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1. Introduction

A Location Routing Problem (LRP) can be viewed as a combina-
tion of two difficult and inter-dependent decision-making prob-
lems, namely Location and Routing. Roughly speaking, given a set
of potential facilities/depots and a set of customers, the LRP aims
at efficiently servicing customers (planning routes) from a well-
chosen sub-set of facilities (locating depots). The objective is to
minimize the total cost of opening depots/facilities and outing to
serve all customers.

When tackling such a problem, it is necessary to consider simul-
taneously Location and Routing given that ignoring routes w hen
locating facilities obviously increases the cost of the distribution
system and leads to sub-optimal solutions (Salhi, 1989). Generally
speaking, in a complete supply chain management, Location and



Routing appear in fact to be two interrelated components of major
concerns in many real-life applications. For instance, locating re-
gional blood banks to serve hospitals (Or, 1979), or setting up
newspaper/mail delivery systems (Jacobsen, 1980), or distributing
goods/parcels/humanitary-care/network distribution chain (Perl,
1985, Wasner, 2004, Billionet, 2005), to cite a few, deal w ith loca-
tion and routing problems simultaneously. Solving jointly location
and routing is therefore a challenging task of both practical and
fundamental interest for logistics managers and decision makers.

In its most general form, the LRP seeks to minimize the total
cost by simultanously selecting a subset of potential depots and
making routes by allocating customers to different depots while
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satisfying the following constraints: (i) each customer’s demand
is satisfied, (ii) each customer is visited by exactly one route, and
is assigned to exactly one depot without exceeding vehicle or facil-
ity capacities, (iii) the length of a route and the number of vehicles
are defined with a prespecified limit, (iv) each route begins and
ends at the same depot. In addition, depending on the considered
application context, several LRP variants with different characteris-
tics are commonly studied in the literature. In fact, each time a new
application setting is considered, a new LRP variant with additional
constraints such as capacities on depots or on vehicles, length con-
straint on the vehicle routes, time windows or uncertainty of some
data. A lthough, in many practical situations, a combined location-



routing model is the most appropriate model for all LRP v ariants,
location and routing are often solved separately. Only few recent
works have considered this issue mainly due to the difficulty of
both problems. In Laporte (1988), Laporte et al. give different types
of formulations, solution algorithms and computational results on
integrated LRP. A synthesis of LRP studies with a hierarchical tax-
onomy and classification scheme as w ell as different solution
methodologies can also be found in Min,J ayaraman, and Srivastava
(1998). More recently, a comprehensive state-of-the-art study on
the huge amount of work on LRP is given in Nagy and Salhi
(2007). Later in this paper, we provide the reader with a compre-
hensive summary of the most relevant approaches used so far in
the literature to solve the integrated LRP.

In this paper, we consider a variant of LRP with capacitated de-
pots and a single uncapacitated vehicle dispatched at each open
depot such that the demand of each customer must be satisfied,
each customer is served by exactly one vehicle and each route be-
gins and ends at the same depot. T o the best of our knowledge, this
version is studied only by Albreda-Sambola, Diaz, and Fernandez
(2005).
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We propose a hybrid method, denoted (GA&ILS), that combines
genetic algorithm (GA) and iterated local search (ILS) and inte-
grates the location and routing decisions of LRP. Our GA&ILS ap-
proach coordinates between the two levels of decision making by
seeking a facility configuration and the routing that corresponds
to it. W e conducted computational experiments to evaluate the
proposed method in comparison with the result mentioned in Alb-
reda-Sambola et al. (2005). More specifically, our approach main-
tains a set of solutions (a population of individuals) which is
improved in many steps of the hybrid algorithm. In fact, we de-
fined different mutation/crossover operators allowing us to gener-
ate a new generation of solutions at each phase. Depending on the
quality/fitness of the new population, we then apply an ILS to a
subset of generated solutions using four neighborhood structures.
Generally speaking, diversification is mainly obtained through
the GA while intensification is obtained through the ILS. However,
the key point is that both mutation/crossover operators and ILS
neighborhood structures are carefully designed in order to operate
jointly on the location and the routing levels. To validate our hy-
brid approach, we experiment it using the same instances as Alb-
reda-Sambola et al. (2005). For all instances, we obtain new best
solutions. A dditionally, our approach is adequate from a computa-
tional time point of view. In fact, as pointed in Albreda-Sambola
et al. (2005), w hile most of the test instances cannot be solved
optimally with CPLEX, our approaches outputs solutions within
some milliseconds to at most some seconds for all instances.

