
Evolving Competitive Car Controllers for
Racing Games with Neuroevolution

Luigi Cardamone†, Daniele Loiacono†, Pier Luca Lanzi†∗
†Artificial Intelligence and Robotics Laboratory (AIRLab)

Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy
∗Illinois Genetic Algorithm Laboratory (IlliGAL)

University of Illinois at Urbana Champaign, Urbana, IL 61801, USA

cardamone@elet.polimi.it, loiacono@elet.polimi.it, lanzi@elet.polimi.it

ABSTRACT

Modern computer games are at the same time an attrac-
tive application domain and an interesting testbed for the
evolutionary computation techniques. In this paper we ap-
ply NeuroEvolution of Augmenting Topologies (NEAT), a
well known neuroevolution approach, to evolve competitive
non-player characters for a racing game. In particular, we
focused on The Open Car Racing Simulator (TORCS), an
open source car racing simulator, already used as a plat-
form for several scientific competitions dedicated to games.
We suggest that a competitive controller should have two
basic skills: it should be able to drive fast and reliably on
a wide range of tracks and it should be able to effectively
overtake the opponents avoiding the collisions. In this paper
we apply NEAT to evolve separately these skills and then
we combined them together in a single controller. Our re-
sults show that the resulting controller outperforms the best
available controllers on a challenging racing task. In addi-
tion, the experimental analysis also confirms that both the
skills are necessary to develop a competitive controller.

Categories and Subject Descriptors

I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games

General Terms

Algorithms, Experimentation, Performance

Keywords

NEAT, Games, TORCS, Simulated Car Racing

1. INTRODUCTION
Modern computer games today are very complex, realistic

and team-oriented environments. As a result, programming
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the artificial intelligence of games is an increasingly diffi-
cult and expensive task. In this scenario, computational
intelligence is a promising technology to support the de-
velopment of the artificial intelligence and to improve the
game experience. In particular, the recent availability of
cheap computing resources and several recent works in the
literature [23, 11, 15] suggest that evolutionary computa-
tion techniques can be effectively applied to develop more
interesting and attractive computer games. At the same
time, computer games are an ideal testbed for evolution-
ary computation techniques as they provide very complex
and realistic environments without the need of expensive
simulators or real-world experiments [18]. Accordingly, in
the recent years several scientific competitions dedicated to
computer games have been organized at major international
conferences in the evolutionary computation field [22, 9].

In this work we focused on The Open Racing Car Simu-
lator (TORCS) [1] a state of the art car racing simulator,
that features a sophisticated physics engine, and takes into
account many aspects of a real racing car (e.g., car damage,
fuel consumption, friction, aerodynamics, etc.). In partic-
ular, we applied NeuroEvolution with Augmenting Topol-
ogy (NEAT) [17], a well known neuroevolution approach,
to evolve a competitive controller for TORCS. To perform
the experiments reported in this paper and to evolve a con-
troller for TORCS, we used the framework of the Simulated
Car Racing Competition, a competition based on TORCS
organized in the last year in conjunction with two major
conferences in the computational intelligence field (WCCI-
2008 and CIG-2008). In this work we focus on two basic
skills that we believe a competitive controller should have:
it should be able to drive fast and reliably on a wide range of
tracks and it should be able to effectively overtake the oppo-
nents avoiding the collisions. However, a reliable evaluation
of both these skills at the same time is not an easy problem:
it would require to design an evaluation process that covers
a broad range of game conditions. Thus, we applied NEAT
to evolve these skills separately and then combined them in
a single controller.

To test our approach we compared our controllers to sev-
eral controllers submitted to the Simulated Car Racing Com-
petition. In the first set of experiments we evaluated the
performance of the evolved skills, considering only one skill
at once. Finally, we combined the evolved skills on a sin-
gle controller and then we tested it on a challenging racing
task.

