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Abstract

The paper describes a systematic adaptation of the genetic local search algorithm to a real life vehicle routing
problem. The proposition is m otivated by successful implementations of genetic local search-based heuristics for a
number of combinatorial optimization problems. The key element of the proposed approach is the use of global
convexity tests. The tests allow finding the types of solution features that are essential for solution quality. The results of
the tests are used to construct an appropriate distance preserving recombination operator. Results of computational
experiments demonstrating the efficiency of the proposed approach are reported.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Metaheuristic algorithms, e.g., genetic algo-

rithms, simulated annealing or tabu search, have

been successfully applied to many difficult opti-

mization problems. The reader of many publica-

tions on metaheuristics may get an impression that

the methods can solve any optimization problem



efficiently.
However, the ‘‘No Free Lunch’’ (NFL) theorem

(Wolpert and Macready, 1997) clearly states that
there is no algorithm with a performance, aver-
aged over all possible objective functions, that
outperforms systematic enumeration. NFL is valid
for any performance measure based on the objec-
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tive function values of all solutions generated by
the algorithm in a specified number of iterations.
In particular, NFL is valid if the performance is
evaluated with the objective function value of the
best solution found by the algorithm. Thus, all
optimization algorithms, including metaheuristics,
are based on some, possibly implicit, assumptions;
i.e. they are appropriate for some classes of
problems. The NFL theorem is based on the as-
sumption of a uniform probability distribution
over the set of all possible objective functions. The
probability distribution corresponding to the ‘‘real
life’’ problems can be much different.



The success of metaheuristics in many applica-
tions proves that their assumptions are often met
in practice.

Metaheuristics define general schemes for the
optimization procedures that have to be adapted
for specific problems. One direct conclusion of the
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NFL theorem is that no such general scheme
guarantees efficient optimization without appro-
priate adaptation. Thus, the way a given m eta-
heuristic is adapted to a particular problem may
have a crucial influence on its performance.

Genetic local search (GLS) is a metaheuristic
algorithm that combines genetic (evolutionary)
algorithms with local optimization. Other fre-
quently used names are Memetic algorithms or
Hybrid Genetic algorithms. Heuristics based on
the GLS scheme often prove to be extremely effi-
cient in combinatorial optimization (see e.g.,
Freisleben and Merz, 1996; Merz and Freisleben,



1997, 2000; Gorges-Schleuter, 1997; Galinier and
Hao, 1999). It is quite difficult to track the single
origin of GLS. To our knowledge, the first de-
scription of GLS was published by Ackley (1987),
but similar algorithms were developed probably
completely independently by several authors.
Furthermore, there are significant similarities be-
tween GLS and scatter search (Glover, 1977; see
also Glover, 1995, for discussion of the similarities).

Freisleben and Merz (1996) and Merz and
Freisleben (1997) proposed a very efficient GLS-
based heuristic for the traveling salesperson
problem (TSP). The algorithm uses results of
many years of studies on the TSP, e.g., it uses the
nearest-neighbor heuristic (Lawler et al., 1985) to
generate initial solutions, an efficient local search
algorithm proposed by Lin and Kernighan (1973)
and results of studies on global convexity of the
TSP by M  €uuhlenbein (1991) and Boese et al. (1994).
An important component of the heuristic is the
distance preserving recombination operator (Frei-
sleben and Merz, 1996) m otivated by global con-
vexity of the TSP. An optimization problem has
the property of global convexity if its good solu-



tions have some significant similarities. Mu €u hlen-
bein (1991) and Boese et al. (1994) noticed that
good solutions (local optima) of the TSP instances
have many common arcs. The distance preserving
recombination operator places in the offspring
solutions all the arcs common to both parents and
completes the offspring with randomly selected
arcs. In other words, this operator constructs an
offspring with has the same features in common
with its parents as the two parents have w ith each
other.

Global convexity is not a unique feature of the
TSP. According to the results of Jones and Forrest
(1995), some numerical optimization problems
also exhibit the property of global convexity.
Taillard (1995) studied various classes of quadratic
assignment problems using entropy. His results
also indicate that some of the classes are globally
convex. Merz and Freisleben (2000) also noticed
global convexity of the quadratic assignment
problems.

