
On-line Neuroevolution Applied to The Open Racing Car Simulator

Luigi Cardamone, Daniele Loiacono and P ier Luca Lanzi

Abstract— The application of on-line learning techniques to
modern computer games is a promising research direction. In
fact, they can be used to improve the game experience and to
achieve a true adaptive game AI. So far, several works p roved
that neuroevolution techniques can be s uccessfully applied to
modern computer games but they are usually restricted to off-
line learning scenarios. In on-line learning problems the main
challenge is to find a good trade-off between the exploration, i .e.,
the search for better solutions, and the e xploitation of the b est
solution discovered so far. In this paper we propose an on-line
neuroevolution approach to evolve non-player characters in The
Open Car Racing Simulator (TORCS), a state-of-the-art open
source car racing s imulator. We tested our approach on two on-
line learning problems: (i) on-line evolution of a f ast controller
from scratch and (ii) optimization of an existing controller
for a new track. Our results show that on-line neuroevolution
can effectively improve the p erformance achieved during the
learning process.

I. INTRODUCTION

Computer games are becoming more and more sophisti-
cated and realistic. In particular, many of the r ecent computer

games have a very complex dynamics and sophisticated

physics engines. As a result, it is getting increasingly dif-
ficult to design non-player characters (NPC) that exhibit

effective behaviors using scripted AI. Under this p erspective,

computational intelligence is a promising but not yet really
exploited technology to support the development of b etter
NPC and to improve the game experience. In particular,
evolutionary computation and, more specifically, neuroevo-
lution are among the m ost successfully computational in-
telligence techniques applied to modern computer games
in r ecent years [20], [7], [15]. However, the application of
these t echniques is generally restricted to off-line learning
scenarios, i.e., the focus is on the final performance achieved
rather than of the p erformance achieved d uring the learn-
ing process. This is a serious concern as many interesting
applications in the field of computer games involve on-line
learning scenarios [11]. Recently, Whiteson and Stone [19]
introduced an on-line neuroevolution approach inspired t o
the action-selection strategy used b y temporal difference
learning to deal with the exploration/exploitation dilemma.
Their approach was originally devised for solving stochastic
reinforcement learning p roblems. In this work we show that
it can b e successfully applied also in modern computer games

Luigi Cardamone (cardamone@elet.polimi.it), Daniele Loiacono (loia-
cono@elet.polimi.it) and Pier Luca Lanzi (lanzi@elet.polimi.it) are with the
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano,
Italy.

Pier Luca Lanzi (lanzi@illigal.ge.uiuc.edu) is also member of the Illinois
Genetic A lgorithm Laboratory (IlliGAL), University of Illinois at Urbana
Champaign, Urbana, IL 61801, U SA.

to solve on-line learning problems. I n addition, we apply on-

line neuroevolution also to solve an on-line learning problem,
assuming we are given a solution for a slightly different
problem. T his type of problem, not considered in [19], is in-
teresting in the computer games domain as it is related to the
more general issue of developing an adaptive game AI. In this
paper we u sed The Open Racing Car Simulator (TORCS) [1],
a state of the art open source r acing simulator, as testbed
for our empirical analysis. Our results, even if preliminary,
show that on-line neuroevolution applied to computer games
is effective to improve the p erformance of the system during
the learning process. However, further improvements are
necessary to develop an adaptive AI that could b e applied
to a r eal-time learning problem in a modern computer game.
Nevertheless, the results obtained are promising and suggest
that this is an interesting research direction.

II. RELATED WORK

The on-line neuroevolution approach used in this p aper
has been i ntroduced b y Whiteson and Stone in [19] to solve
stochastic problems taken from the reinforcement learning
literature. In this p aper, instead of considering some rein-
forcement learning testbeds, we focused on on-line learning
problems in the computer games domain. In addition, h ere
we extended the on-line neuroevolution approach also to de-
terministic problems by r eplacing the usual fitness evaluation
on the considered task with many faster but less accurate
partial evaluations.