The remainder of this paper is organized as follows. In Section 2,
we recall the LRP variant considered in this paper and give a sum-
mary of LRP related w orks. In Section 3, we give an overview of our



hybrid GA&ILS optimization framework. In Section 4, we present
our computational results. Finally, in Section 5, we conclude the
paper and discuss some open issues.

2. Problem definition and related w ork

The LRP can be defined as follows. Consider I= {1, . . . ,n} the set
of customers andJ = {1,. . .,m} the set of potential depots. Each de-
potj 2J is characterized by a limited capacity bj and a fixed costf j
poofte sj t a2bJ lii sshc mhaernatc. tEeariczhe customer mii 2 Id h caasp a non-negative demand di
wofh eicstha bisl sknhmowenn i.nE aacdvhac nucset oamnde rsh io2 uI lhd a bsea s natonisf-ineedg. Moreover, enadc dh
depot is associated with a single uncapacitated vehicle. Let cij, i,
j 2 I[J be the traveling cost between iand j . The LRP consists of
opening a tshuebst erat oelfi depots abnetdw eeelanboi ra atned jv .ehT ihceleL tours to tvsis oitf
the set of customer in order to minimize the total cost of location
and delivery.

To solve a LRP, there is a need to solve a facility location prob-
lem (FLP) and a vehicle routing problem (VRP). The master prob-
lem (location) is directly inter-related with the subproblem
(routing). If each customer is directly connected to the facility then
the LRP will be a special case of a classic location problem. On the
other hand, if the depots are located, the LRP is reduced to a VRP.
Both subproblems, namely FLP and VRP are fielded among NP-hard
problems (Cornuejols, Fisher, & Nemheuser, 1977; Karp, 1972),
thus the LRP is also NP-hard. The LRP described in this paper can
be seen as an extension of the capacitated VRP which is recently
solved by an iterated variable neighborhood descent algorithm in
Chen, Huang, and Dong (2010) and hyrbid metaheuristics in Lin,
Lee, Ying, and Lee (2009).

Different exact methods were developed in the literature for
solving the LRP. The first exact methods is a branch and bound



algorithm given in Laporte and Norbert (1981 ) for the single facil-
ity LRP without tour length restrictions. For the LRP with capaci-
tated vehicles and depots (CLRP) and a fixed number of vehicles,
a branch and cut method is described in Laporte, Norbert, and Ar-
pin (1986). T hat method is mainly based on the relaxation of the
subtour elimination constraints (each vehicle tour must contain a
depot) and the chain barring constraint (an arc connecting two de-
pots is not allowed). Another branch and bound algorithm is also
given in Laporte, Norbert, and T aillefer (1988) where an appropri-
ate graph representation is used to transform the CLRP into an
equivalent constrained assignment problem. More recently, a low-
er bound for the CLRP is proposed in Barreto (2004) by solving a
linear programming relaxation. Interested readers are referred to
Stowers and Palekar (1993) and Zografos and Samara (1989) for
more related works on exact methods for the LRP.

Since the LRP is NP-hard, the exact method requires exponential
CPU time in the size of the input problem, most of the research has
focused on heuristic methods. A simulated annealing based
decomposition approach for the multidepot LRP with capacity on
both depots and vehicles (CLRP) is given in Wu, Low, and Bai
(2002) and Yu, Lin, Lee, and T ing (2010). In Prins, Prodhon, and
Wolfer-Calvo (2006) and Duhamel, Lacomme, Prins, and Prodhon
(2009), CLRP with a homogenous and unlimited fleet is solved
using mainly a greedy randomized adaptive procedure (GRASP).
Many other heuristic approaches exist in the literature, the reader
can for instance refer to Prins, Prodhon, Ruiz, Soriano, and Calvo
(2007), Madsen (1983), Berman, Jaillet, and Simchi-Levi (1995),
Min et al. (1998), Wu et al. (2002), Jacobsen and Madsen (1980),
Or and Pierskalla (1979), Srikar (1983) and Salhi and Rand (1989)
for a more exhaustive state-of-the-art survey on solving LRP and
its variants.