Proper definition of the recombination operator
has a crucial influence on the performance of ge-
netic (evolutionary) algorithms and genetic local



search. The traditional approach to the develop-
ment of recombination operators relies on intu-
ition and extensive experiments with different
operators. For example, Sevaux and Dauz e?e re-
P e e?re e ?s (2003) test a number of different recombi-
nation operators for a scheduling problem and
Michalewicz (1992) describes a number of recom-
bination operators for the TSP.

In this paper, we propose a systematic approach
for the construction of recombination operators
appropriate for a given optimization problem and
apply it to a real life vehicle routing problem. The
approach follows the line of research that resulted
in the efficient GLS-based heuristic by Freisleben
and Merz (1996) and Merz and Freisleben (1997).
We construct a distance preserving recombination
operator based on global convexity tests. We
propose to use the correlation between solution
quality and distance in the decision space to find
significant features of good solutions. Such fea-
tures should be preserved by the recombination
operator.

Jones and Forrest (1995) introduced fitness
distance correlation analysis similar to the global



convexity tests. Their goal, however, is to a study
problem difficulty for genetic algorithms rather
than finding appropriate adaptation. Further-
more, they study the difficulty of finding global
optima while we are interested in the development
of efficient heuristic algorithms.

Of course, the proposed systematic approach
cannot overcome the limits imposed by the NFL
theorem. Our goal is to propose an approach al-
lowing the development of efficient heuristics for
problems that:



354 A. Jaszkiewicz, P. Kominek / European Journal of Operational Research 151 (2003) 352–364

• are globally convex, i.e., their good solutions
are similar,

• allow efficient local optimization.

In Section 2, we describe the genetic local search
algorithm. The real life vehicle routing problem to
which w e apply the approach is described in Sec-
tion 3. In Section 4, we describe in detail the ad-
aptation of the GLS algorithm to the vehicle
routing problem. Computational experiments are
described in Section 5. In Section 6, conclu-
sions and directions for further research are pre-
sented.

2. Genetic local search algorithm

Local search can be combined in m any ways
with recombination operators. In GLS, each off-
spring resulting from recombination is a starting
point for local optimization. Furthermore, the
starting population is composed of solutions ob-



tained by local optimization. Of course, local op-
timization can also be performed in many ways.
For example, Radcliffe and Surry (1994) consider
an algorithm in which a single iteration of local
search is applied to each offspring. On the other
hand, Taillard (1995) applies tabu search to each
offspring. In the rest of the paper, we will assume,
however, that the recombination operator is
combined w ith a standard greedy or steepest local
search, i.e., that local optimization always stops at
a local optimum.

From the genetic (evolutionary) algorithm?s
perspective, GLS may be interpreted as a standard
GA working on a set of local optima only. From
this point of view, local search is j ust a part of the
recombination operator. The efficiency of GLS
may be explained by the fact that it works on a
smaller search space than the standard GA. So, the
best results should be achieved on problems where
local optima constitute a relatively small part of
the search space and the local optima can be
generated in an efficient way.

GLS may be also interpreted as a modification
of multiple start local search with random starting



solutions. However, starting solutions are con-
structed in an intelligent way by combining
properties of other good solutions. If the recom-
bination operator is well designed, starting solu-
tions obtained in this way should be better starting
points for local search than random solutions. The
efficiency of GLS in comparison to multiple start
local search can be explained by the fact that local
search, when started from a good starting solution,
usually yields a better local optimum and requires
less iterations to reach it.

In the rest of the paper, we will use the fol-
lowing version of the GLS algorithm:

Parameters: size of the current population––N,
stopping criterion
Initialization:
Current population P :¼ ;
repeat Nt toimpuesla

Construct a new feasible solution x by a ran-
domized algorithm
Apply local search to x to obtain x0
Add x0 to P

Main loop:



repeat
Draw at random w ith uniform probability
two solutions x1 and x2 from P .
Recombine x1 and x2 obtaining x3

Apply local search to x3 to obtain x30
if x30 is better than the worst solution in P and
is different from all solutions in P then

Add x30 to P and delete the w orst solution
from P

until the stopping criterion is met

The above algorithm is not an orthodox version
of a genetic algorithm. It assumes acceptance of
every improvement, i.e., the algorithm has a re-
duced diversification factor with respect to more
traditional algorithms using roulette wheel or
tournament selection. Furthermore, the above al-
gorithm does not explicitly introduce genetic gen-
erations; instead, it implements any new solution
in the current population. However, the ideas
proposed in the paper may be easily combined
with other genetic schemes.