The approach used i n this work is also related to Learning
Classifier Systems (LCS) [5], as they are evolutionary sys-
tems that can be applied to on-line reinforcement learning
problem. Moreover, also in the classifier systems the action-
selection mechanism is applied to deal with the explo-
ration/exploitation dilemma. However, LCS solve problems
by learning a value function and, therefore, they apply an
action-selection mechanism to choose the action to perform
as usual done in TD learning. Instead, in on-line neuroevo-
lution the problem is solved b y learning the whole policy
and the action-selection mechanism is used to select which
candidate solution to evaluate during learning.

Then, as we consider the problem of combining many
evaluations to compute the fitness, this work is related also to
the techniques for applying EC in presence of a noisy fitness
function [10], [2]. Anyway, the focus in t hese works is still
solving optimization problems in an off-line scenario, while
here the focus is on the on-line learning p erformance.

Concerning the application domain considered in t his
paper, a lot of recent works investigated the application of
computational intelligence techniques to car racing games. In
an early work, Pyeatt and Howe [8] applied reinforcement
learning to learn racing behaviors in RARS, an open source
racing simulator. M ore r ecently, evolutionary computation
techniques have been applied to improve the performance
of a motocross game AI [3], to optimize the p arameters in a
sophisticated F1 racing simulator [20] and to evolve a neural

network to predict crash in car racing simulator [12]. Finally,
several works on learning controllers for racing games have
been done by Togelius and L ucas [18], [16], [17], [15].
However, few of these works apply evolutionary computation
to on-line learning problems and they do not focus on the
performance of the system during learning. Our work is also
closely related to one of Spronck [9] that focused on the
issue of adaptivity in the game AI. In particular, he applied
an elitist evolutionary computation approach to solve an on-
line learning problem in a 3D shooter game. In his work he
proposed a fitness propagation mechanism to deal with the
stochasticity of the fitness instead of averaging the results of
several evaluations as done in [19] and in this paper.

III. ON-LINE NEUROEVOLUTION

In this section we provide a brief description of Neuro-
Evolution of A ugmenting Topologies (NEAT) [13], a widely
used neuroevolution approach. Then, we introduce the
on-line evolutionary computation framework proposed b y
Whiteson and Stone [19] that we applied in combination with
NEAT in this work. However, a comprehensive introduction
to t hese t opics is behind the scope of this paper, thus we
refer the interested reader to [13], [19].

A. N EAT

In this work, we focus on one of the most successful
and widely applied neuroevoluton approach: NEAT [13]. It
is specifically designed to evolve neural networks without

assuming any previous knowledge neither on the optimal
topology nor on the type of connections, i.e. using or not
recurrent connections. To deal effectively with these p rob-
lems, avoiding the search in an huge space, NEAT combines
the usual evolutionary search with the complexification of
the network structure. NEAT is b ased on three main ideas.
First, in NEAT the evolutionary search starts from a network
topology as simple as possible, i.e. a fully connected network
with only the input and the output layers. T herefore, more
complex structures emerge naturally during the evolutionary
process and survive only when useful. Second, NEAT deal
with the problem of recombining networks with different
structures through an historical marking mechanism. When-
ever a structural mutation occurs, a unique innovation num-
ber is assigned to the gene r epresenting this innovation. This
mechanism is then used to perform the r ecombination and to
identify similarities between the networks without the need of
a complex and expensive topological analysis. Third, NEAT
protect the structural innovations through the mechanism of
speciation. The competition to survive does not happen in the
whole population but it is restricted to niches where all the
networks have a similar topology. Therefore, when a new

Algorithm 1F itnessi no n-line evolutionaryc omputation.
1:procedureC OMPUTE-FITNESS(P)⊲P i st he

population
2: n(p) = 0, f(p) = 0 ∀p ∈ P ⊲ Initialization of

the fitness and evaluation counter
3: repeat
4: p ← SELECT(P); ⊲ Selection of the individual

to be evaluated
5: n(p) ← n(p) + 1; ⊲ Update the evaluation

counter

6: f(p)U←p da ft(ept)h+ ef intn(1pe)s(sE wVitA hL cu(pr)re− ntf e (vpa)lu);ation ⊲
7: until termination criteria is met
8: end procedure

topology emerges, N EAT has enough time to optimize it.
Again, the h istorical marking is used to identify the niches
by using the innovation numbers of the genes for measuring
the similarities between different topologies. I n order to
prevent a single species from taking over the population, the
networks i n the same niche share their fitness [4]. T hen, in
the following generation more resources are allocated to the
species with a greater fitness.

