it0 iterations; the assumption
of such a restart is that the algorithm is stuck and
that further progress is difficult. Such a soft restart
is a very simple use of the search history in ILS
acceptance criteria through the parameter it0.

One possibility to favor strongly exploration of
the search space is to accept s00 as the new solution
irrespective of its cost, resulting in a random walk
over locally optimal solutions. W e call this accep-
tance criterion Random Walk(s, s00). W hile Ran-
dom Walk(s, s00) does not exploit good solutions,
an interpolation between the Random Walk and
Better acceptance criteria can be achieved by
accepting worse solutions only with a certain prob-
ability. One such example is a simulated annealing
type criterion. W e denote this acceptance criterion

by LSMC(s, s00), reminiscent of the fact that one of
the first ILS algorithms, called large s tep Markov
chains [32], used this acceptance criterion. In par-
ticular, s00 is accepted with a probability p given by

pðT;s;s00Þ¼ (e1xp?fðsÞ?Tfðs00Þ? iofth feðrsw00Þis< e.f ðsÞ;
ð7Þ

T is a parameter called temperature and it is
lowered during the run of the algorithm accord-
ing to a temperature schedule like in Simulated
Annealing.

4.4. Population-based ILS extensions

Maintaining a population of solutions provides
an alternative way of augmenting exploration of
the search space. ILS can easily be extended to a
population-based algorithm in which each single
solution follows a standard ILS algorithm
[22,42]. In the simplest case, no interaction among
the solutions takes place. When run w ith lsolu-
tions for time t, such an approach corresponds

to the sequential execution of lILS trials each
for time t/l. Certainly, variants that allow interac-
tion among the solutions are more interesting; two
such variants are described next.

1530 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

Replace-worst. This variant starts with lsolu-
tions each of which follows a standard ILS algo-
rithm, except that every r iterations a copy of the
current best solution replaces the worst solution
in the population. This scheme gradually shifts
the focus of the search towards the best solutions
of the population and the parameter r determines
how fast this shift takes place: If r is small, the
search concentrates rapidly around possibly sub-
optimal solutions, if r is large, replace-worst be-
haves similar to multiple independent trials of an
ILS algorithm.

Evolution strategies. This is a population-based
extension that replaces the current population by
a mechanism adapted from the (l+ k)-selection
scheme from evolution strategies. In this scheme,
the population comprises lsolutions and in each
iteration k new solutions are generated; the new
set of solutions is then taken to comprise the l
best out of the l+ k possible solutions. Since this
way of population manipulation very strongly

favors the best solutions, care has to be taken
that the population does not converge too early.
Therefore, w e apply the following modification
of the (l+ k)-selection. First, we set k =land
select each of the solutions in the population
deterministically to undergo one iteration of the
standard ILS algorithm. Then, the resulting
l+ k = 2 Æ lsolutions are sorted according to
their cost and solutions are considered for inser-
tion in the population in that order. A solution
is inserted into the new population if the distance
to any of solutions already member of the new
population is larger than some minimum distance
dmin. One main point in the algorithm is that dmin
varies dynamically by subsequently lowering the
actual value of dmin at run-time. The aim is to
keep the solutions at the start of the algorithm
at a rather high distance to explore sufficiently
distant regions of the search space, while allowing
the algorithm to converge to high-quality solu-
tions later on.

It is clear that these population-based ILS
extensions share similarities to other population-
based search metaphors like evolutionary algo-

rithms and, in particular, to memetic algorithms
[34]. In memetic algorithms, solutions are m odi-
fied by mutation operators applied to single solu-
tions and by crossover operators that exchange
information between solutions and subsequently
improved by a local search. A deliberate differ-
ence between the proposed population-based
ILS extensions to memetic algorithms is that in
ILS solutions are only modified by applications
of a perturbation, w hich corresponds to muta-
tions in the context of evolutionary algorithms.

5. Experimental results

In this section, we experimentally evaluate the
performance of the proposed ILS algorithms on
a wide range of QAP instances from QAPLIB
and other sources. In the following, we refer to
the ILS algorithm as described in Section 2 as
Be t t e r, and to the ILS algorithms with accep-
tance criteria LSMC(s, s 00), Random Walk(s, s00),
and Restart(s, s00, history) as LSMC, RW, and

Re s tart, respectively. To the population-based
extensions we refer to as RepWo rs t and ES,
respectively.

This section reports the results for two series of
experiments. In the first one, we compare the per-
formance of the various ILS variants, robust tabu
search [47] (Ro -TS), and MAX–MIN Ant Sys-
tem (MMAS) [44]. The latter two algorithms have
been chosen since Ro -TS is known to perform
very w ell on problem classes i and ii [19,48],
MMAS has been shown to be among the best
available algorithms for structured instances as
they occur in classes iii and iv [44], and all
algorithms use the same underlying local search
implementation. All algorithms are run for 10
independent trials and are given the same compu-
tation time (indicated by tmax in Tables 3 and 4;
tmax corresponds to the time required by our
Ro -TS implementation to do 1000 Æ n iterations).
The times are given as seconds on a SUN Ultra-
Sparc IImachine with two UltraSparc Iprocessors
(167 MHz) with 0.5 MB external cache and 256
MB main memory. Only one single processor has
been used due to the sequential implementation

of the algorithms. In a second series of experi-
ments, we give performance results for a high per-
forming ILS variant on a large set of QAP

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1531

instances from QAPLIB and new benchmark in-
stances by Taillard [15]. Based on these results,
we compare the performance of our algorithm to
recent, high performing algorithms from the
literature.