The above algorithm is j ust a general scheme
for an optimization heuristic. In order to adapt it



to a given problem the following issues should be
addressed:
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• the way the solutions are encoded,
• the algorithm for finding initial solutions,
• the local search algorithm,
• the recombination operator.

3. The vehicle routing problem

We apply the proposed approach to a real life
vehicle routing problem. A characteristic feature
of this problem, and of many other real life
problems, is that although it is similar to classical
problems known from the literature it has some
special features making the existing algorithms
inappropriate.

The problem concerns the operations of a waste
management company in a city of about 600 000
inhabitants. The company removes about 60% of
waste in the city. The waste is transported to two
dumping sites with different costs. The company
has about 30 000 waste containers in the city. They
are emptied at almost 20 different frequencies. The



highest frequency is five disposals per week; the
lowest is equal to one disposal over 12 weeks. In
addition individual, one-time orders should be
considered. The containers are grouped in, so-
called, sectors. Each sector contains a number of
closely located containers. It is assumed that all
containers in one sector are served by a single ve-
hicle. About 100–200 sectors have to be visited
during one day. In each sector, the vehicle spends
time related to the capacity of the waste, type of
containers and local conditions. The time does not
depend on the type of vehicle. We do not consider
the issue of sequencing containers within a sector,
because local conditions usually precisely define
the proper sequence of containers. We assume that
the distances and travel times between each pair of
sectors are known. The distances and travel times
do not need to be symmetric. The company uses a
non-homogeneous fleet of garbage trucks. Each of
them can handle all types of containers. The ve-
hicles differ by their capacity and cost per kilo-
meter and hour. Usually about 30 vehicles are
available each day. Each vehicle that operates in a
given day starts its route at the company?s base.



Then it collects the waste in the city and goes to
one of the dumping sites. It is assumed that a ve-
hicle may serve a given sector only if it can collect
all w aste in the sector, i.e., each sector is visited by
exactly one vehicle. The vehicle may visit a
dumping site several times (usually twice) during
the day. At the end of the day, it returns to the
base. Vehicle return to the base must be empty.

There are some limitations on the working time
but in practice, they are treated as soft constraints.
The suggested working time is 8 hours but it is
often slightly extended.

The decision consists in assigning a route to
each vehicle through the sectors and dumping sites
for the given day or in deciding that it does not
operate on this day. Each vehicle route starts and
ends in the company?s base. The objective is to
minimize the total operating cost of the waste re-
moval, i.e., sum of costs related to the distance and
working time of each vehicle that operates on the
given day.

Potvin and Bengio (1996) proposed a genetic
local search algorithm for a vehicle routing prob-
lem. As their problem definition differs from that



considered in the paper, their results are not di-
rectly applicable in our case.

4. Adaptation of the genetic local search algorithm
to the vehicle routing problem

4. 1. Solution encoding

Traditional genetic algorithms use binary cod-
ing of solutions (Goldberg, 1988). For many
problems, this kind of coding is not natural. Re-
cently, solutions are often encoded with some
specialized data structures. A lgorithms using this
form of encoding are sometimes called evolution-
ary algorithms (Michalewicz, 1992). W e use the
latter approach for the vehicle routing problem.

The solution encoding should not only be nat-
ural but it should also be efficient from the point of
view of local search and recombination operator.

The solution to the vehicle routing problem is
defined by a set of vehicle routes. The route of each
vehicle is stored as a sequence of sector indices.
Dumping sites are also treated as sectors of a



special type. A part of the route that starts from
the base or a dumping site and ends in a dumping
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Fig. 1. Solution example.

site is called a route segment. The vehicle route may
be empty. An example is presented in Fig. 1.

4.2. Finding initial s olutions

Local search in the initialization phase may be
started from randomly created solutions. The ef-



ficiency of this phase may be increased, however, if
the quality of initial solutions is better than aver-
age. A simple specialized heuristic may be used to
this end. GLS could be biased, however, if the
method used to find initial solutions generate so-
lutions that are too similar. This may result in
premature convergence to a specific region of the
decision space.