In the following sections, we discuss the proposed hybrid heu-



ristic for solving our LRP.

3. Hybrid approach

As mentioned earlier, the LRP can be v iewed as an integration of
two NP-hard optimization problems where each separate problem
is by its own difficult to solve. In this work, w e propose a hybrid-
ization of GA and ILS to jointly solve location and routing. Our hy-
brid approach GA&ILS is motivated by the fact that in the case of a
large search space: (i) a GA may fail to converge to a g lobal opti-
mum since it explores too many different sub-parts of the search
space and takes a long execution time, whereas (ii) a local search
method may fall into a local optimum quickly. T herefore, w e use
ILS to refine the GA search through successive iterations and max-
imize the chance of convergence to an optimal solution through
using various search spaces.

A high level overview of our hybrid GA&ILS algorithm is de-
picted in A lgorithm 1 below. Before going into the technical de-
tails of our hybrid approach, let us briefly recall the basic
concepts behind GA.1 Generally speaking, the choice of GA as a
building block to tackle our LRP problem is motivated by the large
number of studies adopting GA in routing-like problems, e.g., (Ba-
ker & Ayechew, 2003; Berger & Barkaoui, 2004; Gen & Syarif,
2005; Ho, Ho, Ji, & Lau, 2008). GA is in fact a population-based
metaheuristic w hich has been proved very powerful to solve many
large scale problems (Holland, 1975). It is based on the natural
mechanism applied to a population of individuals. T hose individu-
als are following genetic rules to give rise to new offsprings. T hose
that cannot survive v anish and disappear. Similarly, GA starts with
a population of solutions, then it finds better ones by applying ge-



netic operations over the individuals of each iteration. One can in
fact think of GA as a local search applied on attributes of a set of
solutions rather than attributes of a single solution. Therefore, the
key issues w hen designing a GA is to carefully define the genetic

1 Non expert readers can for instance refer to Holland (1975) for more details about
GA.
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operations over the population, namely, s election, mutation, cross-
over and replacement.

In A lgorithm 1, we incorporate ILS into this GA general scheme.
This allows us to take advantage of ILS features in order to improve
the population generated by the GA and thus to complement the
genetic search. Alternating GA and ILS in our hybrid approach re-
flects the interaction between the global search characteristic we
can gain by using a GA and the ability of ILS to find local optima.
In fact, while GA may produce bad (resp. good) individuals repre-
senting good (resp. bad) search spaces, ILS enables to introduce
fairness when exploring different regions of the search space. More
specifically, the ILS used in our approach is based on four different
neighborhood structures as will be described in details later in sub
Section 3.2. In the next subsection, we shall focus on the GA used in
our approach. W e first describe our solution representation. T here-
after, we discuss our genetic operators and the parameters used
therein.



3.1. Solution representation and genetic operators

3.1. 1. Solution representation
A fundamental point w hen designing a GA is the representation

of each individual in the population of solutions referred as chro-
mosomes. In our approach, a solution x (i.e., an individual, a chro-
mosome) is represented using two vectors A (x) and P(x). The first
vector represents an assignment configuration that gives the set
of open depots and the customers affected to each of them (loca-
tion level). The second vector is a permutation vector fixing the
rank of a customer on a given route (routing level).

More formally, consider an individual x and its representation
A(x) = {a1,a2, . . . ,an} and P (x) = {p1,p2, . . . ,pn}. For every ‘ 2 {1, . .. ,n},
if a‘ =j 2J then this means that customer ‘ .F iso assigned to depot j .
The tours can th theins mbee adnesdut hceadt fursotmom vector a Ps as following. Ftoj r.
every ‘ 2 {1, . . . ,n}, p ‘ 2 Icorresponds to a client. Given two indices



Fig.1 .A ne xampleo fL RPs olutionr epresentation.
‘ and ‘0 such that ‘ < ‘0, if customers p ‘ and p‘0 are affected to the
same depot, that is a‘ ¼ a‘0 ¼j 2 J , then p ‘ is served before p‘0 in
the route corresponding to opened depotj .