5. 1. Parameter settings

The parameters for the ILS variants w ere set as
follows. In Be t t e r and RW w e set kmin = 3 and
kmax = 0.9 Æ n. These are the only parameters for
these two algorithms. In Re start we use the
same settings for kmin and kmax as in Be t t e r
and set it0 = 2.5 Æ kmax. For LSMC an annealing
schedule has to be defined. W e have chosen it in
a straightforward way as follows: After the initial
solution /0 is locally optimized to yield solution
/0, we set Tinit = 0.025 Æf (/0), that is, a solution
which is 2.5% worse than the current one is ac-
cepted with probability 1/e. The temperature is
lowered every 10 iterations according to a geomet-

ric cooling scheme, by setting Ti+1 = 0.9 Æ Ti. If in
100 iterations less than three times a worse solu-
tion was accepted, the temperature is reset to Tinit.
In LSMC we set kmax = max{0.9 Æ n, 50}, since the
search space should be explored by occasionally
accepting worse solutions and not by v ery high
values for k . In the population-based extensions,
the parameters are set as follows: W e use a p opu-
lation size of 30 and a setting of k max = 10 for
both, RepWors t and ES. In RepWo rs t, the first
30 iterations of the ILS runs are completely inde-
pendent of each other and after iteration 30 w e
set r = 3. At the start of ES we set dmin = 2/3 Æ n
and lower it in the following iterations to dmin =
max{5, 2/3 Æ n ?i t}, where it is the iteration coun-
tmera.x I{n5 ,b2 o/t3h Æan lg? ori itth}m,w s w e eai ptpi slyt a esie taerrcahti odniv ecrosuinfi--
cation if the average distance in the current
population is smaller than 15 or for 30 iterations
no improved solution was found. The diversifica-
tion consists in applying four iterations of RW with
k = n/2 to each solution. Additionally, in the vari-
ants LSMC, RepWo rs t, and ES we initially set
kmin = kmax and from then on k min = max{ 3,
kmax ?i t}. When the temperature is reset to Tinit

in LS?MCi }or. Wdivheernsitf ihcaetit oemn ptaerkaestu prlea cise riens tehte t p opu-
lation-based extensions, w e also reset kmin as de-
scribed before (by resetting also it to z ero).

The parameter setting for Ro -TS and MMAS
are as proposed in the original articles [44,47].

5.2. Comparison of ILS variants

The computational results of the first series of
experiments, w here we compare the performance
of the ILS variants, Ro -TS and MMAS, are given
in Table 3 for the instances of classes iand ii and in
Table 4 for the instances of classes iii and iv. A first
conclusion from the computational results is that,
in general, with the proposed ILS extensions con-
siderable improvements over Be t t e r are possible.
For example, the very straightforward extension
given by Re s tart achieves better average solu-
tion qualities on all instances. Overall, LSMC and
the two population-based extensions are the best
performing ones. Y et, whether or by how m uch
an ILS extension improves over the performance
of Better strongly depends on the instance class.

For the instances of classes iand ii (see Table 3)

all extensions show a significantly improved
performance over Be t ter, the best performing
ones being ES and LSMC, closely followed by
RepWors t and RW. On the instances of classes
iii and iv, the relative performance of the ILS algo-
rithms is different. Here, ES, RepWo rs t, and
Re s tart perform best. On most of these latter in-
stances Be t ter performs similar or slightly better
than RW, while RW gives significantly higher quality
solutions, on average, than Be t t e r on instances
of classes iand ii. This fact can be explained to
some extent w ith the different structure of these in-
stances. W hile instances of class ido not show any
or only a very weak fitness–distance correlation,
for instances of class iii and iv the fitness–distance
correlation is very high. Hence, intuitively, on the
latter type of instances a bias towards the best
solutions found during the search as in Be tt e r
appears to be desirable.

Somewhat surprising is the good performance
of RW on some of the structured instances and
the instances of class ii that also show a significant
fitness–distance correlation (although slightly
smaller than those of class iii and iv). Part of this

success may be explained by the much larger

number of local searches that can be applied in

the same computation time by RW compared to

1532 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

Table 3
Experimental results for ILS variants, Ro -TS and MMAS for QAP instances from QAPLIB

Problem instance Be tter LSMC RW Re s tart RepWors t ES Ro -TS MMAS tmax

Random problems with entries uniformly distributed, class i
tai20a 0.723 0.503 0.542 0.467
tai25a 1.181 0.876 0.896 0.823
tai30a 1.304 0.808 0.989 1.141
tai35a 1.731 1. 110 1.113 1.371
tai40a 2.036 1.319 1.490 1.491
tai50a 2. 127 1.496 1.491 1.968
tai60a 2.200 1.498 1.692 2.081
tai80a 1.775 1.198 1.200 1.576

Random f lows on g rids, class ii
nug30 0.219 0.020 0.052 0.020
sko42 0.269 0.010 0.010 0.161
sko49 0.226 0.133 0. 133 0. 139
sko56 0.418 0.087 0.087 0. 153
sko64 0.413 0.068 0.068 0.202
sko72 0.383 0.134 0. 134 0.294
sko81 0.586 0.101 0. 100 0. 194
sko90 0.576 0.131 0. 187 0.322
sko100a 0.358 0.115 0.161 0.257
0.500 0.344 0.108 0.428 9