Obviously, the method used to find initial so-
lutions should be randomized. Let assume that the
method generates a solution of average quality f 0
higher than average quality over all feasible solu-
tions. The method, w hen run a number of times
should generate a representative sample of solu-
tions of such quality. In practice, it may be difficult
to guarantee this, but an effort should be made to
avoid biases even at the cost of average quality.

In the case of the vehicle routing problem, we
use the following algorithm for finding good initial
solutions:

For each vehicle
Create a vehicle route with a single default
segment



For each sector s in random order
For each vehicle route VR

For each route segment RS in the route
VR

Evaluate insertion of sector s in the
route segment RS

Evaluate insertion of sector s in a newly
created route segment

Add sector s to the best possible position, i.e.,
position that results in the lowest increase to
the total operating costs

Remove all vehicle routes composed of default
segment only

The default segment starts at the base and ends
at one of the dumping sites. The dumping site that
results in the lowest cost for the vehicle is selected.
Because the hour and kilometer costs are different
for different vehicles and, in general, are not pro-
portional, different dumping sites may be selected
for different vehicles.

Whenever the insertion of a sector in a route
segment is evaluated, the cost of the segment is
optimized. This requires solving of a simple



asymmetric TSP with usually up to 10 nodes. We
use a greedy local search algorithm with the 2-opt
neighborhood to this end. In addition, when the
insertion of a sector in a route segment is evalu-
ated, we test the possibility of changing the
dumping sites at the beginning and at the end of
the route segment. If the route segment starts at
the base and ends at one of the dumping sites, the
possibility of changing the ending dumping site is
tested. If the route segment both starts and ends at
a dumping site three additional possible configu-
rations of starting and ending nodes are tested.
The cost of the segment is optimized for each
possible configuration of starting and ending
nodes. If the route segment is not the first one,
changing its starting dumping site requires that the
ending dumping site of the previous segment is
changed. In such case, the cost of the previous
segment is also optimized. The same applies to the
situation when the route segment is not the last
one and its ending dumping site is changed.

The soft constraint related to the suggested
working time corresponds to a penalty term added
to the objective function. If the working time of a



vehicle exceeds the suggested time, the cost of its
route is increased.
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4.3. Local search

We use local search with an operator that shifts
a sector from a vehicle route to another route. The
sector is inserted into the vehicle route in the best
possible position found, in the same way as in the
case of the initial solution.

Two versions of local search are considered.
Steepest local search browses the whole neighbor-
hood and accepts the best improving move in the
neighborhood. In greedy local search, the neigh-
borhood is browsed in random order and the first
improving move is accepted. Greedy local search is
applied to the initial solutions. Steepest local search
is applied to the solutions obtained by recombi-
nation. This approach was found to give the best
results. The same observation was previously made
in the case of the TSP (Jaszkiewicz, 1998).

Note that the cost change corresponding to a
sector shift is a sum of cost changes related to
removal and insertion of the sector. Furthermore,
each move changes two vehicle routes only, while



the other routes remain unchanged. The two facts
allow significant improvements in the efficiency of
local search. At the beginning of local search two
temporary cost tables are associated with each
vehicle route. The cost tables store removal and
insertion cost changes for each sector removed or
inserted in the routes. Initially, all tables contain
empty values. Whenever removal or insertion of a
sector from a vehicle route is evaluated, the ap-
propriate element in one of the tables is tested. If
the cost is already known, i.e., if the appropriate
element in the table is not empty, the value from
the table is used. Otherwise the removal/insertion
cost is evaluated and stored in the table. Further-
more, whenever a vehicle route is changed because
of an accepted move all elements in the two tables
associated with the route are filled with empty
values. In the case of considered instances, this
approach reduces the computation time of local
search by a factor of 5.

4.4. Recombination operator

4.4. 1. Global convexity tests



We formulate the hypothesis that the vehicle
routing problem is globally convex, i.e., its good
solutions are similar. The goal of the tests de-
scribed in this section is to test this hypothesis and
to find similarity measures concordant with this
hypothesis.