1179



2. RELATED WORK
In the recent years, a growing body of researches is focus-

ing on the application of computational intelligence tech-
niques to modern computer games, which are seen either
as convenient environments to test new techniques or as
an attractive application domain for the existing computa-
tional intelligence techniques. In particular, a lot of recent
works [21, 19, 20, 18, 2, 23, 16] in the literature focused on
racing games, a type of computer games where the goal is
to control effectively a vehicle to accomplish a given task.
Beside the problem of controlling the dynamics of a vehicle,
the racing games involve additional challenges, like avoid-
ing the collisions, finding the best trajectory to overtake an
opponent, choosing the pit-stop strategy, etc. Such a wide
range of issues makes it possible to easily define learning
tasks of increasing complexity, ranging from a basic control
problem to very rich and complex behaviors. In an early
work, Pyeatt and Howe [12] applied reinforcement learning
to learn racing behaviors in RARS, an open source car racing
simulator. They show that the decomposition of the racing
behavior could result in a speed-up of the learning process,
although it might require some specific domain knowledge to
combine successfully the learned behaviors. More recently,
evolutionary computation techniques have been applied to
improve the performance of a motocross game AI [2], to
optimize the parameters in a sophisticated F1 racing sim-
ulator [23] and to evolve a neural network to predict crash
in a car racing simulator [16]. Then, in the recent years,
several works on learning controllers for racing games have
been done by Togelius and Lucas [21, 19, 20, 18]. In particu-
lar, they evolved neural controllers both for radio-controlled
car models and for simple racing simulator. They investi-
gated several schema of sensory information (e.g., first per-
son based, third person based, etc.) and studied the gener-
alization capabilities of the evolved controllers. Finally, the
computational intelligence techniques have been also applied
to some commercial racing games. In Colin McRae Rally 2.0
(Codemasters) a neural network is used to drive a rally car,
thus avoiding the need to handcraft a large and complex
set of rules [5]: a feedforward multilayer neural network has
been trained to follow the ideal trajectory, while the other
behaviors ranging from the opponent overtaking to the crash
recovery are programmed. In Forza Motorsport (Microsoft)
the player, can train his own drivatars, i.e., a controller that
learns the player’s driving style and that can take his place
in the races.

3. NEUROEVOLUTION WITH AUGMENT-

ING TOPOLOGY
In this study, we focused on Neuroevolution with Aug-

menting Topology or NEAT [17], one of the most success-
ful and widely applied neuroevolution approach. NEAT is
specifically designed to evolve neural networks without as-
suming any a priori knowledge on the optimal topology nor
on the type of connections (e.g., simple or recurrent con-
nections). NEAT is based on three main ideas. First, in
NEAT the evolutionary search starts from a network topol-
ogy as simple as possible, i.e. a fully connected network
with only the input and the output layers. Complex struc-
tures emerge during the evolutionary process and survive
only when useful. Second, NEAT deals with the problem of
recombining networks with different structures through an

Figure 1: A screenshot from TORCS.

historical marking mechanism. Whenever a structural mu-
tation occurs, a unique innovation number is assigned to the
gene representing this innovation. This mechanism is then
used to perform the recombination and to identify similar-
ities between the networks without the need of a complex
and expensive topological analysis. Third, NEAT protects
the structural innovations through the mechanism of speci-
ation. The competition to survive does not happen in the
whole population but it is restricted to niches where all the
networks have a similar topology. Therefore, when a new
topology emerges, NEAT has enough time to optimize it.
Again, the historical marking is used to identify the niches
by using the innovation numbers of the genes for measuring
the similarities between different topologies. To prevent a
single species from taking over the population, the networks
in the same niche share their fitness [4]. Then, in the next
generation more resources will be allocated to the species
with greater fitness.

4. SIMULATED CAR RACING
In recent years, several scientific competitions dedicated

to computer games have been organized at major interna-
tional conferences [22, 9]. Among the various games used in
competitions such as Pac-Man [9] or Othello [10], simulated
car racing has recently received more and more attention.
The first event organized during CEC-2007 was based on a
simple simulator written in Java and developed by Julian To-
gelius. The subsequent competitions moved to a more realis-
tic platform, the Open Racing Car Simulator (TORCS) [1],
a state-of-the-art open source car racing simulator which has
been used for the competitions organized at WCCI-2008 and
CIG-2008. In addition, three similar competitions based on
the same platform are planned for CEC-2009, GECCO-2009
and CIG-2009. Accordingly, in this study we focused on the
same platform and we applied NEAT to evolve a fast and
challenging controller for TORCS. The rest of this section
is organized as follows. First of all we introduce TORCS.
Then, we provide an overview of the API provided with the
Simulated Car Racing Competition to control the car in the
game. Finally we briefly describe the controllers submitted
to the Simulated Car Racing Competition, that we com-
pared to our approach in the experimental analysis reported
in this paper.
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4.1 TORCS
The Open Racing Car Simulator (TORCS) [1] is a state-