0.869 0.656 0.274 1.751 17
0.707 0.668 0.426 1.286 30
1.010 0.901 0.589 1.568 51
1.305 1.082 0.990 1.131 75
1.574 1.211 1.125 1.900 150
1.622 1.349 1.203 2.484 265
1.219 1.029 0.900 2.103 670

0.013 0.007 0.013 0.042 30
0.002 0.0 0.025 0.104 92
0.090 0.068 0.076 0.150 135
0. 102 0.071 0.088 0.118 211
0.079 0.057 0.071 0.243 308
0. 139 0.085 0.146 0.243 455
0.100 0.082 0.136 0.223 656
0.262 0.128 0.128 0.288 895
0.191 0.109 0.128 0.191 1240
Given is the percentage deviation from the best known solutions over 10 independent trials of each algorithm. See the text for a
description of the variants used.

Table 4
Experimental results for ILS and several extensions on QAP instances taken from QAPLIB for structured instances

Problem instance Be tter LSMC RW Re s tart RepWo rs t ES Ro -TS MMAS tmax

Real life instances, class iii
bur26a-h 0.0 0.001 0.001 0.0
kra30a 0.672 0.090 0.0 0. 134
kra30b 0.094 0.026 0.046 0.051
ste36a 0.377 0.099 0.451 0.227

ste36b 0.0 0.0 0.0 0.0

Randomly g enerated real-life like instances, class iv
tai20b 0.045 0.0 0.045 0.0
tai25b 0.0 0.0 0.007 0.0
tai30b 0.0 0.0 0.093 0.0
tai35b 0.131 0.049 0.081 0.0
tai40b 0.0 0.0 0.204 0.0
tai50b 0.203 0.185 0.282 0.028
tai60b 0.029 0.059 0.645 0.023
tai80b 0.785 0.256 0.703 0.260
tai100b 0.219 0.096 0.711 0.202
0.0 0.0 0.002 0.0 44
0.0 0.0 0.268 0.314 30
0.031 0.008 0.023 0.049 30
0.071 0.015 0.155 0.181 54
0.0 0.0 0.081 0.0 54

0.0 0.0 0.0 0.0 10
0.0 0.0 0.0 0.0 41
0.0 0.0 0.107 0.0 73
0.0 0.0 0.064 0.0 117
0.0 0.0 0.531 0.0 177
0.042 0.033 0.342 0.002 348
0.005 0.0 0.417 0.005 633
0.222 0.383 1.031 0.096 1510
0.113 0.083 0.512 0.142 2910

See Table 3 for a description of the entries.

Be tte r. For example, in the given computation value of k, w hich determines the strength of the
time with RW on instance tai80b approximately perturbations, is always very small and, also due
5000 local searches can be run, while Be t t e r to the use of don?t look bits described in Section
can only apply about 1600 local searches. This dif- 2, a local search after a small perturbation is much
ference is mainly due to the fact that in RW the faster than after larger perturbations. To illustrate

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1533

Iteration counter

Fig. 5. Development of the perturbation strength for Better
and RW.

the values of k used, in Fig. 5 we give the develop-
ment of k versus the iteration counter for Be t ter
and RW on instance tai80b. In Fig. 5 it can also
be observed that Be t t e r may find an improved
solution at rather high v alues for k (see the peak
at it around 350 which corresponds to k = 51; re-

call that after an improved solution is found, k is
again set to kmin). In fact, if kmax is chosen too
low in Be t t er, its performance on many in-
stances decreases strongly.

Compared to Ro -TS and MMAS, the ILS
extensions show a particularly good performance
on the structured instances. Among the algorithms
compared, Ro -TS is the best on the instances of
class iand shows very good performance on the in-
stances of class ii, slightly w orse than ES and com-
parable to LSMC. On class iii and iv, the best four
ILS algorithms obtain much better results than
Ro -TS. For the instances of class iv, MMAS is
overall the best algorithm of those compared, clo-
sely followed by the two population-based exten-
sions and Re s tart.

Overall, the ES variant appears to perform par-
ticularly w ell. In fact, except for the instances of
class i, ES typically has better average costs than
the better between Ro -TS and MMAS; the only
further exceptions are the instances tai 50b and
tai80b. Taking this fact into account, from the
computational results presented in [43] one can
also conclude that for many of the larger instances

from classes ii to iv, ES is superior to the genetic
hybrids by Fleurent and Ferland [17] and hybrid
ant system [19].4 The very good performance of
ES was also confirmed by the computational tests
done w ithin the Metaheuristics Network, a re-
search and training network financed by the Euro-
pean Commission (see w ww.metaheuristics.net).
In an extensive experimental analysis of metaheu-
ristics (or, say, general-purpose stochastic local
search methods) for the QAP that included ILS,
simulated annealing, tabu search, memetic algo-
rithms, and ant colony optimization algorithms,
a slight variant of ES, which is presented in the
next section, was found to be the overall best p er-
forming algorithm.

In summary, the comparison of the ILS algo-
rithms to other algorithms that were tested in same
experimental conditions shows that, despite their
conceptual simplicity, they belong to the best
performing algorithms for QAP instances with
relatively high fitness–distance correlations as they
occur in classes ii to iv.