B. On-line E volutionary Computation

When evolutionary computation is applied to stochastic
problems, several evaluations are necessary to assess the
fitness of an individual. In t his case, a fixed number of
evaluations are usually p erformed for each candidate solution
in the population. However this approach is not suitable

for on-line learning problems where the focus is on the
performance achieved d uring the learning and not on finding
the optimal solution. In [19] Whiteson and Stone proposed
to borrow from the temporal difference (TD) learning the
action-selection mechanism and to exploit it for on-line
evolutionary computation. While in TD the action-selection
mechanism is used to select which action the system has to
perform on the b asis of the current k nowledge, in on-line
neuroevolution it is used to select which candidate solution
will be evaluated. Algorithm 1illustrates the general schema
used in on-line evolutionary computation for computing the
fitness of individuals in each generation. F irst, an individual
is selected according to some p olicy (Algorithm 1, line 4).
Then, the individual is evaluated and, on the b asis of the
outcome, its fitness is updated (Algorithm 1, line 5 and
line 6). In this p aper to u pdate the fitness of the individuals
the outcome of evaluations are j ust averaged but more
sophisticated approach can be used. In this work we focus on
two different action-selection mechanism widely u sed in the
TD literature and, following what done in [19], we show
how t hey can be used as evaluation strategies in on-line
evolutionary computation.

ε-Greedy. The ε-greedy is probably the simplest action-
selection mechanism u sed in the TD literature [14] and
applying it to evolutionary computation is straightforward.

Algorithm 2ε -Greedys election strategy.

1:procedureS ELECT(P)⊲P i st hep opulation,

2: if (rand() < ε) then
3: return r andom p ∈ P; ⊲ Pick randomly an

individual in the p opulation
4: else
5: return argmaxp∈Pf(p); ⊲ Return the fittest

individual in the p opulation
6: end if
7: end procedure

At each iteration the ε-greedy strategy selects the individual
to be evaluated as follows. W ith p robability ε a r andom
individual in the p opulation is chosen, i.e., the strategy
explores the population searching for the optimal solution.
With probability 1−ε the fittest individual in the population
is selected, i.e., the strategy exploits the b est solution dis-
covered so far. Algorithm 2 describes in detail the SELECT
procedure that implements the ε-greedy evaluation strategy.
This p rocedure can b e easily plugged into the general fitness
computation procedure described above and reported as
Algorithm 1. Concerning the termination criteria, Whiteson
and Stone in [19] set a constant number of evaluations t o b e
performed in each generation. However, such a criteria leads
to poor exploration/exploitation b alancing capabilities [19].
Therefore, we propose a different termination criteria: the

loop in Algorithm 1 is performed until all the individuals
in the population have b een evaluated at least once and the
fittest individual has b een evaluated at least θbest times. E ven
if the proposed criteria involves a new p arameter θbest to
set, our results suggest that, with this modification, the ε-

greedy strategy is much more competitive with respect t o
more sophisticated ones.

Softmax. The softmax action-selection mechanism is also
widely used in the TD literature. It is a p robabilistic selection
mechanism and when it is applied to evolutionary computa-
tion it works on the basis of the following idea. The higher
is the current estimate of the fitness of an individual in the
population, the higher is its p robability of being selected.
There are many ways to implement t his idea, but one of the
most popular r elies on using a Boltzmann distribution [14].
When it comes to applying it to evolutionary computation,
the p robability of selecting an individual p in the population
is computed as [19]

ef(τp)

Pp′∈Pef(τp′)
where f(p) is the current fitness of p , P is the population
and τ is a parameter to control the exploration/exploitation
balancing. The h igher is the value of τ, the more even the
selection p robabilities are. Algorithm 3 describes in details
the softmax evaluation strategy. F irst, all the individuals in

the population are evaluated once (Algorithm 3, line 2).
Then, the current fitness of individuals in the population

Algorithm3 S oftmaxs elections trategy.