To illustrate the representation of a solution, we consider an
example with n = 8 and m = 3, see Fig. 1 where on the right side
we give LRP solution and on the left side its corresponding repre-
sentation vectors A and P. T hen, since a1 = a4 = a8 = 3, we can de-
duce that customers 1, 4 and 8 are assigned to depot 3. The
route serving these customers is obtained from the permutation
vector P. More precisely, customer 1 is followed by customers 8
then customer 4 in vector P meaning that the route serving those
customers from depot 3 starts with customer 1, then 8, and ends
with customer 4. Similarly, customer 2 then customer 6 are served
by depot 1whereas customers 3, 5 and 7 are assigned to depot 2.

As we will see in next sections, this solution representation is
both simple and accurate in order to capture simultaneously the
routing and the location levels of our problem. T his is in fact a
key feature that allows us to define efficient GA operators that
actj ointly on customers assignment to depots and the correspond-
ing routes.



Notice also that in line 4 of A lgorithm 1, the first generation of
individuals is generated randomly. More precisely, an initial indi-
vidual x is initially constructed by assigning each client to one
depot at random in vector A , then by generation a random permu-
tation describing the tours for vector P .

3.1.2. S election
During the operations of a GA process, a new generation is born

by selecting some particular parents and some children. The prob-
lem is how to select good chromosomes from the population. T here
are many existing methods in the literature, for instance roulette
wheel selection, Boltzman selection, rank selection and some oth-
ers. Selecting a parent randomly or relatively to its fitness seems to
be not beneficial because the difficulty of distinguishing between
two chromosomes especially in minimization problems. In our ap-
proach, we follow the same selection mechanism than in Reeves
(1995, 1995). More precisely, a parent is selected according to
the following probability distribution:

Pð½k?Þ ¼MðM2kþ 1 Þ

where [k] is the kth chromosome ordered in descending order of its
objective value and M is the population size. T his means that the
chromosome with the best objective value has a higher probability
to be selected to ensure genetic operations.

3.1.3. Crossover
After deciding the encoding representation of a solution, two

parents are selected according to the selection method already
described in Section 3.1.2 to creta a new offspring. The crossover
operation tries to swap parts of two parents in the population to



generate new offsprings. The crossover is made in hope that an
offspring will inherit good parts of old chromosome. There are
many ways to do crossover, more the crossover is specific to

Fig.2 . Crossovero perationf ort hep ermutationv ector.
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the problem more the GA is performant. Our crossover operator
is applied both on the assignment v ector A and the permutation
(routing) vector P. For the first vector A , we use a one point
crossover by randomly choosing a crossover point cp uniformly
selected from 1 to n. A n offspring is then obtained by appending
the beginning (resp. the end) of the first parent to the end (resp.
the beginning) of the second parent. A s for the second vector, we
follow the crossover procedure of Murata and Ishibuchi (1994).
First we select one crossover point and the permutation is copied
from the first parent till this point, then the second parent is
scanned and if the customer is not yet in the offspring it is
added. More precisely, having two parents x 1 and x2, we con-
struct an offspring x as follows. W e randomly choose a crossover
point. The first part of vector P representing offspring x is the
same than parent x1. The second part of P (x) is completed by tak-
ing, in the same order, the element of P(x2) that were not already
included in the first part.

For clarity, let us consider an example with 3 depots and 8 cus-
tomers and a crossover point cp = 3 as depicted by Fig. 2.

3. 1.4. Mutation operators
When designing a GA, mutation appears to be among the most

important operation to escape local optima since it preserves the
diversification in the population. The mutation step takes place
immediately after the crossover is performed. In our approach,
we use two types of mutation, one for each vector of a chromo-
some. First, w e randomly modify the assignment vector by remov-
ing one customer from a depot to another one belonging to the set
of potential depots. T his gives rise to a possibility of opening a



new depot which, in turn, allows us to explore new solutions
and thus to diversify the search. The second mutation applied
for the permutation vector P is to insert a customer, selected at
random, at a new position, chosen at random too. More precisely,
given a chromosome x , we choose at random a customer p ‘ from
P(x) and a new position ‘0 for this customer. The new chromosome
is then obtained by swapping customer p ‘ in position ‘0 in P(x) and
shifting every other customer in the range {min{‘,‘0}, . . . ,
max{‘,‘0}} to the left or the to right depending on whether ‘ < ‘0
or ‘ > ‘0.