5.3. Detailed experiments

In this section, we present additional results
with a variant of ES that was tested in the experi-
mental part of the Metaheuristics Network. W e
call this variant ES-MN; it essentially is a reimple-
mentation of ES that (i) u ses a more efficient local
search implementation especially for asymmetric
instances, based on observations in [35] on the
transformation of asymmetric instances into sym-
metric ones, and (ii) slightly different parameter
settings—ES-MN uses a population size of 25 and
a setting of kmax = 25. The experiments reported
in the following were run on a single 1.2 GHz Ath-
lon MP processor running under SuSe Linux 7.3
with 1 GB of RAM. We compare the results of
these experiments to two algorithms, the memetic
algorithm by Merz and Freisleben [33] and the
memetic algorithm by Drezner [14].5 Both memetic

4 Note that reactive tabu search [4] performs better than
Ro -TS on the class iinstances, but typically worse than Ro -TS

on the other classes [42]. Hence, ES is also superior to reactive
tabu search on instances of classes ii to iv.

5 Note that the memetic algorithm of Merz and Freisleben

also uses the local search speed-up techniques based on

transforming asymmetric into symmetric instances; the memetic
algorithm of Drezner was only applied to symmetric instances.

1534 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

algorithms were shown to perform better than sev-
eral competitors on a number of instances and are
recent state-of-the-art algorithms for the QAP.

We run ES -MN on QAPLIB instances with 25
or m ore items. For many of these instances,
ES-MN found in every single trial the optimal or
pseudo-optimal solutions in modest computation
times. The required computation times for these
instances are indicated in Table 5. W e did not in-
clude instances in this table, where the average
computation times were below 0.5 seconds; this
was the case for all bur26X and e s c32X in-

Table 5
stances, as w ell as for the instances e s c64a,
nug25, nug2 7, nug28, and tai2 5b.

Only for very few stochastic local search algo-
rithms for the QAP it has been reported that they
were able to obtain w ith a very high probability

the optimum or pseudo-optimal solutions in each

trial for large instances with up to 100 items. The

only one we are aware of is the memetic algorithm

by Merz and Freisleben (MA-MF) [33]. MA-MF

was run on nine QAPLIB instances on a Pentium
II300 MHz computer, a machine w hich is roughly
4.05 times slower than our machine (comparison

Statistics on the computation times (given in seconds) for solving QAPLIB instances with ES-MN to optimality or their best known
solutions, if optimal ones are not available

Instance Optimum Average cost tmin tavg tmax

chr25a 3796 3796.0
esc128 64 64.0
kra30a 88900 88900.0
kra30b 91420 91420.0
kra32 88700 88700.0
nug30 6124 6124.0
lipa40a 31538 31538.0
lipa50a 62093 62093.0
lipa60a 107218 107218.0
lipa70a? 169755 169755.0
lipa60b 2520135 2520135.0
lipa70b? 4603200 4603200.0
lipa80b? 7783962 7783962.0
lipa90b? 12490441 12490441.0
ste36a 9526 9526.0
ste36b 8653 8653.0
ste36c 82391 10 82391 10.0
sko42 15812 15812.0
sko49 23386 23386.0

sko56 34458 34458.0
sko64 48498 48498.0
tai25a 1167256 1167256.0
tai30a 1818146 1818146.0
tai35a? 2422002 2422002.0
tai30b 6371 17113 6371171 13.0
tai35b 283315445 283315445.0
tai40b 637250948 637250948.0
tai 50b 458821517 458821517.0
tai 60b 608215054 608215054.0
tai80b? 818415043 818415043.0
tai100b? 1185996137 1185996137.0
tho30 149936 149936.0
tho40? 240516 240516.0
wil50 48816 48816.0

0.25 1.42 7.94

0.09 1.67 5.88

0. 15 0.63 3.55

0.13 1.38 6.55

0. 19 0.61 2.24

0. 14 1.29 6.52

0.58 2. 14 6.62

1.37 7.32 45.65

3.86 57.24 279.70

14.27 57.24 451.23
0.31 2.84 21.17
0.71 3.97 30.21
2.00 14.69 48.09
2.09 33.31 171.80
0.54 4.59 24.02
0. 14 1.09 2.00
0.59 2.28 10.56
1.21 3.09 12.96
5.28 170.21 851.64
2.39 45.08 191.59
5.54 30.86 185.89
0.47 12. 10 64.23
0.95 38.31 325.83

10.85 139.55 415.80
0.47 0.85 1.97
0.33 1.36 3.88
0.83 1.57 4.52
2.47 5.95 23.23
4.30 12.61 53.48

23.67 79.62 340.86
42.80 140.70 696. 15

0. 15 0.91 3.33
3. 12 187.4 561.7
4.65 62.70 364.20

All averages refer to 100 trials per instance except of those marked by ?, were 25 trials were run. The computation times given indicate
the minimum time, the average time, and the maximum time in seconds necessary to find optimal or best known solutions.