1:procedureS ELECT(P)⊲P i st hep opulation

2: if ∃p ∈ P|n(p) = 0 then ⊲ First all individuals are
evaluated

3: return p ;
4: else

675::: ftoortai alfl= rl apnP∈ dp(P ∈)P< deofe(tfτpo(tp)a)/lτthen
8: return p ;
9: else

10: total = total − efτ(p);
11: end if
12: end for
13: end if
14: end procedure

is taken into account according to Boltzmann distribution
(Algorithm 3, line 5) and it is used to select probabilistically
an individual(Algorithm 3, line 7). As in the previous case,
the SELECT procedure described in Algorithm 3 can b e
easily plugged into Algorithm 1 to use softmax evaluation

strategy. Concerning the termination criteria, we used the
same one proposed in [19], t hat is a constant number of
evaluation computed as

|P| ·θ eval

where |P| is the size of the p opulation and θeval is a control
parameter.

IV. ON-LINE NEUROEVOLUTION FOR TORCS

The application of on-line learning techniques to modern
computer games is a p romising but challenging research
direction. In this work we focused on The Open Car Racing
Simulator (TORCS) [1], a state-of-the-art open source car
racing simulator. We propose, as testbed, the two following
problems: (i) evolving a fast controller from scratch and
(ii) optimizing an existing controller for a new track. Both
these tasks are designed as on-line learning problem, i.e.,
the learning happens while the game is running and the
focus is on maximizing the performance during the learning
rather than on finding the optimal solution. In the first
task the controller is evolved from scratch, i.e., we do not
have any previous k nowledge about how a fast controller
looks like. In the second task we are given a fast controller
evolved for a different track and we wish to optimize it
on a new track. In order to apply effectively the on-line
neuroevolution approach introduced before to the problems
considered here, we designed a specific evaluation process

to compute the fitness of candidate solutions. The rest of this
section is organized as follows. First of all we provide a b rief
description of TORCS. Then we describe the architecture of
the controllers evolved to solve the task introduced above.
Finally, the process used to evaluate the candidate solution
and the fitness function are described in details.

Fig. 1. A screenshot from TORCS.

A. TORCS

TORCS provides a full 3D visualization, many tracks, a
lot of types of car, and different game modes (Figure 1

shows a screenshot from the game). The car dynamics is
accurately simulated with a sophisticated physics engine,
that takes into account many aspects of the r acing car (e.g.
traction, aerodynamics, fuel consumption, etc.). E ach vehicle
is controlled b y its own automated driver, also called bot. The
game is provided with a lot of human programmed bots, that
can b e easily extended and customized to develop your own
bot. The game provide a lot of information on the current
state of the car and of the r ace, including the position on the
track, the distance between the bot an other cars, the current
speed, etc. However such information can b e also easily
preprocessed to provide the desired r epresentation of the
surrounding game environment. At each control step, each
bot controls the gas/brake pedals, the gear stick, and steering
wheel on the basis of sensory information it perceives.
Although TORCS was not specifically designed to perform
machine learning research, it is well suited to our p urposes.
In fact, it combines many features typical of commercial
racing simulators with a modular and customizable software
architecture. The experimental analysis performed in this
paper has been carried out using the same version of TORCS
used for the Simulated Car Racing Competition held in
association with W CCI-2008 (we r efer the interested reader
to [6] for a detailed description of this event). In addition,
we used a customized aerodynamic m odel t hat improves the
grip, in order to slightly simplify the search for reliable
controllers.

B. Controller D esign

TORCS provides a lot of information about the surround-
ing game environment and the current race state. In t his work,
to define the input of the neural controller we focused on a
subset of the sensory inputs available in the Simulated Car
Racing Competition held in association with W CCI-2008 [6].
In p articular we u sed as input (i) six r ange finder sensors to
perceives the track edges along several directions: - 90°, -
60°, - 30°, + 30°, + 60°, + 90°; (ii) an aggregate sensor

Fig. 2. An example of the six range finders and the aggregate frontal
sensors used as input to neural controller.

that combines the readings of the three range finders along
the direction - 10°, 0° and + 10° (see Figure 2); (iii) the
current speed of the car. The controller provides two real-
valued outputs to control b oth the steering wheel and the
gas/brake pedals. In addition, when the car is in a straight
segment of the track, i.e., when the frontal sensors of the car
does not perceive the track edge within 100 meters, the gas
pedals is set by default to the maximum value. Therefore, the
controllers deal with the gas/brake pedals only when facing
a turn. Such a design choice forces the controller to drive
fast since the early generations and prevents the evolutionary
search from wasting time with reliable but slow controllers.
For the sake of simplicity, in this work we do not consider
the control of the gear shifting p olicy and use a programmed
policy to control this component of the car.