Boese et al. (1994) in their experiments for the
TSP use the number of common arcs as a simi-
larity measure of two solutions. They report two
indicators of the global convexity: the average
number of common arcs between two local optima
and the correlation between the quality of a local
optimum and its average similarity to other local
optima. The correlation is not computed numeri-
cally but presented in graphical form similar to
that used in Fig. 2.

Assume that a set C of solutions is known. W e
propose to calculate the correlation between the
value of the objective function f for solution x and
the average similarity of x to other solutions not
worse than x denoted by s  ^s ðxÞ. The average simi-
lwaroirtsye i tsh caanlcux ld ateendo as



ss^ ðxÞ¼ Py2CjfðyÞj6CfjðxÞsðx;yÞ;

where s ðx; yÞ is similarity of x and y and objective
fwuhnecrteios nð x f; yisÞ iassss iummieladr ittoy obfe mxa innidmy iza edn.d

Four possible similarity measures were formu-
lated and used in the global convexity tests. Each
of them has some intuitive explanation.

• The p ercentage of common arcs. This measure is
analogous to the one used in the case of the
TSP. One could expect that short arcs and arcs
directed towards dumping sites should often ap-
pear in good solutions.

• The p ercentage of common assignments of sec-
tors to vehicles. One could expect that sectors
lying far from both the base and the dumping
sites should be served by vehicles with relatively
low kilometer and hour costs. In addition, sec-
tors with high loading times should be served
by vehicles with low hour costs.

• The p ercentage of common assignment of arcs to
vehicles. This measure is a combination of the
previous two measures. It assumes that some



arcs not only tend to appear often in good solu-
tions but they also tend to be assigned to the
same vehicles. One could expect that long arcs,
e.g., arcs leading to remote sectors, should be
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Fig. 2. Graphical presentation of correlations between solution quality (cost) and the similarity measures.

assigned to vehicles with relatively low kilo-
meter and hour costs.

• The p ercentage of common p airs of sectors as-
signed together to a single route segment. The
idea of the measure is very close to the ap-
proach used currently in the company. Consider
a city neighborhood in which a number of sec-
tors are to be visited. If the sectors are placed
close to each other, it should be a good ap-
proach to serve them during a single trip of a



vehicle, while the order in which the sectors
are visited is of lower importance.

Note that our goal is to develop an efficient
heuristic for the problem at hand. Usefulness of
the above measures may depend on the values of
some parameters, e.g., on tightness of capacity
constraints.

In the experiments, we used 10 different in-
stances of the problem, each corresponding to a
different day of the company operations. In each
of these instances, the same set of 31 vehicles was
available. The instances differed by the sets of
sectors to be served and the amounts of waste in
the sectors. For each instance, 500 local optima
were generated. The results presented in Table 1
are averages for the 10 instances. Fig. 2 presents a
correlation example for one instance.

All the proposed similarity measures are corre-
lated with solution quality. The highest correlations
are obtained for the percentage of common as-
signment of sectors to vehicles and the percentage
of common pairs of sectors assigned together to a
single route segment. An interesting observation is



that the percentage of common assignments of arcs
to vehicles is significantly correlated with solution
quality, however, the average number of common
arcs assigned to the same vehicle is very low.

4.4.2. Distance p reserving recombination operator
As all the similarity measures tested in Section

4.4. 1 are correlated with solution quality, the dis-
tance preserving recombination operator should
preserve features of all types. Below we propose a
recombination operator that guarantees preserva-
tion of the features of two types and gives high
probability for preserving the other features:

Recombination operator 1:

Parameters: two parent solutions x1 and x2
Phase 1:
For each vehicle v that has an assigned route in x1
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Table 1

Results of the global c onvexity tests

Similarity measure

The percentage The percentage of The percentage of The percentage of common pairs
of common common assignments common assignment of sectors assigned together to a

arcs of sectors to vehicles of arcs to vehicles single route segment

Average value over all pairs 27.68 4.87 1.40 18. 13
of local optima [%]

Correlation with solution ?0.452 ?0.58 1 ?0.561 ?0.611
quality



With probability 0.5 place the whole route of
vehicle v in x1 in the offspring solution

Phase 2 :
For each vehicle v that has an assigned route in
x2

For each route segment RS2 in the route of
vehicle v in x2

Remove from route segment RS2 all sec-
tors already assigned in phase 1
If route segment RS2 remains non-empty

For each route segment RS in the route
of vehicle v in the offspring solution

Evaluate insertion of route segment
RS2 in route segment RS

Evaluate insertion of route segment
RS2 in a new route segment
Insert route segment RS2 in the best
possible position, i.e., the position that
results in the smallest increase to the
total operating costs

A route segment RS2 considered in phase 2 may
be empty if all its sectors are already assigned.