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1535

Table 6
Average computation times (measured over 30 trials per instance) for the memetic algorithm of [33] to optimal or pseudo-optimal
solutions on some QAPLIB instances

Instance tavg Instance tavg Instance tavg Instance tavg

chr25a 2.6 bur26a 1.0 nug30 7. 1 kra30a 2.7
ste36a 36.7 tai60b 23.2 tai 80b 258.3 tai 100b 629. 1

Times are given in seconds for a Pentium II 300 MHz machine; averages are taken from [33].

via SPEC). The average times required by the
memetic algorithm to find the pseudo-optimal
solutions are given in Table 6. A comparison to
the times taken by ES, using the correction factor
of approximately 4, shows that both algorithms
reach similar performance. The largest differences
can be found on instances s t e36a, w here ES is
roughly double as fast as the memetic algorithm,
while on instance tai60b the memetic algorithm
is roughly double as fast as ES. However, ES has
the additional advantage of being conceptually
more simple, since it does not use any recombi-
nation between solutions. In fact, it is widely
acknowledged in the evolutionary computation

community that finding good recombination
operators is difficult.

On other instances of QAPLIB we performed
experiments using a 1200 seconds upper limit on
the computation time; the only exception are in-
stances tai150b and tho150, w hich w ere the
largest ones we tested with 150 items each, for
which we allowed 3600 seconds. The computa-
tional results for these experiments are given in
Table 7. The largest deviations from the best
known solutions were observed for the instances
of class i, w hich, however, are considered not to
be of practical importance [48]. On the instances
of class ii, ES-MN achieved excellent performance,
finding in m any trials the best known solutions
and obtaining very low average deviations from
the pseudo-optimal solutions. Also on the only
remaining instance of class iv, instance tai150b,
ES-MN achieved excellent performance and
reached an average deviation from the best known
solution of less than 0.1%.6 Regarding the average
performance on instances of classes ii and iv that

6 All instances of c lass iii are solved to their optimal or

pseudo-optimal solutions in all the trials we run with ES -MN

within a few seconds.

have been reported in the literature, to the best
of our knowledge, ES-MN appears to be best; how-
ever, the computation times w e allowed are larger
than, e.g., in [33]. The only published results at the
time of writing a revised version of this paper that
are close to the ones presented here stem from a
memetic algorithm by Drezner [14]. That memetic
algorithm took computation times of around 34
minutes on a Pentium 600 MHz CPU (we estimate
that 1200 seconds on our machine correspond
roughly to 40 minutes on a Pentium 600 MHz
CPU using again data from SPEC) for the in-
stances with 100 items. Within the time limits we
imposed, w e obtain on m ost sko100X instances
an average deviation from the best known solu-

ntioern?ss tM hAat.7i sr oughlyh alvet heo nef oundb yD rez-
Finally, we run ES-MN on new instances pro-

posed by Taillard that were designed to be hard
for stochastic local search algorithms. In Table 8
we present the computational results for the 20 in-

stances of size 75; smaller instances of size 27 and

43 could all be solved to their known optimum or

the pseudo-optimal solutions in fractions of a sec-

onds for the size 27 instances and in a few seconds

for the size 43 instances. Except for two instances,

all the instances of size 75 could be solved to the

best known solutions as reported in [15] in reason-

able computation times. Hence, these instances ap-

pear not to be as hard as they were originally

conceived. Additionally, these results confirm the

7 To gather further evidence for the very good performance of
ES-MN, we run Ro -TS on the sko 100X instances for the same
computation time limits as ES (Ro -TS can do roughly 1.5
million iterations within these time limits). Ro -TS was not able
to get once the best known solutions on the sko 100X instances
and the average deviations from the best known solutions are
typically by a factor of two to five larger than those obtained by
ES-MN.

1536 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

Table 7
Statistics on the quality and computation times (given in seconds) for QAPLIB instances that were not solved in all trials within the
given computation time limits with ES-MN

Instance Best known % opt % best % average % worst tavg tmax

tai40a? 3139370 0.0 0.074
tai50a 4941410 0.0 0.34
tai60a 7205962 0.0 0.68

tai80a 13540420 0.0 0.46
tai100a 21123042 0.0 0.54
sko72? 66256 0.88 0.0
sko81? 90998 0.52 0.0
sko90? 115534 0.40 0.0
sko100a 152002 0.30 0.0
sko100b 153890 0.50 0.0
sko100c 147862 0.60 0.0
sko100d 149576 0.0 0.0013
sko100e 149150 0.70 0.0
sko100f 149036 0.0 0.023
wil100 273038 0.1 0.0
tho150 8133398 0.0 0.041
tai150b 498896643 0.0 0.0003
0.28 0.43 721.2 1200
0.61 0.82 673.6 1200
0.82 0.95 446.5 1200
0.62 0.71 764.3 1200
0.69 0.78 587.8 1200
0.0012 0.018 399.8 1200
0.0074 0.013 575.9 1200
0.0057 0.024 635.5 1200
0.012 0.030 471.3 1200
0.0068 0.020 438.9 1200
0.0023 0.011 688.1 1200
0.021 0.064 710.2 1200
0.001 3 0.0094 409.7 1200

0.037 0.068 699.7 1200

0.0041 0.0081 380.7 1200

0.068 0.095 2173.6 3600

0.095 0.21 2200.8 3600
Averages are given over 10 trials per instances; on some instances, which are indicated by ?, 25 trials w ere run. % opt gives the
percentage of pseudo-optimal solutions found and % best, % average, and % worst give the percentage deviation from the pseudo-
optimum of the best, average and worst solution cost over all trials. tavg is the average computation time when the best solution in a
trial was reached.