C. E valuation Process Design

When it comes to evolve a controller for TORCS in an off-
line learning scenario the design of the evaluation process is
rather straightforward: each controller can be evaluated on
the b asis of its p erformance during a complete lap of the
track. Instead, in the problem considered in this work, the
learning happens on-line, i.e., while the game is running.
Therefore, a controller at once has to b e evaluated live in
the game. As soon as an evaluation is finished, the following
controller in the population or the first controller of the

next generation, takes the p lace of the one j ust evaluated.
However, this evaluation process involves some technical
issues: (i) the outcome of each evaluation may be affected b y
the previous one; (ii) a sudden change of the controller might
not b e safe; (iii) extremely poor controller might stop the
evaluation process. To deal with the first issue, we introduced
a warm-up interval before the evaluation lap actually begins.
Such a mechanism makes two sequential evaluations almost
independent because each controller has enough time to take
the full control of the car before the evaluation starts. The
second issue is a serious concern: different controllers might
have a totally different way to deal with the same game
situation. Thus, as soon as we change suddenly the controller
policy of the car, the outcome might b e unpredictable and
it might even r esult in loosing the control of the car. To
deal with this issue, we introduced a smooth transition from
the old controller to the new one, i.e., the car controls are
computed as a weighted average of the outputs of the two
controllers. Finally, to deal with the third issue we used the
following approach. As soon as a a controller goes outside
of the track edges, the evaluation ends and a programmed
recovery p olicy is used to bring the car in the correct position
on the track, before the evaluation of the next controller will
start.

Although the evaluation process j ust introduced (dubbed
off-line evaluation strategy in the rest of the p aper) can b e
applied to the on-line learning problems considered here, we

do not expect it would be able to solve them effectively.
In fact, in the off-line evaluation strategy, each controller in
the population is evaluated for a long interval (more than a
lap) and therefore it affects heavily the average p erformance
of the system during the game. Instead, to solve effectively
the on-line learning problems considered, the evaluation
process should focus on the most p romising controllers rather
than on the poor ones. To this purposes we used a new
evaluation process that combines the on-line evolutionary
computation approach described in Section III with a fast
but approximated controllers evaluation. Each controller is
evaluated only for Teval game tics and not for a complete
lap as in the off-line evaluation strategy. As a result the
outcome of an evaluation heavily depends on which part
of the track the controller faced. Accordingly, it becomes
necessary to perform more evaluations of the same controller
to assess its fitness. Therefore, we can apply the ε-greedy
and softmax evaluation strategies described in the previous
section to achieve a good trade-off between the search for
new solutions (exploration) and the exploitation of the b est
solution discovered so far.

Concerning the fitness of the controllers, in the off-line
evaluation strategy it is computed as the outcome of a single
evaluation, while in the ε-greedy and softmax evaluation
strategies the outcomes of several evaluations are averaged
to compute the fitness. However, the outcome of the single
evaluation is computed as follows, for all the three evaluation

strategies:

eval = α −T out + β · s + d,

where Tout is the number of game tics the car is outside the
track; s is the average speed (meters for game tic) during
the evaluation; d is the distance (meters) r aced by the car
during the evaluation; α and β are two constants introduced
respectively to make sure that the fitness is positive and to
weight to scale the average speed term (both α and β have
been empirically set to 1000 in all the experiment reported
here).