In phase 2, insertions of whole route segments
RS2 into existing route segments, are considered.
The chain of regular sectors from RS2 might be
inserted at the beginning of the existing segment,
or at the end of the existing segment, or between
any two sectors from the existing segment. In
neither case, the chain of sectors of RS2 is broken
nor their sequence is changed. Special sectors
corresponding to dumping sites are not considered
in this step. Node, however, that while inserting
RS2 an arc common to both parents may be
broken. Thus, the operator does not guarantees
preservation of common arcs and preservation of
common assignments of arcs to vehicles. This may
happen, however, only if breakage of a common
arc results in the smallest increase to the total
operating costs.

Theorem 1. Each s ector a assigned in both parents
x1 and x2 to the s ame vehicle v will be assigned to
the same vehicle.

Proof. In phase 1, each route is assigned to the



vehicle of parent 1, thus all its sectors are assigned
to the same vehicle. In phase 2, each route segment
is assigned to the vehicle of parent 2, thus all its,
sectors not yet assigned in phase 1, are assigned to
the same vehicle. ?

Theorem 2. Each p air of sectors assigned together
in both parents x1 and x2 to a s ingle route segment
will be assigned together to a s ingle route segment in
offspring x3.

Proof. Consider a pair of sectors a and b assigned
together in both parents x1 and x2 to a single route
segment. A s complete vehicle routes are assigned
in phase 1, either both of the sectors are as-
signed together in phase 1 or both of them are
assigned together in phase 2. If the pair of seg-
ments is assigned in phase 1, then the route it be-
longs to in parent 1 is not changed. Thus, the pair
of sectors remains in the same route segment.

If the pair of segments is assigned in phase 2,
then the only change to the route segment it be-
longs to in parent 2 consists in removing sectors



assigned in phase 1. Then the remaining route
segment is inserted in the offspring as a whole.
Thus, the pair of sectors remains in a single route
segment. ?
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In order to test the importance of preservation
of the common features, we have developed two
other recombination operators that do not pre-
serve some of the features. Both operators differ
from operator 1 in phase 2 only. Recombination
operator 2 does not preserve common pairs of
sectors assigned together to a single route segment.
In phase 2, sectors not yet assigned from each
vehicle route of parent x2 are considered in ran-
dom order and each of them is inserted separately
in the offspring solution.

Recombination operator 2 :

Parameters: two parent solutions x1 and x2

Phase 1:
For each vehicle v that has an assigned route
in x1

With probability 0.5 place the whole route
of vehicle v in x1 in the offspring solution

Phase 2 :
For each vehicle v that has an assigned route
in x2



For each sector s in the route of vehicle v in
x2 (in random order)

If the sector s has not already been as-
signed in phase 1

For each route segment RS in the
route of vehicle v in the offspring so-
lution

Evaluate insertion of sector s in route
segment RS

Evaluate insertion of sector s in a
newly created segment
Insert sector s in the best possible po-
sition, i.e., the position that results in
the smallest increase to the total op-
erating costs

Recombination operator 3 does not preserve
common assignments of sectors to vehicles. In
phase 2, the assignment of each route segment to
each vehicle route is evaluated and the best posi-
tion is selected.