of-the-art open source car racing simulator which provides a
full 3D visualization (Figure 1)), several tracks, many types
of cars, and different game modes (e.g., practice, quick race,
championship). The car dynamics is accurately simulated
with a sophisticated physics engine, that takes into account
many aspects of the racing car (e.g. traction, aerodynamics,
fuel consumption, etc.). Each vehicle is controlled by its own
automated driver or bot. The game is provided with a lot
of human programmed bots that users can easily extended
and customize to develop their own bots. The game pro-
vides a lot of information on the current state of the car and
of the race, including the position on the track, the distance
between the bot and the other cars, the current speed, etc.
However such information can be also easily preprocessed to
provide the desired representation of the surrounding game
environment. At each control step, each bot controls the
gas/brake pedals, the gear stick, and steering wheel on the
basis of sensory information it perceives. Although TORCS
was not specifically designed to perform machine learning
research, it is well suited to our purposes. In fact, it com-
bines many features typical of commercial racing simulators
with a modular and customizable software architecture. The
experimental analysis performed in this paper has been car-
ried out using the same version of TORCS (1.3.0) used for
the Simulated Car Racing Competition held in conjunction
with WCCI-2008 [8].

4.2 Competition API
In the Simulated Car Racing Competition, the competi-

tors have been provided with a specific software interface
developed on a client/server basis. The controllers run as
external programs and communicate with a customized ver-
sion of TORCS through UDP connections. Each controller
perceives the racing environment through a number of sen-
sor readings which would reflect both the surrounding en-
vironment (the track and the opponents) and the current
game state and they could invoke basic driving commands
to control the car. The complete list of sensors is reported in
Table 1 and includes rangefinders to perceive the distance of
nearby opponents, the current speed, the current gear, the
fuel level, etc (we refer the interested reader to the software
manual of the competition [7] for additional details). Table 2
reports all the driving commands: besides the rather typical
driving commands (i.e., the steering wheel, the gas pedal,
the brake pedal, and the gear change) a meta-command is
available to reset the state of the race from the client-side.

4.3 Submitted Controllers
In this section we briefly introduce the controllers submit-

ted to the past editions of the Simulated Car Racing Com-
petition, that have been used in the experimental analysis
reported in this paper (we refer the interested reader to [8]
for more details about the competition and the entries sub-
mitted). The sources of all the controllers described below
are available on the homepage of the Simulated Car Racing
Competition [6], where are also available two sample con-
trollers programmed in C++ and Java. In the remainder
of the paper we refer to each controller with the name of
the first author, except for the sample controllers, dubbed
as C++ example and Java example.

Name Description

angle Angle between the car direction and the direc-
tion of the track axis.

curLapTime Time elapsed during current lap.

damage
Current damage of the car (the higher is the
value the higher is the damage).

distFromStartLine Distance of the car from the start line along the
track line.

distRaced Distance covered by the car from the beginning
of the race

fuel Current fuel level.

gear
Current gear: -1 is reverse, 0 is neutral and the
gear from 1 to 6.

lastLapTime Time to complete the last lap

opponents

Vector of 18 sensors that detects the opponent
distance in meters (range is [0,100]) within a
specific 10 degrees sector: each sensor covers
10 degrees, from -π/2 to +π/2 in front of the
car.

racePos Position in the race with respect to other cars.

rpm
Number of rotation per minute of the car en-
gine.

speedX Speed of the car along the longitudinal axis of
the car.

speedY Speed of the car along the transverse axis of the
car.

track

Vector of 19 range finder sensors: each sensors
represents the distance between the track edge
and the car. Sensors are oriented every 10 de-
grees from -π/2 and +π/2 in front of the car.
Distances are in meters and sensors are limited
to 100 meters. When the car is outside of the
track (i.e., pos is less than -1 or greater than
1), these values are not reliable!

trackPos

Distance between the car and the track axis.
The value is normalized w.r.t the track width:
it is 0 when car is on the axis, -1 when the car
is on the left edge of the track and +1 when it
is on the right edge of the car. Values greater
than 1 or smaller than -1 means that the car is
outside of the track.

wheelSpinVel
Vector of 4 sensors representing the rotation
speed of the wheels.

Table 1: Description of available sensors in the com-
petition API.

Name Description

accel Virtual gas pedal (0 is no gas, 1 is full gas).

brake Virtual brake pedal (0 is no brake, 1 is full brake).

gear Gear value defined in {-1,0,1,2,3,4,5,6} where -1 is
reverse and 0 is neutral.

steering
Steering value: -1 and +1 means respectively full left
and right, that corresponds to an angle of 0.785398
rad.

meta
This is meta-control command: 0 do nothing, 1 ask
competition server to restart the race.