V. E XPERIMENTAL RESULTS

We applied NEAT with different evaluation strategies (see
Section III) to the t asks described in the previous section.
This section is organized as follows. F irst, we present and
discuss the results of the first experiment where we used
NEAT to evolve from scratch a fast controller for a specific
track in TORCS. Then we move to the second experiment,
where NEAT is used to optimize a previously evolved
controller for a new t rack,

A. Learning to drive f rom scratch

In the first experiment we applied NEAT to learn a fast
controller for the Wheel 1t rack, depicted in Figure 3(b),
available in the standard TORCS package. W e assumed to

not have any previous knowledge of the structure a fast
controller should have and thus we started the evolutionary
process from a network with a minimal topology i.e., the
input layer fully connected to the output layer without any
hidden neurons. W e compared three different evaluation
strategies, off-line, ε-greedy and softmax, using a population
of 100 individuals. The experiment consisted of 10 runs
and each run involved a race of 2000 laps on the Wheel
1 track1 . For the ε-greedy strategy we set ε = 0.25 and
θbest = 5; while for the softmax strategy we set τ = 50 and
θeval = 3. Figure 4 compares the average lap-time achieved

(a)A alborg (b)W heel1
Fig. 3. Tracks u sed for the experiments reported in this p aper.

during the race b y NEAT with off-line, ε-greedy and softmax
evaluation strategies. Results show that both ε-greedy and
softmax evaluation strategies outperform the off-line one in

terms of on-line p erformance. In particular, NEAT with ε-

greedy and softmax reaches a good on-line performance
after few hundreds of laps, while the performance of NEAT
with the off-line strategy is p oor even after 2000 laps (see
Figure 4 (a)). The differences is still more evident if we look
at Figure 4(b) that shows the overall r acing time elapsed
during the experiment: the off-line evaluation strategy took
approximately 60000 seconds of simulated racing time (i.e.,
16 hours) more than the time taken by on-line evaluation
strategies. Instead, the differences between ε-greedy and
softmax strategies is very small even though the ε-greedy
strategy seems to learn slightly faster (see Figure 4 (a)).
Figure 5 compares the b est lap-time achieved b y NEAT to
the one achieved by the b est programmed controller available
in TORCS. Results show that NEAT outperforms the pro-
grammed controller after few hundreds of laps. In p articular,

1In this work we use the number of laps to define the length of the
experiments instead of the u sual number of generations or the number of
evaluations. We chose this measure because we wanted a measure of the
learning speed that is easy to u nderstand in term of game experience.

(a)LAPS

(b) LAPS

Fig. 4 . NEAT with off-line, ε-greedy and softmax selection strategies
evolving from scratch a controller for Whee l 1 track: (a) average lap-time
in the last 50 laps and (b) overall racing time Curves are averaged over 10
runs.

the off-line evaluation strategy is faster than the others at
reaching a b etter performance than the b est programmed
controller available in TORCS. However, the performances
of the three strategies at the end of the experiments are not
significantly different. The results obtained suggest that, as
already discussed in [19], the off-line evaluation strategy is
outperformed by the on-line evaluation strategies during the
learning process because it is not able to deal effectively with
the exploration/exploitation trade-off. It is interesting to point
out that our results do not suggest that the softmax is better
than ε-greedy as found by Whiteson and Stone [19]. By
the way, the ε-greedy evaluation strategy u sed in this work
is substantially different from the one introduced in [19]:
the number of evaluations is not fixed for each generation
(as happens in the off-line and softmax strategies) but it
is dynamically computed in order to guarantee that a fixed
number of evaluations are assigned to the best solution found
in each generation. W ith such a mechanism, the ε-greedy
evaluation avoids wasting time evaluating poor solutions and
thus it results competitive with softmax strategy. On the other
hand, when we analyzed the b est lap time achieved by NEAT,
i.e., a typical off-line learning metrics, we found that the off-

line evaluation strategy learns faster than the other ones, even
if all the three strategies reach almost the same p erformance

LAPS

Fig. 5. Best lap times achieved b y NEAT with off-line, ε-greedy and
softmax selection strategies applied to the problem of evolving from scratch
a controller for Whee l1track. Curves are averaged over 10 runs.

at the end of the experiment.