Recombination operator 3 :

Parameters: two parent solutions x1 and x2



Phase 1:
For each vehicle v that has an assigned route in x1

With probability 0.5 place the whole route of
vehicle v in x1 in the offspring solution

Phase 2:
For each vehicle v that has an assigned route in
x2

For each route segment RS2 in the route of
vehicle v in x2

Remove from route segment RS2 all sec-
tors already assigned in phase 1
If route segment RS2 remains non-empty

For each vehicle route VR in the off-
spring

For each segment RS in VR
Evaluate insertion of route segment
RS2 in RS
Evaluate insertion of route segment
RS2 in a new route segment
Insert route segment RS2 in the best
possible position, i.e., the position that
results in the smallest increase to the
total operating costs



5. Computational experiments

In the experiments, we used 10 different in-
stances of the problem, each corresponding to a
different day of the company operations. In each
of these instances, the same set of 31 vehicles was
available. The instances differed by the sets of
sectors to be served and the amounts of waste in
the sectors. The waste were transported to two
dumping sites with different costs. Each instance
included 100 sectors.

Fig. 3 contains experimental results with a
number of different methods described in Section
4.4.2. GLS denotes the main version of the pro-
posed algorithm w ith recombination operator 1;
GLS2 denotes the version of the genetic local
search algorithm w ith recombination operator 2
and GLS3 denotes the version of algorithm based
on recombination operator 3. In all cases, popu-
lations of size 40 were used.

The proposed method is compared also to an
evolutionary algorithm EA which uses standard
roulette wheel selection. The evolutionary algo-



rithm uses recombination operator 1. The initial

population is obtained using the algorithm for
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Fig. 3. Graphical comparison of the results. Each c hart c orresponds to a different instance. Each chart contains six box plots rep-
resenting the distribution of cost for (from left to right) GSL1,GLS2, GLS3, EA, MSLS, SA. Note that the box plots are in many cases
practically invisible because of the very low dispersion of the results.
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finding initial solutions. The size of the population
was 50. We have used a larger population than in
the case of GLS because in EA smaller popula-
tions resulted in a very fast convergence to rela-



tively poor solutions. W e use the following version
of the EA algorithm:

Parameters: size of the current population––N,
stopping criterion
Initialization:
Current population P :¼ ;
repeat Nt toimpuesla

Construct a new feasible solution x by a ran-
domized algorithm

Main loop:
repeat

Draw at random with uniform probability
two solutions x1 and x2 from P .
Recombine x1 and x2 obtaining x3

if x3 is better than the worst solution in P and
is different to all solutions in P then

Add x3 to P and delete from P the worst
solution

until the stopping criterion is met

The parameters of the methods were set as
follows:



? size of the current population 50
?? crossover epc ruorbreabnitlip tyo 0.95

In addition, we compare results of GLS to
multiple start local search MSLS and a simulated
annealing SA algorithm. In the case of MSLS,
local search is started from solutions constructed
by the algorithm for finding initial solutions. The
result of MSLS is the best local optimum found in
the given number of iterations. SA also starts from
solutions constructed by the algorithm for finding
initial solutions. An intensive experiment was
performed in order to find good settings for the
starting and final temperature for SA. The number
of moves at a temperature plateau was set in order
to assure running times comparable to the other
algorithms.

Greedy version of local search is used. It tests
the neighborhood moves in random order and
performs the first improving move. The local
search algorithm is stopped when no improving
move is found after testing all the possible neigh-
borhood moves, which means that a local opti-



mum is achieved.
We use neighborhood denoted by Vð xÞwith an

operator etn heatig hsbhoiftrsh a drad nednoomtedly ysel Veð ctxeÞdw sitehcta onr
between two randomly selected vehicle routes in
the same way as in the case of the local search
described in Section 4.3.

We used the following version of the SA algo-
rithm:

Parameters: starting temperature T0, the rules of
temperature decreasing, stopping criterion, tem-
perature update factor, number of moves at a
temperature plateau L

Generate a starting solution x 2 S using the
Galgenoreirtahtme afos rt afirntdiningg s ionluititaiol nsox lu2 tiS onu s iTn :¼ hT0e

Repeat
For i:¼ 1 to L do

Cr io: n¼st 1rutc ot y 2d Vð xÞ;
CIfo of nðsytÞr u<c tf y ðx2 Þ Vthð exnÞ

x :y¼Þ y
Elsxe

x :¼ y (accept y) with probability
xex: ¼pð?y ðfðyÞ ?f ðxÞÞ=TÞ



If thee xcpoðn?dðitfiðoynÞs ?fof rð xcÞhÞ=anTgÞing the tempera-
ture are fulfilled decrease T;

Until the stopping criterion is met

The parameters of the methods w ere set as follows:

? starting temperature 1500
?? fsitnaarlt temperature 50
?? temperature utpurdeate factor 0.99
?? nteummpbeerar toufr moves aet a tempera-

tnuurme bpelrateo afu m 12 000

We use two criteria to evaluate the performance
of the tested methods: CPU time and quality (cost)
of the best solution. Each algorithm was allowed
to run for 120 seconds. The experiments were
performed on a PC with Pentium 733 MHz pro-
cessor. We have noticed an increase of the running
time did not influence quality of results signifi-
cantly. All the algorithms shared a common code,
for the m ost part.
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The reported results are averages over 10 runs
of each algorithm on 10 different instances which
correspond to different days of the company op-
erations. Note that w e used different instances
from those used in the global convexity tests.

The results indicate that the genetic local search
with the proposed recombination operators signif-
icantly outperforms the other methods. Good re-
sults were also obtained with recombination
operator 2. Note that this recombination operator
does not guarantee preservation of common pairs
of sectors assigned together to a single route seg-
ment, however, it gives a good chance for preserving
this feature. This is because each sector is inserted at
the best possible position. This approach may re-
store many common arcs and pairs of sectors. An
interesting observation is that in all cases the genetic
local search with recombination operator 1 gener-
ates very good solutions with very low dispersion.

The use of recombination operator 3 in genetic
local search gives results only slightly better than
the evolutionary algorithm. Recombination oper-



ator 1may been seen as a combination of the two
other operators, because it preserves features pre-
served by these two operators. Thus, the use of
recombination operators that preserves different
types of common features seems to be a promising
approach.

The evolutionary algorithm gives better results
than multiple start local search and simulated an-
nealing on the long run. The two latter methods,
based on local search, are in general the worst
performers.

The results of the experiments prove that the
synergy of local search and recombination opera-
tors leads to methods that outperform algorithms
based on local search only or recombination only.

Fig. 4 illustrates the changes in quality of new
local optima and the CPU time needed to achieve
these new local optima during an example run of
the GLS algorithm with recombination operator 1.
The first chart presents the CPU time needed to
reach a new local optimum from the starting so-
lution obtained by recombination. The second
chart presents the quality of the local optima. Note
that this chart presents the quality of all newly



generated solutions even if they are not included in

the current population. During the optimization

msmie TUP[C] 21100550000000000200400600
Iteration [-]

-lyit ][Qua2211500550000000x1000100200300400500600
Iteration [-]

Fig. 4. Changes in quality of new local optima and CPU time
needed to achieve the new local optima during a run of GLS
algorithm.



process, the quality of solutions contained in the
current population and thus the quality of re-
combined solutions improves. One can see that the
use of the recombination operator indeed im-
proves both the quality of the new local optima
and reduces the CPU time needed to reach them.

6. Conclusions and directions for further research

A genetic local search algorithm has been ap-
plied to a real life vehicle routing problem. We
used a systematic approach based on global con-
vexity tests to develop appropriate recombination
operators. Computational experiments demon-
strate that genetic local search using the developed
recombination operators gives high quality solu-
tions in a relatively short time in comparison with
other classic methods. It is also demonstrated that
the use of the recombination operators improves
both the quality of new local optima and reduces
the CPU time needed to generate the local optima.

The best results were obtained w ith the recom-



bination operator that preserves two kinds of fea-
tures: common assignment of sectors to vehicles
and common pairs of sectors assigned together to a
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single route segment. Thus, the use of recombina-
tion operators preserving different types of com-
mon features seems to be a promising approach.

The systematic approach presented in the paper
was applied to a particular real life problem. The
data are available from the authors upon request.
We believe, however, that the idea is general and
may be applied in many other cases. At present, we
are applying this approach in the case of queries
optimization in data warehouses. This systematic
approach could be especially useful for practitio-
ners facing real life problems that often differ from
standard problems described in the literature. W e
believe that a systematic approach leads to efficient
algorithms faster than traditional approaches
based on intuition and extensive experiments with
different recombination operators.

An interesting direction for further research is
also taking into account similarities between some
vehicles. The company may use several vehicles of
the same type characterized by the same or very
similar parameters. In this case similarity measures



should not distinguish vehicles of the same type.
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