3. 1.5. Fitness function
Comparing the quality of two individuals plays an important

role in any GA. In our work, the evaluation function FEVAL of an indi-
vidual x is defined as the sum of two components COST(x) and PENAL-
ITY(x), i.e., FEVAL(x) = COST(x) + PENALITY(x). The first component COST(x)
is the total cost of the LRP solution represented by individual x . The
second component PENALITY(x) is a penalty on the v iolation of the
capacity constraints. This penalty is used to get as close as possible
to the feasible space. In fact, PENALITY(x) is a well defined metric
function driving the solution represented by individual x to the
boundaries of the feasible space. More precisely, PENALITY(x) is given
by the following formula:



ðxÞ¼Xj2Ja?m axf0;DjðxÞ ?b jg

where:

? Dj(x) is the total demand of customers assigned to depot j in
Dsolution x ,

? bj is the maximal capacity of the depot j ,
? band a is a constant parameter that reflects the degree of the

penalty or equivalently to what extent an unfeasible solution
should be considered in the search.

3.1.6. Replacement
The replacement phase is the last phase in a GA (line 14 inAlgo-

rithm 1). It consists of maintaining the population size constant.
Many existing methods are available in the literature to choose
which individual must be removed from the population such as
random replacement or weak parent replacement (Sivanandam &
Deepa, 2008). In our algorithm, once a new offspring is created
(using the GA operators and the ILS procedure), it is compared with



the worst individual in the population. T hen the best one is simply
kept inside the population.

3.2. The ILS method

This section describes the ILS heuristic we have developed for
our hybrid LRP approach. As stated previously, the ILS is used to
mainly improve the genetic operations and to better guide the
search process (line 12 of A lgorithm 1). The main steps of a ILS,
namely, local search and p erturbation were first given in Glover
(2002). The general framework of a ILS is depicted in A lgorithm 2
below. Let x 0 be the initial solution for the ILS process. A local
search using some neighborhoods structures is applied to x 0 to find
a better solution x^. Once a better solution is found, perturbation is
performed on x^ to obtain a new solution x . After that, a local search
is applied again to x to obtain a new local optimum x~. The solution
x~ replaces x^ only if~x is better than x^ is verified and the ILS process
continues until a stopping criterion is met.

In the sequel, we detail the local search followed by the pertur-
bation mechanism used in our ILS process.



Fig. 3 . Neighborhood N1.
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(a)(b)
Fig. 4 . Neighborhood N2.

Fig. 5. Neighborhood N3.



Fig. 6. Neighborhood N4.

3.2. 1. Local s earch
A local search is a classical optimization method that consists of

generating a local optimal solution by exploring the neighborhood
of a given initial solution. One of the main ingredients when
designing a local search is the choice of the neighborhood struc-
ture. To make it simple, a neighborhood is constructed by modify-
ing some components of a given solution to create a new
neighboring solution. In other words, the neighborhood defines
the way to reach a new solution within few modifications. Identi-
fying an effective neighborhood structure allowing us to efficiently
move from one solution to another is extremely important. How-
ever, a local optimal solution in a neighborhood structure is not
necessary a local optimal in another neighborhood structure. For
this reason, the use of several neighborhood structures help guid-
ing the local search to converge less rapidly to a local optimum. In



addition, for our simultaneous routing and location problem, it is of
special interest to consider different neighborhoods, each one
reflecting a different characteristic of the problem. In the ILS used
to complement the GA in our hybrid approach, we use four neigh-
borhoods including insertion move and swap move, namely
N1;N2;N3 and N4, which are described in the following.

Neighborhood NN 41, wanhidc N ha 2r are performed hbeetw foelleonw two differ-
ent routes o wrhitoho an attempt to improve ftohrem soedlu btieotnw. Meenort ew precisely,
as shown in Fig. 3, for neighborhood N 1, the swap move is per-
faosr msheodw by randomly selecting two customers assigned to two pdeirf--
ferent depots and interchanging them. The corresponding routes
are of course modified but neither the number nor the order of cus-
tomers in those initial routes is changed. A s for neighborhood N2,
ttohem einrssei rnti othno move iiasl c roaruriteeds out by choosing one customer dfN rom2,
one route and inserting it into another route (see Fig. 4).