B. Learning to drive on a new track

In the second experiment we applied N EAT to evolve
a fast controller for the Wheel 1 track from a controller
previously evolved for the Aalborg track, depicted in Fig-
ure 3(a). In this experiment we seeded the initial population

with a controller evolved off-line for the Aalborg track.
As in the previous experiment, we compared t hree different
evaluation strategies, off-line, ε-greedy and softmax, using
a population of 100 individuals. The experiment consisted
of 10 runs and each run involved a race of 2000 laps
on the Wheel 1 track. For the ε-greedy strategy we set
ε = 0.25 and θbest = 5; while for the softmax strategy
we set τ = 50 and θeval = 3. Figure 6 compares the
average lap-time achieved during the r ace b y NEAT with off-
line, ε-greedy and softmax evaluation strategies. Also in t his
second experiment, both ε-greedy and softmax evaluation
strategies outperform the off-line one during the learning
process. In this task the difference is still more evident as
can b e noticed when looking at the overall time that the
three evaluation strategies need to complete 2000 laps (see
Figure 6(b)): the off-line strategy took approximately 100000
seconds of simulated racing time (i.e., more than 27 hours)
more than the time taken by the other strategies. At the
opposite, the differences between softmax and ε-greedy is
even smaller in this second experiment. Concerning the best
lap-time achieved, Figure 7 compares NEAT to the the b est
programmed controller available in TORCS. Results show
that NEAT outperforms the programmed controller at the
end of experiment, even if much more laps are necessary
with the respect to the first experiment. It can be also
noticed, that performances achieved by the three evaluation
strategies are not significantly different at the end of the

experiment although they are worse than the p erformances
achieved in the first experiment. Finally, in this experiment,
the off-line evaluation strategy learns slower than ε-greedy
and softmax even when the best-lap time is used as metric.
The results obtained show that seeding the p opulation with a

(a)LAPS

(b) LAPS

Fig. 6. NEAT with off-line, ε-greedy and softmax evaluation strategies
applied to the problem of optimizing a p reviously evolved controller for a
different track. (a) average lap-time in the last 50 laps and (b) overall r acing
time. Curves are averaged over 10 runs.

LAPS

Fig. 7. Best lap times achieved b y NEAT with off-line, ε-greedy
and softmax selection strategies applied to the problem of optimizing a
previously evolved controller for a different track. Curves are averaged over
10 runs.

previously evolved solution for a slightly different task might
speedup the learning process in the early stages but might
prevent N EAT from evolving an optimal solution. In fact as
Figure 6(a) shows after an initial b oost to the p erformances,
the learning process get stuck and is not able to improve
anymore. However, NEAT is still able to improve the b est
lap-time achieved b y the TORCS programmed controller

(reported h ere as standard reference). It is important to stress
that, in this second task, the off-line evaluation strategy leads
to a slower learning even when we consider as performance
the best lap-time (see Figure 7), a typical off-line learning
metrics.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we applied N EAT to TORCS, following
the on-line neuroevolution approach introduced in [19]. We
focused on two different tasks: (i) evolving a fast controller
from scratch and (ii) optimizing an existing controller for
a new t rack. Both these tasks have b een designed as on-
line learning problem, i.e., the learning happens running live
the game and the focus is on maximizing the performance
during the learning. In order to apply effectively on-line
neuroevolution to such p roblems, we replaced the typical
fitness evaluation performed in an off-line scenario with
several faster but less accurate evaluations. Then, we com-
pared different evaluation strategies, inspired to the action-
selection mechanism used in temporal difference learning, to
deal with the problem of finding a good trade-off between
searching for new solutions in the population and exploiting
the b est one discovered so far. Our results show that, using
the evaluation strategies proposed in [19], it is possible to
improve effectively the on-line performance of NEAT. W hen
it comes to optimize an existing solution, the results suggest
that on-line neuroevolution might improve the performance
of NEAT even considering an off-line performance measure.

The work p resented h ere is still preliminary but the re-

sults obtained are promising and represent a good starting

point for further analysis and i mprovements. In particular, a

simple but interesting extension to this work would b e using

rtNEAT [11], a steady-state version of NEAT. Then, applying

an action-selection mechanism with a decreasing exploration

rate [14] might b e more suitable for the problems considered

here. Finally, we think that exploiting a given solution for a

slightly different problem to speedup the neuroevolution is

an important issue that needs a deeper analysis in a future

work.