Table 2: Description of available effectors.
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Chiu. This controller was submitted to the Simulated Car
Racing Competition held in conjunction with CIG-2008. It
is a human programmed controller built upon the C++ ex-
ample controller provided with the competition API. The
gas and the brake pedals are controlled with a policy similar
to the one used in the C++ sample controller, but without
any speed limit. The steering behavior basically consists
of driving along the direction corresponding to the furthest
distance to the track edges (according to track sensor).

Kinnaird-Heether et al. This controller resulted to be
the second best entries to the Simulated Car Racing com-
petition held in conjunction with WCCI-2008 [8] with an
overall performance very close to the winner one. It exploits
a Cultural Algorithm [13] to optimize the parameters of a
programmed controller. First a programmed controller is de-
veloped decomposing it into four behaviors: (i) acceleration,
that deals with the gas and the brake pedals to achieve the
target speed; (ii) steering, that controls the steering wheel
of the car; (iii) shifting, that implements the gear shifting
policy; (iv) error correction, that is basically used to recover
from critical situations. Then, a Cultural Algorithm is ap-
plied to optimize the target speed during turns used in the
acceleration behavior. The fitness of individuals is computed
simply as the distance raced in a fixed amount of time and
the best solution found was submitted as a controller for the
competition.

Lucas. This controller was submitted to the Simulated
Car Racing Competition held in conjunction with WCCI-
2008 [8]. It is a human programmed controller that improves
the Java example controller provided with the competition
API. It basically increased the speed limit of the Java ex-
ample controller and extended the steering and the braking
policies to deal with the higher speed.

Perez et al. This controller was submitted to the Sim-
ulated Car Racing Competition held in conjunction with
WCCI-2008 [8] and an improved version of the same con-
troller was submitted to Simulated Car Racing Competition
held in conjunction with CIG-2008. In this controller the
knowledge is represented as a set of rules that are evolved
with an evolutionary algorithm. Each rule consists of a con-
dition on the car sensors (i.e., when to apply the rule) and
an action on the car effectors (i.e., how to apply the rule).
Among the available sensors, only the following one have
been considered: (i) the angle w.r.t. the track axis (an-
gle); (ii) the distance between the car and the track axis
(trackPos); (iii) the current speed (speedX ); (iv) the left-
most, the rightmost and the frontal rangefinders to detect
the track edges (a subset of track sensors). The effectors are
all the ones available in the API: the gas and brake pedals,
the steering wheel and the gear shifting. The evolutionary
process basically consists of selecting two rules in the knowl-
edge base, recombining them, applying a mutation and then
adding it to the knowledge base replacing the rule most sim-
ilar to it. New rules are kept in the knowledge base only if
they lead to a better controller, i.e., a controller with an
highest fitness, computed on the basis of the lap-time and
of the damage suffered by the car.

Simmerson. This controller resulted the winner of the
Simulated Car Racing competition held in conjunction with
WCCI-2008 [8]. It basically consists of a neural controller
evolved using NEAT4j [14], a Java implementation of NEAT.

The network has three outputs that control respectively the
gas and brake pedal, the steering wheel and the gear shifting.
The inputs of the network are chosen in a subset of the ones
available in the competition API (see Table 1): (i) the angle
w.r.t. track axis (angle); (ii) the current speed (speedX );
(iii) the 19 track rangefinders (track); (iv) the current gear
(gear); (v) the spin speed of wheels (wheelSpinVel); (vi) the
distance between the car and the track axis (trackPos); (vii)
the current RPM of the engine (rpm). The fitness used in
the evolutionary process is computed as the distance raced
within a fixed amount of game tics, penalizing it for the
amount of damage received and the time spent out of the
track.

Tan et al. This controller was submitted to the Simulated
Car Racing Competition held in conjunction with WCCI-
2008 [8]. It was developed with a three-step process. First,
the sensory information was aggregated and preprocessed;
second, a parametrized controller based on simple rules was
designed; finally, the parameters of controller were optimized
using evolution strategies. The resulting controller drives
in the direction where the rangefinder sensors indicate the
largest free distance, with a speed dependent on that dis-
tance.