Neighborhoods N 3 and N 4 allows us to focus on new solutions
by applying swap saN nd3 in asnedrtN io4na moves uinss tiodf eo tchues same route. Mtioornse
precisely, for neighborhood N3, we consider one route and swap
tphree positions oefi two customers iensc idoen itdheart route as asnhdows wn ainp
Fig. 5. A s for the neighborhood N4, we insert a customer between
two 5o.t hAesrf customers hinb othrheo same route as eshrtoa wc nu istno Fig. r6b .

Having this neighborhood structures in mind, the local search
process follows the general scheme of Algorithm 3 below. W e
first start by applying a classical local search according to neigh-
borhood structure N1. More precisely, given an initial solution x ,
we sequentially improve ethp isr csiosleulty,iog ni by choosing othluet fnirxs t,
incumbent neighbor improving x with respect to N 1 and so on
iunnctuilm computing a osro liumtiporno x 1 tghx atw cannot bpeec improved no more.
We obtain a local optimum x 1 that is g iven as the starting point
for the new local search with respect to N2. W e proceed in the
same way wwl oithca neighborhood Nesp3e catn dto N  N42. T W hies process ins re-
peated uanyti lw a lhocn ael optimum dofN th3e fnodur N structures roofc neighbor-



hood is reached.

3.2.2. Perturbation criterion
In the above described neighborhoods, our local moves concern

only open depots. In fact, we can reasonably argue that a local
move to a closed depot can deteriorate the evaluation function
due to the high fixed cost of opening a depot. However, we are also
interested in opening a closed depot since this gives us the oppor-
tunity to deal with a different type of solutions. T his is precisely
the aim of the perturbation mechanism of A lgorithm 2 (line 4).
In fact, we modify the current local optima x^ computed by the local
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Table 1
Percent deviations to the lower bound and CPU time. The best gap values are shown in bold.

Instances p m g

ILS GA&ILS T.S ILS GA&ILS T.S ILS GA&ILS T.S

%gap Time %gap Time %gap Time %gap Time %gap Time %gap Time %gap Time %gap Time %gap Time

S1 a 0 0.01 0 0.02 0.35 5.37 0 0.02
b 0 0.00 0 0.02 0.04 4.89 0 0.01
c 0.00 0.00 0 0.02 0.24 3.97 0 0.01

S2 a 10.42 0.41 10.42 0.40 10.79 22.7 7.66 0.83
b 11.58 0.10 11.58 0.21 12.30 23.4 8.88 0.32
c 13.63 0.12 13.63 0.22 13.69 17.47 10.34 0.90

S3 a 10.88 5.47 10.28 6.07 11.31 70.18 6.28 7.00
b 11.35 4.95 11.20 4.44 12.33 62.78 8.69 3.66
c 13.26 2.99 13.26 2.64 14.20 45.76 9.75 5.51

M2 a 21.75 1.90 21.64 4.71 22.01 90.55 14.15 2.40
b 27.37 0.71 27.38 2.03 28.63 58.89 17.17 4.90
c 29.60 2.85 29.32 2.43 30.71 40.30 20.94 1.67

M3 a 20.34 7.63 19.43 14.61 20.63 240.62 12.79 12.98
b 24.75 4.82 24.82 18.07 26.65 139.08 16.97 6.58
c 26.98 5.44 27.10 5.93 28.62 97.96 19.67 6.69

0 0.03 0.6 5.45 0.01 0.01 0 0.02 0.06 5.43
0 0.02 0.35 5.10 0 0.01 0 0.02 0.04 5.04
0 0.03 0.04 4.19 0 0.01 0 0.02 0.33 4.23

7.65 0.92 7.97 24.94 2.85 2.28 2.85 0.64 2.94 25.91
8.88 1.05 9.29 23.09 4.02 0.96 4.02 0.36 4.40 23.88