Table 8
Statistics on the quality and the computation times (given in seconds) for solving new, hard instances from Taillard [15] with ES-MN

Instance Best known % opt % best % average % worst tavg tmax

tai7 5e01 14488 1.0 0.0

tai7 5e02 14444 0.2 0.0
tai7 5e03 14154 1.0 0.0
tai7 5e04 13694 1.0 0.0

tai7 5e05 12884 1.0 0.0
tai7 5e06 12534 1.0 0.0
tai7 5e07 13782 1.0 0.0

tai7 5e08 13948 1.0 0.0
tai7 5e09 12650 1.0 0.0

tai7 5e 10 14192 1.0 0.0
tai7 5e 11 15250 1.0 0.0
tai7 5e 12 12760 0.68 0.0

tai7 5e13 13024 1.0 0.0
tai7 5e 14 12604 1.0 0.0
tai7 5e 15 14294 1.0 0.0

tai7 5e 16 14204 1.0 0.0
tai7 5e 17 13210 1.0 0.0
tai7 5e 18 13500 1.0 0.0

tai7 5e19 12060 1.0 0.0
tai7 5e 20 15260 1.0 0.0
0.0 0.0 108.7 1200
1.96 4.62 5 10.3 1200
0.0 0.0 47.2 1200
0.0 0.0 41.4 1200
0.0 0.0 99.3 1200
0.0 0.0 66. 1 1200
0.0 0.0 336.7 1200
0.0 0.0 180.1 1200
0.0 0.0 38.9 1200
0.0 0.0 46.7 1200
0.0 0.0 33. 1 1200
0.52 4.08 536.0 1200
0.0 0.0 91.6 1200
0.0 0.0 61.8 1200
0.0 0.0 33.5 1200
0.0 0.0 33.6 1200
0.0 0.0 46.0 1200
0.0 0.0 62.4 1200
0.0 0.0 44.5 1200
0.0 0.0 46.9 1200
Averages are given over 25 trials per instance. See Table 7 for a description of the entries.

good behavior of ES-MN when compared to the only 11 of the 20 instances in each of the 20 trials
memetic algorithm by Drezner, which could solve per instance within a maximum computation time

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1537

of about 37 minutes (that is, about 2220 seconds)
on a Pentium 600 MHz CPU.

6. Conclusions

In this article, w e have presented and analyzed
iterated local search (ILS) algorithms for the qua-
dratic assignment problem. In our research we
started from a basic ILS algorithm.8 A detailed
analysis of the run-time behavior of this basic
version revealed that its performance was com-
promised by a strong stagnation behavior. The
insights gained from this analysis lead us to deve-
lop much more performing ILS algorithms includ-
ing new population-based extensions of ILS. In
fact, our computational results showed that the
best performing ILS variants are new state-
of-the-art algorithms for the QAP.

In summary, the contributions of this article are
(i) the extensive analysis of the fitness–distance
correlation on QAP instances, (ii) a detailed anal-

ysis of the run-time behavior of a basic ILS algo-
rithm, (iii) the strong evidence provided that
acceptance criteria play a crucial role in the success
of ILS algorithms and therefore should be exam-
ined carefully when engineering an ILS algorithm,
(iv) the development of a new, population-based
variant of ILS for the QAP, and (v) a detailed
experimental analysis of the best performing ILS
variant, ES -MN, which established it as a state-
of-the-art algorithm for the QAP.

There are several possible ways to extend the
presented work. One possibility is to further im-
prove the computational results by a more fine-
tuned implementation. One direction to follow,
would be to make a stronger use of the history
component which is indicated in the general
algorithmic outline of ILS given in Fig. 1. Such
extensions could strongly benefit from the use of
long-term memory techniques used in tabu search.
Interestingly, the best performing ILS variants

8 Independent from our ILS approach in [49] an ILS
algorithm similar to the one presented in Section 2 has been

implemented. However, that article lacks an analysis of the
algorithm and the algorithm of [49] is by far outperformed by
our best ILS variants.

were actually population-based algorithms; it
would be interesting to obtain general insights into
why and when a population of solutions can give
better performance than algorithms based on a
single solution. An interesting research direction
arises from the observation of the stagnation
behavior observed in the run-time behavior of
the ILS algorithm. In [3,47] it has been observed
that for two specific tabu search algorithms for
the QAP, one of these is the robust tabu search
algorithm applied in Section 5, the required run-
time to find the pseudo-optimal solution for
unstructured instances of type i(defined in Section
3) follows an exponential distribution. Yet, we
have evidence that ILS algorithms applied also
to other problems like the TSP do suffer from
the stagnation behavior shown here [42]. Hence,
further research has to be done to investigate
which kinds of algorithms do show stagnation
behavior and w hich features of an algorithm or

of the instances being tackled lead to such a
behavior.

Acknowledgments

Part of this work has been supported by a
Madame Curie Fellowship awarded to Thomas
Stu¨ tzle (CEC-TMR Contract No. ERB4001-
GT973400) and by the Metaheuristics Network,
a Research Training Network funded by the
Improving Human Potential programme of the
CEC, grant HPRN-CT-1999-00106. The informa-
tion provided is the sole responsibility of the
authors and does not reflect the Community?s
opinion. The Community is not responsible for
any use that might be m ade of data appearing in
this publication.