5. EVOLVING THE DRIVING SKILL
First we focused on evolving a controller that drives as

fast as possible when racing alone on the track. In the fol-
lowing of this section we describe the design of the evolved
controller, i.e., we define the inputs and the outputs of the
neural network evolved. Then, we describe the experimen-
tal setup used to evolve the neural controller, including the
fitness function used. Finally we report the experimental
results.

5.1 Controller Design
In order to apply successfully NEAT to evolve a controller

for TORCS, the choice of the proper inputs and outputs of
the network plays a key role. As inputs of the neural network
we focused on a subset of the sensory information provided
with the competition API: (i) six rangefinder sensors to per-
ceives the track edges (provided by the track sensor) along
the directions { - 90◦, - 60◦, - 30◦, + 30◦, + 60◦, + 90◦};
(ii) an improved frontal sensor computed as the biggest value
among the ones returned from the three rangefinders along
the directions {- 10◦, 0◦, + 10◦}; (iii) the current speed of
the car (speedX ). Our results show that such a small sub-
set of the sensory inputs available is enough to evolve a fast
controller with NEAT. In addition, our empirical analysis
suggests that replacing the frontal rangefinder, i.e., the one
parallel to the car axis, with the improved frontal sensor
leads to a better controller. In fact, the frontal sensor is ex-
ploited from the controllers to detect either when a turn is
approaching or when it is over: the improved frontal sensor
detect more reliably the begin and the end of turns, espe-
cially when the car is not perfectly aligned to the axis of the
track (see the example in Figure 2). Concerning the outputs
of the neural controller, we used two continuous outputs in
the range [-1,1]. The first one is used to control the steering
wheel, according to the steering effector described in Ta-
ble 2. The second one is used to control the gas and brake
pedals as follows. If the output is less than zero it is as-
signed, as a positive value, to the brake effector, resulting
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Figure 2: An example of how the improved frontal
sensor works. In this example, the rangefinders par-
allel to the car axis returns 37m even if the turn is
almost over, preventing the controller from applying
a full acceleration. The improved frontal instead re-
turns the biggest among the three rangefinders read-
ing, i.e., 100m.

(a) Wheel-1 (b) C-Speedway

(c) E-track-6 (d) Wheel-2

Figure 3: Tracks used in all the experiments re-
ported in this paper.

in a braking command. Otherwise it is assigned to the accel
effector, resulting in an acceleration command. In addition,
when the car is in a straight segment of the track, i.e., when
the frontal sensor does not perceive the track edge within
100 meters, the gas pedal is set to 1 and the brake pedal is
set to 0. Such a design choice forces the controller to drive
fast since the early generations and prevents the evolution-
ary search from wasting time with safe but slow controllers.

Finally, to deal with the gear shifting, we used a pro-
grammed policy: while it is quite complex to develop a
good policy that controls the speed and the trajectory of
the car, an effective gear shifting policy can be quite easily
programmed. The controller is also provided with a scripted
recovery policy to be used when the car goes outside of the
track.

5.2 Controller Training
To train the driving behavior we evolved a population of

100 networks for 150 generations with the standard C++
implementation of NEAT [17]. The evolved networks are
evaluated on the basis of their performance when racing
alone on the Wheel 1 track depicted in Figure 3(a). This
track was chosen because it is a fast track but, at the same
time, it involves several complex turns, being in our opinion

Controller C-Speedway E-Track 6 Wheel 2

NEAT driver 15528.90 7566.40 8534.31

Kinnaird-Heether et al. 14573.80 5375.44 6804.25

Simmerson 12629.50 6386.44 2792.97

Tan et al. 12590.00 5136.41 6823.36

Perez et al. 5540.09 4428.98 4612.84

Chiu 16721.50 6820.00 8823.05

Lucas 12240.30 5022.28 3943.58

C++ example 7265.36 4930.86 4664.39

Java example 5711.37 2932.35 2355.26

Table 3: Distance raced by each controller within
10000 game tics on the C-Speedway, E-Track 6, and
Wheel 2 tracks. Statistics reported are the medians
computed over 10 runs.

a good mix of the tracks available in TORCS. The evalua-
tion process consists of two laps on the Wheel 1 track. First,
in the warm-up lap, the network to be evaluated is loaded
into the bot that starts to race. Then, in the evaluation lap,
the performance achieved is recorded and used to compute
the fitness of the network as follows:

F = C1 − Tout + C2 · s̄ + d,

where Tout is the number of game tics the car is outside the
track; s̄ is the average speed (meters for game tic) during
the evaluation; d is the distance (meters) raced by the car
during the evaluation; C1 and C1 are two constants intro-
duced respectively to make sure that the fitness is positive
and to scale the average speed term (both C1 and C2 have
been empirically set to 1000 in all the experiment reported
here).