REFERENCES

[1] The open racing car simultaor website. http://torcs.sourceforge.net/.
[2] T. B eielstein and S. Markon. Threshold selection, hypothesis tests, and

doe methods. Evolutionary Computation, 2002. CEC ’02. Proceedings
of the 2002 Congress on, 1:777–782, May 2002.

[3] Benoit Chaperot and Colin Fyfe. Improving artificial intelligence in a
motocross game. In I EEE Symposium on Computational Intelligence
and Games, 2006.

[4] David E. Goldberg and Jon Richardson. Genetic algorithms with
sharing for multimodal function optimization. In Proceedings of the
Second I nternational Conference on Genetic A lgorithms on Genetic
algorithms and their application, p ages 41–49, Mahwah, NJ, USA,
1987. Lawrence Erlbaum Associates, Inc.

[5] Pier L uca Lanzi, Wolfgang Stolzmann, and Stewart W . Wilson, edi-
tors. Learning Classifier Systems: From Foundations to A pplications,
volume 1813 of Lecture N otes in Computer Science. Springer-Verlag,
April 2000.

[6] Daniele L oiacono, Julian Togelius, P ier Luca Lanzi, Leonard Kinnaird-
Heether, Simon M . Lucas, Matt Simmerson, Diego Perez, Robert G.

Reynolds, and Yago Saez. The wcci 2008 simulated car r acing
competition. In P roceedings of the I EEE Symposium on Computational
Intelligence and Games, 2008.

[7] Steffen Priesterjahn, Kramer, Alexander Weimer, and Andreas
Goebels. E volution of human-competitive agents in modern computer
games. In P roceedings of the I EEE Congress on E volutionary
Computation (CEC), 2007.

[8] Larry D . Pyeatt and Adele E. Howe. Learning to r ace: E xperiments
with a simulated r ace car. In P roceedings of the Eleventh I nternational
Florida A rtificial I ntelligence Research Society Conference, p ages
357–361 . A AAI Press, 1998.

[9] Pieter Spronck. Adaptive Game AI. PhD thesis, University of
Maastricht, 2005.

[10] Peter Stagge. Averaging efficiently in the presence of noise. In
PPSN V: P roceedings of the 5th I nternational Conference on Parallel
Problem Solving f rom Nature, p ages 188–200, London, UK, 1998.
Springer-Verlag.

[11] Kenneth O. Stanley, B obby D. Bryant, and Risto Miikkulainen. Real-
time neuroevolution in the nero video game. I EEE Transactions on
Evolutionary Computation, 9(6):653–668, 2005.

[12] Kenneth O. Stanley, Nate Kohl, Rini Sherony, and Risto Miikku-
lainen. N euroevolution of an automobile crash warning system. In
Proceedings of the Genetic and E volutionary Computation Conference
(GECCO-2005), 2005.

[13] Kenneth O. Stanley and Risto M iikkulainen. Evolving neural networks
through augmenting topologies. E volutionary Computation, 10(2):99–
127, 2002.

[14] R. Sutton and A. Barto. R einforcement L earning. MIT Press, 1998.
[15] Julian Togelius. Optimization, I mitation and I nnovation: Computa-

tional I ntelligence and Games. PhD thesis, Department of Computing
and Electronic Systems, University of Essex, Colchester, UK, 2007.

[16] Julian Togelius and Simon M . Lucas. Evolving controllers for
simulated car racing. In Proceedings of the Congress on E volutionary
Computation, 2005.

[17] Julian Togelius and Simon M. Lucas. Arms r aces and car r aces. In
Proceedings of Parallel Problem Solving f rom Nature. Springer, 2006.

[18] Julian Togelius and Simon M. Lucas. Evolving robust and specialized
car racing skills. In P roceedings of the I EEE Congress on E volutionary

Computation, 2006.
[19] Shimon Whiteson and Peter Stone. On-line evolutionary computation

for r einforcement learning in stochastic domains. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pages 1577–1584, New York, NY, U SA, 2006. ACM.

[20] Krzysztof Wloch and Peter J . Bentley. Optimising the performance of
a formula one car using a genetic algorithm. In P roceedings of Eighth
International Conference on Parallel Problem Solving F rom Nature,
pages 702–71 1, 2004.