References

[1] K.M. A nstreicher, N.W. Brixius, J.-P. Goux, J. Linderoth,
Solving large quadratic assignment problems on computa-

tional grids, Mathematical Programming 91 (3) (2002)
563–588.

[2] E. Balas, A. Vazacopoulos, Guided local search with
shifting bottleneck for job shop scheduling, Management
Science 44 (2) (1998) 262–275.

1538 T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539

[3] R. Battiti, G. Tecchiolli, Parallel biased search for combi-
natorial optimization: Genetic algorithms and TABU,
Microprocessor and Microsystems 16 (7) (1992) 351–367.

[4] R. Battiti, G. Tecchiolli, The reactive tabu search, ORSA
Journal on Computing 6 (2) (1994) 126–140.

[5] E.B. Baum, Iterated descent: A better algorithm for local
search in combinatorial optimization problems, Manu-
script, 1986.

[6] J.L. Bentley, Fast algorithms for geometric traveling
salesman problems, ORSA Journal on Computing 4 (4)
(1992) 387–41 1.

[7] K.D. Boese, Models for iterative global optimization, PhD
thesis, University of California, Computer Science Depart-
ment, Los Angeles, 1996.

[8] N.W. Brixius, K.M. Anstreicher, The Steinberg w iring
problem, T echnical Report, The University of Iowa, USA,
October 2001.

[9] R.E. Burkard, J . Offermann, Entwurf von Schreibma-
schinentastaturen mittels quadratischer Zuordnungsprob-
leme, Zeitschrift f ¨ur Operations Research 21 (1977) B121–
B132.

[10] R.K. Congram, C.N. Potts, S. van de Velde, An iterated
dynasearch algorithm for the singlemachine total weighted
tardiness scheduling problem, INFORMS Journal on
Computing 14 (1) (2002) 52–67.

[11] D.T. Connolly, A n improved annealing scheme for the
QAP, European Journal of Operational Research 46 (1990)
93–100.

[12] V.-D. Cung, T. Mautor, P. Michelon, A. Tavares, A
scatter search based approach for the quadratic assignment
problem, in: T. Baeck, Z. Michalewicz, X. Yao (Eds.),
Proceedings of ICEC?97, IEEE Press, 1997, pp. 165–170.

[13] J.W. Dickey, J.W. Hopkins, Campus building arrangement
using TOPAZ, Transportation Science 6 (1972) 59–68.

[14] Z. Drezner, A new genetic algorithm for the quadratic
assignment problem, INFORMS Journal on Computing
15 (3) (2003) 320–330.

[15] Z. Drezner, P. Hahn, E´.D. Taillard, A study of quadratic
assignment problem instances that are difficult for m eta-
heuristic methods, Annals of Operations Research, in
press.

[16] A.N. Elshafei, Hospital layout as a quadratic assignment
problem, Operations Research Quarterly 28 (1977) 167–
179.

[17] C. Fleurent, J.A. Ferland, Genetic hybrids for the qua-
dratic assignment problem, in: P.M. Pardalos, H. Wol-
kowicz (Eds.), Quadratic Assignment and Related
Problems, DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, v ol. 16, American Mathe-
matical Society, 1994, pp. 173–1 87.

[18] C. Fonlupt, D. Robillard, P. Preux, E.-G. Talbi, Fitness
landscapes and the performance of metaheuristics, in: S.
Voss, S. Martello, I.H. Osman, C. Roucairol (Eds.), Meta-
Heuristics: Advances and T rends in Local Search Para-
digms for Optimization, Kluwer Academic Publishers,
Boston, MA, 1999, pp. 255–266.

[19] L.M. Gambardella, E´.D. Taillard, M. Dorigo, Ant colo-
nies for the quadratic assignment problem, Journal of the
Operational Research Society 50 (2) (1999) 167–176.

[20] P.M. Hahn, W.L. Hightower, T.A. Johnson, M. Guig-
nard-Spielberg, C. Roucairol, Tree elaboration strategies
in branch and bound algorithms for solving the quadratic
assignment problem, Yugoslavian Journal of Operational
Research 11 (1) (2001).

[21] P. Hansen, N. Mladenovi´ c, An introduction to variable
neighborhood search, in: S. Voss, S. Martello, I.H. Osman,
C. Roucairol (Eds.), Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization,
Kluwer Academic Publishers, Boston, MA, 1999, pp.
433–458.

[22] I. Hong, A.B. Kahng, B.R. Moon, Improved large-step
Markov chain variants for the symmetric TSP, Journal of
Heuristics 3 (1) (1997) 63–81 .

[23] H.H. Hoos, T. Stu¨ tzle, Stochastic Local Search—Founda-
tions and Applications, Morgan Kaufmann Publishers,
San Francisco, CA, USA, 2004.

[24] H.H. Hoos, T. Stu¨ tzle, Evaluating las vegas algorithms—
pitfalls and remedies, in: Proceedings of the Fourteenth

Conference on Uncertainty in Artificial Intelligence UAI-
98, Morgan Kaufmann Publishers, San Francisco, CA,
1998, pp. 238–245.

[25] D.S. Johnson, L.A. McGeoch, Experimental analysis of
heuristics for the STSP, in: G. Gutin, A . Punnen (Eds.),
The Traveling Salesman Problem and Its V ariations,
Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 2002, pp. 369–443.