5.3 Experimental Result
To test our approach we compared the controller evolved

to the ones submitted as entries to the past editions of the
Simulated Car Racing Competition. The comparison has
been carried out following the same approach used for the
competition: each controller is scored when racing alone on
three different tracks. The performance of the controller is
measured as the distance raced by each controller in 10000
game tics, corresponding to 200 seconds of simulated game.
In the following experimental analysis we used the same
three tracks used for the last edition of the Simulated Car
Racing Competition: C-Speedway, E-Track 6, and Wheel 2

(depicted respectively in Figure 3(b), in Figure 3(c), and in
Figure 3(d)). Table 3 compares the performance of the con-
trollers described in Section 4 to our controller, dubbed as
NEAT driver. The first five controllers reported in Table 3
have been developed applying an evolutionary algorithm,
while the last four controllers are entirely programmed. The
results show that the controller evolved with our approach
has the highest performance among the evolved controllers,
while the programmed controller developed by Chiu appears
to be slightly faster in two tracks out of three. Therefore,
NEAT is able to evolve a neural controller almost as fast
as the best programmed controllers also on tracks different
from the one on which it was trained. In addition, the analy-
sis of behavior of the evolved controller reveals that although
it does not always follows the optimal trajectory, it controls
the car very reliably avoiding to race outside the edges of
the track.

To make a fair comparison of the controllers reported in
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Table 3, we should underline that they are evolved using
two different approaches. The first approach, followed by
Simmerson and by Perez et al. consists of evolving the con-
troller from scratch without using any prior knowledge on
the structure of the controller. The second approach, fol-
lowed by Kinnaird-Heether et al. and by Tan et al. exploits
an evolutionary algorithm to optimize the parameters of a
designed driving behavior. Instead, our approach falls some-
where between the former and the latter: the driving skill
is evolved from scratch but then is combined with a pro-
grammed gear shifting policy and a programmed recovery
policy to develop the final controller. Accordingly, the pro-
posed approach does not require any strong assumption on
the structure of the searched controller, but at the same time
does not involve to deal with a too complex and expensive
optimization problem. The results suggest that the pro-
posed approach is effective in practice and leads to a better
performance than the one achieved following different ap-
proaches.

6. EVOLVING THE OVERTAKING SKILL
In the previous section we showed that NEAT can be ap-

plied to evolve a controller with good driving skills. Un-
fortunately this is not enough to develop a competitive car
controller for a racing game, where the capabilities of over-
taking the opponents and avoiding the collisions are very
important. Nevertheless, most of the controllers submitted
to the Simulated Car Racing Competition fails to deal with
this issue. Accordingly, in the past editions of the Simulated
Car Racing Competition the winner was not the fastest con-
troller submitted but the one with the best tradeoff between
driving and overtaking capabilities. Therefore, in this sec-
tion we apply NEAT to evolve a controller with overtaking
skills. The section is organized as the previous one. First,
we define the controller architecture, then we describe the
experimental setup used to train the controller, and finally
we discuss the experimental results.

6.1 Controller Design
To define the inputs of the neural controller, we focus

again on a subset of the available sensors: we use the same
inputs described in the previous section and some additional
inputs to perceive the presence of nearby opponents on the
track. In particular, we introduced eight additional inputs
provided by the opponents sensor of the competition API: (i)
four beams that cover the frontal area of the car between -
20◦ and + 20◦ with respect to the car axis; (ii) two diagonal
beams that cover respectively the area between - 40◦ and
- 50◦ and the area between + 40◦ and + 50◦ with respect
to the car axis; (iii) finally two lateral beams that cover
the area between - 70◦ and - 80◦ and + 70◦ and + 80◦

with respect to the car axis. Similarly to what found in
the previous experiment, few inputs are enough to evolve an
effective overtaking behavior: in the most critical area of the
car, i.e. the frontal area, we use four inputs to represent the
presence of opponents while in the lateral and diagonal we
use only two inputs. The outputs of the neural controller are
the same of the controller previously evolved: one output is
used to control the steering wheel and one output is used to
control the gas and brake pedals.