10.34 1.00 10.44 17.42 4.03 0.2 4.03 0.55 4.08 17.37

6.48 4.25 7.41 71.73 2.27 5.48 2.26 8.44 2.50 70.32
8.78 7.62 10.30 64.88 3.21 2.36 3.16 2.55 3.79 65.53
9.55 5.75 11.38 45.39 3.75 4.18 3.75 2.19 4.33 45.22

14.10 5.28 14.90 91.14 6.08 3.18 6.01 7.30 6.13 90.72
17.30 3.74 17.52 63.19 8.39 5.04 8.30 6.26 8.83 55.6
21.02 3.67 22.98 38.13 9.94 4.54 9.94 4.87 11.54 35.60

12.98 15.35 14.16 241.96 6.63 17.71 6.75 17.23 6.44 239.20
16.23 9.33 17.45 163.97 6.97 11.42 8.18 15.23 8.77 133.81



19.65 10.87 19.36 96.21 9.11 10.17 9.16 15.04 9.89 98.01
%gap: the average deviation of solution value relative to the lower bound.
Time: running time over ten instances.

search in Algorithm 2 in order to obtain an intermediate solution x 0
and avoid stopping at this local optimum. Each time a perturbation
is made throughout the ILS procedure, a new solution is created.
We perturb the solution in the following way: we select a open de-
pot at random and we remove the customers already assigned to
another depot either opened or closed in an arbitrary way. T his
kind of move generates a new kind of solutions by opening/closing
some depots.

4. Computational results

The proposed heuristic described in the previous section was
coded in C language. The experiments are performed on a desktop
PC Intel Pentium IV, windows XP, 3.2 GHz processor and 1GB
memory.

4. 1. Test instances

We tested our algorithm on benchmark instances generated by
Albreda-Sambola et al. (2005). T here are five sets: S 1, S 2 and S3
with 5 facilities and respectively 10, 20 and 30 customers whereas
M2 and M3 represent instances with 10 facilities and 20 or 30 cus-
tomers. Each instance i is named ‘‘pcr1r2ui’’ w here ‘‘pc’’ indicates
the set of instances we are dealing with and hence the number
of depots and customers as previously described. The number r1

corresponds to the ratio between the total demand of the custom-
ers and the total capacity depots which g ives the number of open



facilities a priori in the optimal solution. T hree values of r1 are con-
sidered w hich are 0.3, 0.5 and 0.7, and are represented by ‘‘a‘‘, ‘‘b‘‘
and ‘‘c’’, respectively. The v alue of r2u is proportional to the fixed
cost of opening a depot. The factor r2 ranges in {1.5,3,9} and is rep-
resented by {p,m,g} whereas u = r(u = d) if it is uniformly distrib-
uted in [?1.1 ,1.1] (respectively in [?1.01, 1.01]). For more
informatio[n? a1b.1o,u1t.1 t]he considered instances, see .A0l1b]r)e.da-Sambola
et al. (2005).

4.2. P arameter setting

We use the following parameters in our experimentation: the
genetic parameters are a population size M = 40; additionally, our
mutation operations are parametrized with two probability
parameters Pa and Pp as depicted in A lgorithm 1. More clearly,
mutation on vector A (resp. vector P ) is applied according to a Ber-
noulli probability distribution with parameter Pa ¼ 0:7 (resp.
Pp ¼ 0:9). T hese two parameters were in fact carefully ¼tu0 ne:7d to en-
han¼ce0 our mheusteatt iwono phase. Wterhsew n IrLeS i nisf aucstec da rwefiuthll genetic algo-
rithm, d is fixed to 0.1 and the algorithm was terminated
whenever there was no improvement in 100 successive iterations.
The maximal time in seconds is fixed to n ⁄ s where n is the number
Tofhe com stauxmimerasl. tW imitehi inn stheceo scope ofifx our work, w e eforercen our algorithm
to visit only feasible solutions by fixing a large value of the param-
eter a = 1000 in the PENALITY(x).