[26] D.S. Johnson, L.A. McGeoch, The travelling salesman
problem: A case study in local optimization, in: E.H.L.
Aarts, J.K. Lenstra (Eds.), Local Search in Combinatorial
Optimization, John Wiley, 1997, pp. 215–310.

[27] T. Jones, S. Forrest, Fitness distance correlation as a
measure of problem difficulty for genetic algorithms, in:
L.J. Eshelman (Ed.), Proceedings of the 6th International
Conference on Genetic Algorithms, Morgan Kaufman,
1995, pp. 184–192.

[28] J. Krarup, P.M. Pruzan, Computer-aided layout design,
Mathematical Programming Study 9 (1978) 75–94.

[29] H.R. Lourenc, O. Martin, T. Stu¨ tzle, Iterated local search,
in: F. Glover, G. Kochenberger (Eds.), Handbook of
Metaheuristics, International Series inOperations Research
& Management Science, vol. 57, Kluwer Academic Pub-
lishers, Norwell, MA, 2002, pp. 321–353.

[30] V. Maniezzo, Exact and approximate nondeterministic
tree-search procedures for the quadratic assignment prob-
lem, INFORMS Journal on Computing 11 (4) (1999) 358–
369.

[3 1] O. Martin, S.W. Otto, Combining simulated annealing

with local search heuristics, Annals of Operations Research
63 (1996) 57–75.

[32] O. Martin, S.W. Otto, E.W. Felten, Large-step Markov
chains for the traveling salesman problem, Complex
Systems 5 (3) (1991) 299–326.

T. St€u tzle / European Journal of Operational Research 174 (2006) 1519–1539 1539

[33] P. Merz, B. Freisleben, Fitness landscape analysis and
memetic algorithms for the quadratic assignment problem,
IEEE Transactions on Evolutionary Computation 4 (4)
(2000) 337–352.

[34] P. Moscato, Memetic algorithms: A short introduction, in:
D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in
Optimization, McGraw-Hill, London, UK, 1999, pp. 219–
234.

[35] P. Pardalos, F. Rendl, H. W olkowicz, The quadratic
assignment problem: A survey and recent developments,
in: P. Pardalos, H. Wolkowicz (Eds.), Quadratic Assign-
ment and Related Problems, American Mathematical
Society, Providence, RI, 1994, pp. 1–42.

[36] C.R. Reeves, Landscapes, operators and heuristic search,
Annals of Operations Research 86 (1999) 473–490.

[37] V.K. Rohatgi, An Introduction to Probability Theory and
Mathematical Statistics, J ohn W iley, 1976.

[38] S. Sahni, T. Gonzalez, P-complete approximation prob-
lems, Journal of the ACM 23 (3) (1976) 555–565.

[39] J. Skorin-Kapov, Tabu search applied to the quadratic
assignment problem, ORSA Journal on Computing 2

(1990) 33–45.
[40] P.F. Stadler, Towards a theory of landscapes, Technical

Report SFI-95-03-030, Santa Fe Institute, 1995.
[41] L. Steinberg, The backboard wiring problem: A placement

algorithm, SIAM Review 3 (1961) 37–50.
[42] T. Stu¨ tzle, Local search algorithms for combinatorial

problems—Analysis, improvements, and new applications,
PhD thesis, FB Informatik, TU Darmstadt, 1998.

[43] T. Stu¨ tzle, M. Dorigo, ACO algorithms for the quadratic
assignment problem, in: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, 1999.
Also available as T echnical Report IRIDIA/99-02, Uni-
versite´ de Bruxelles, Belgium, 1999.

[44] T. Stu¨ tzle, H.H. Hoos, MAX-MINAnt System,
Future Generation Computer Systems 16 (8) (2000) 889–
914.

[45] T. Stu¨ tzle, H.H. Hoos, Analysing the run-time behaviour
of iterated local search for the travelling salesman problem,
in: P. Hansen, C. Ribeiro (Eds.), Essays and Surveys on
Metaheuristics, Operations Research/Computer Science
Interfaces Series, Kluwer Academic Publishers, Norwell,
MA, 2001, pp. 589–61 1.

[46] T. Stu¨ tzle, Iterated local search for the quadratic assign-
ment problem, Technical Report AIDA-99-03, FG
Intellektik, FB Informatik, TU Darmstadt, 1999.

[47] E´.D. T aillard, Robust taboo search for the quadratic
assignment problem, Parallel Computing 17 (1991) 4 43–
455.

[48] E´.D. Taillard, Comparison of iterative searches for the

quadratic assignment problem, Location Science 3 (1995)
87–105.

[49] E´.D. Taillard, L.M. Gambardella, Adaptive memories for
the quadratic assignment problem, Technical Report
IDSIA-87-97, IDSIA, Lugano, Switzerland, 1997.

[50] E.D. Weinberger, Correlated and uncorrelated fitness
landscapes and how to tell the difference, Biological
Cybernetics 63 (1990) 325–336.

	Iterated local search for the quadratic assignment problem
	Introduction
	Iterated local search
	Analysis of the QAP search space
	Classes of QAP instances
	Search space analysis of the QAP

	Run-time behavior of ILS
	Empirical run-time distributions
	Stagnation behavior and exponential distributions
	ILS with extended acceptance criteria
	Population-based ILS extensions

	Experimental results
	Parameter settings
	Comparison of ILS variants
	Detailed experiments

	Conclusions
	Acknowledgments
	References