6.2 Controller Training
In order to evolve the overtaking skill, we designed a spe-

cific evaluation process that involves an overtaker bot that
races against an opponent bot. At the beginning of each
evaluation, a programmed controller is used to align the
overtaker and the opponent in a random segment (i.e., it
can be a straight strong turn, a chicane, etc.) of the track
as shown in Figure 4: the bots are placed with an horizontal
offset with respect to axis of the track that is randomly se-
lected in {−3m, 0m, +3m}; the opponent is placed ahead the
overtaker at a distance randomly chosen between 10m and
20m. As this initial setup is completed, the neural controller

Figure 4: Initial setup used to evaluate the evolved
overtaking skill. The blue car (at the top) is the
opponent, while the yellow car (at the bottom) is
the overtaker.

is loaded in the overtaker bot and the neural controller tries
to overtake the opponent. After 2000 game tics, correspond-
ing to 40s of simulated time, the evaluation is over and the
performance of the controller is computed as:

P = C − α · Tout − β · Tcollision − γ · ∆,

where Tout is the number of game tics the overtaker is out-
side the track; Tcollision is the number of game tics a collision
with the opponent is detected, ∆ is the difference between
the position of the opponent and the position of the over-
taker (i.e., a negative value means that the overtake suc-
ceeded while a positive means that it failed); C is a con-
stant used to make sure that the fitness is positive, while α,
β, γ are used to weights the contribution of each term to the
fitness (in the experiments reported in this paper, we empir-
ically set C = 8000, α = 5, β = 10, and γ = 3). Finally, the
fitness of each controller in the population is computed as
the average performance achieved over 20 evaluations, in or-
der to assess the quality of the solution in several conditions,
i.e., in different track segments.

6.3 Experimental Results
In this second set of experiments, we compared the con-

troller with the overtaking skill evolved, dubbed NEAT over-
taker, (i) to the NEAT driver, (ii) the winner of the WCCI-
2008 edition of the Simulated Car Racing Competition, i.e.,
the Simmerson’s controller and (iii) to the the best pro-
grammed controller submitted so far to the Simulated Car
Racing Competition, i.e. the Chiu’s controller. To com-
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Controller Overtaking Time Tcollision Tout Success Rate

NEAT driver 351.77 ± 151.21 109.03 ± 107.99 1.11 ± 11.00 55.2%
NEAT overtaker 271.49 ± 135.57 47.10 ± 97.85 13.50 ± 39.38 86.7%

Chiu 296.65 ± 165.93 152.38 ± 183.14 7.36 ± 22.16 64.1%
Simmerson 397.76 ± 102.62 145.59 ± 150.53 0.00 ± 0.00 56.8%

Table 4: Performances of each controller on the overtaking of a slower opponent. Statistics reported are the
averages computed over 1000 overtakes.

pare the four controllers we performed 1000 overtakes fol-
lowing almost the same experimental design used to evolve
the overtaking skill, except for the initial offset and distance
of the cars that are uniformly chosen respectively in the in-
terval [−3m, +3m] in the interval [10m, 20m), to test the
controllers in a broad range of conditions. Table 4 com-
pares the performance of the four controllers. The first col-
umn, Overtaking Time, reports the average number of game
tics necessary to overtake the opponent; the second column,
Tcollision, reports the average number of game tics in which
a collision with the opponent is detected; the third column,
Tout, reports the average number of game tics in which the
controller is out of the track edges; finally, the last column,
Success Rate, reports the percentage of successfull overtakes
performed by the controller, where an overtake is defined as
successfull if, after 500 game tics, corresponding to 10s, the
distance between the controlled car and the opponent is at
least 10m. The results show that the evolved overtaking be-
havior, reported as NEAT overtaker, outperforms the other
controllers except for Tout, the average number of game tics
the controller is out of the track.

We applied a one-way analysis of variance or ANOVA [3]
to test whether the differences in Table 4 are statistically
significant. We also applied the typical post-hoc procedures
(SNK, Tukey, Scheffé, and Bonferroni) to analyze the dif-
ferences among the four controllers. The analysis of vari-
ance shows that there are differences statistically significant
at the 99.99% confidence level. In particular, according to
the post-hoc procedures: (i) in terms of average overtak-
ing time, the NEAT overtaker is significantly better than
the others; (ii) in terms of collision avoidance capabilities
(Tcollision) the NEAT overtaker is significantly better than
the others and the NEAT driver is significantly better than
the Simmerson’s and Chiu’s controllers; (iii) finally, in terms
of capabilities of keeping the track (Tout) the NEAT over-
taker is significantly worse than the other controllers. The
results are not surprising as they suggest that the evolved
NEAT overtaker is able to overtake the opponents faster and
more often than the others controller, avoiding the collision
as much as possible. However the NEAT overtaker also ap-
pears to have worse driving capabilities than the other con-
trollers, resulting in a higher average number of game tics
spent outside of the track.