4.3. Comparative s tudy

In this section, a computational study is carried out to compare
our approach with best known solutions. According to the compu-
tational experiments, our algorithm outperforms the results giving
by A lbreda-Sambola et al. (2005) which uses tabu search. T able 1



summarizes the results given by A lbreda-Sambola et al. (2005)
and our proposed method for the test problems. W e use the follow-
ing notations: %gap, the average deviation of solution value to the
lower bound and T ime, the running time over ten instances. The
average percent deviations relative to the lower bound is com-
puted as:

jCðj;1k;lÞji2CXðj;k;lÞHeuLiB?iL Bi?1 00
for each group of instances C(j, k, l), j 2 {S1,S2,S3,M2,M3},
k 2 {a, b,c}, l2 {p,m,g}, with LBi is the lower bound, H eui tSh3e, Mbe2,stM va-
lku2 e o{af, tbh,ce} s,ol l2 u{ tipo,nm o,bg}ta,w initehd LeiBther with ILS or T.S and jC(j, k, l)j is the
nluuemo bfe trh eosf oilnusttaionnce osb belonging to one group.

We further do comparative results based on t-test to enrich our
comparative study. We study the performance of our algorithm
using a t-test evaluation. The t-test is able to achieve a comparison

Table 2
Comparative results based on t-test.

H0 H1 t-value p-value

ILS = T.S ILS < T.S ?8.72 0.00
GA&ILS = T.S GA&ILS < T.S ?9.83 0.00
GA&ILS = T.S GA&ILS < T.S ?1.069 0.142
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between the averages of two samples of observations. Let a1, a2 be
the average deviations of two algorithms 1and 2 respectively. The
tested hypotheses are:

?HH10:: aa11¼<aa22
The hypothesis H0 implies that the percent deviations of the

two algorithms are similar whereas the hypothesis H1 shows
that the average deviation of the solutions value of A lgorithm
1 is lower than A lgorithm 2. The t-test values comparing T S with
ILS and GA&ILS and ILS with the hybrid GA&ILS are given in Ta-
ble 2. W e can observe from the T able 1 that our approach is able
to find optimal solution for the S1 pool of instances and that our
method outperforms the results of A lbreda-Sambola et al. (2005)
in term of total cost. For all instances of the g roup S1, the hybrid
(GA&ILS) converges to optimality while ILS fails at only one in-
stance to achieve the optimal solution (S1agd3). However, the
percent deviation of T.S reaches over 2% for the instance
(S1bmd3). Besides, we denote that T.S solves the problem to opti-
mality with up to only 30 nodes. T herefore, for small instances,
the (GA&ILS) not only gives better solutions than ILS and T.S but
also gives all the optimal solutions. For group S2, (GA&ILS) and
ILS are equal only for the ten instances of type S 2am. The gap
of (GA&ILS) decreases slightly compared with ILS otherwise both
methods are better than TS. Besides, only on the largest in-
stances, those of the last set M3, the ILS is better than T S for
all types of instances and is better than the hybrid (GA&ILS) ex-
cept for the instances of type M3am, M3bp and M3cp. In addi-
tion, the table shows that the average time required for



computing the solution value relative to T.S is much greater than
those of computing with ILS and (GA&ILS) especially for small
instances. The best value on each row is indicated in boldface.
In addition, after performing a t-test over the 450 instances of
our problem for ILS, (GA&ILS) and T S as mentioned in T able 2,
we observe that both ILS and hybrid (GA&ILS) dominate the T S
with an error risk close to 0 whereas the hybrid (GA&ILS) dom-
inates ILS with an error risk of 15%.

5. Conclusion

This paper introduces a hybrid approach that combines a GA
with an ILS to solve the LRP efficiently. Our hybridization is
based on an ILS using four neighborhood structures and allowing
us to improve each of the generation outputted by a GA. Unlike
most of existing common approaches, we pay a special interest
in solving jointly the location and routing levels of our LRP. In
fact, we have carefully designed our genetic operators and neigh-
borhood structures in order to be able to take into account both
of these levels simultaneously. The proposed GA&ILS algorithm
was tested on five problem sets existing in the literature. The
computational results that w e have conducted show that our ap-
proach allows to obtain significant improvements over existing
results. In fact, not only the solutions obtained by our hybrid
GA&ILS algorithm but also their computational requirements,
for all instances, are better than the best previously known solu-
tions obtained using a T S heuristic. The results of the compara-
tive study are very encouraging and suggest to apply the
variable neighborhood search (VNS) for the LRP with one single
route per capacitated open depot.
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