7. COMBINING THE SKILLS
In the final experiment we compares the controllers on

a complete race against several opponents, to test whether
the evolved overtaking skill really gives a competitive advan-
tage in a racing environment. The experiment consists of a
complete race against six opponents chosen among the con-
trollers used in the experiments reported in Section 5: (i) the
Kinnaird-Heether’s controller, (ii) the Tan’s controller, (iii)

Controller C-Speedway E-Track 6 Wheel 2 Total

NEAT mixed 9 8 10 27.0

NEAT overtaker 8 4 9 21.0
NEAT driver 10 3.5 5 18.5

Chiu 5 4 4.5 13.5
Simmerson 7 10 4 21.0

Table 5: Comparison of the scores achieved by each
controller racing against 6 opponents and starting
from the last position on the C-Speedway, E-Track 6,
and Wheel 2 tracks. Statistics reported are the me-
dians computed over 10 races.

the Perez’s controller, (iv) the Lucas’ controller, (v) the Java
example controller and (vi) the C++ example controller. In
this experiment we compared the four controllers consid-
ered in the previous section to a new controller that com-
bines the driving skill and the overtaking skill evolved. This
controller, dubbed NEAT mix, was developed in a straight-
forward way: it behaves as the NEAT overtaker when it
perceive an opponent at a distance equal or smaller than
40m, otherwise it behaves as the NEAT driver. For each
controller, we run 10 races on the three tracks of TORCS
used also in the previous section: C-Speedway, E-Track 6,
and Wheel 2. In each run, the controller to test starts from
the last position of the starting grid, while the first six po-
sition are populated with a random permutation of the six
opponents. At the end of each race, a score is assigned to
the controller according to the F1 point system, following
the scoring procedure used also in the Simulated Car Rac-
ing competition [8]: 10 points to the first, 8 points to the
second, 6 points to third, 5 points to the fourth and so on.

Table 5 compares the median score of the five controllers
for each track and, in the last column, it reports the total
score computed as the sum of the median score collected
in each track. The results show, that the overtaking skill
is very important when racing against several opponents;
e.g., fast controllers with poor overtaking capabilities, like
the Chiu’s one and the NEAT driver, have a worse score
than a slower controller with better overtaking capabilities,
like the NEAT overtaker. On the other hand, the driving
skill is very important too; e.g., although the the NEAT
overtaker has the best overtaking capabilities, it does not
outperform the other controllers due to its inferior driving
capabilities. Accordingly, NEAT mix outperforms all the
other controllers, as it combines good driving and overtaking
capabilities to win the races.

8. CONCLUSIONS
In this work we applied NEAT to evolve a neural controller

for TORCS, that is able to drive fast when racing alone
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as well to behave reliably in presence of opponents. First,
we applied NEAT to evolve a driving skill, that is a neural
controller specifically devised to race alone as fast as possible
on different types of tracks. Then, we extended the same
approach to evolve an overtaking skill, that is we evolved a
neural controller that is able to overtake an opponent and
to avoid collisions in a broad range of situations. Finally,
we combined the evolved skills in a single controller that is
able to drive fast as well to challenge several opponents in a
race.

To test our approach, an empirical analysis was performed
following the same guidelines used to evaluate the entries
submitted to the Simulated Car Racing Competition. In the
first experiment we tested the performance of the evolved be-
haviors alone. Our results show that NEAT is able to evolve
a driving skill that is competitive with the best human pro-
grammed controller available. Similarly, the overtaking skill
evolved by NEAT outperformed both the best programmed
and the best evolved controllers. In the final experiments
we compared the best controllers of the Simulated Car Rac-
ing Competition to the ones evolved with our approach: a
controller with only the driving skill, a controller with only
the overtaking skill, and a controller that combines both the
skills. Such a comparison was performed on a challenging
task: racing against six opponents starting from the last po-
sition of the starting grid. The results suggest that either
the driving skill or the overtaking skill alone does not lead to
a very competitive and reliable car controller. Instead, the
controllers that exploits both the skills is able to outperform
all the other controllers, including the best submitted to the
past editions of the Simulated Car Racing Competition.
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