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Abstract

In most modern video games, character behavior is scripted;no matter how many times the player exploits

a weakness, that weakness is never repaired. Yet if game characters could learn through interacting with

the player, behavior could improve as the game is played, keeping it interesting. This paper introduces the

real-time NeuroEvolution of Augmenting Topologies (rtNEAT) method for evolving increasingly complex

artificial neural networks inreal time, as a game is being played. The rtNEAT method allows agents to

change and improve during the game. In fact, rtNEAT makes possible an entirely new genre of video games

in which the playertrains a team of agents through a series of customized exercises. Todemonstrate this

concept, the NeuroEvolving Robotic Operatives (NERO) gamewas built based on rtNEAT. In NERO, the

player trains a team of virtual robots for combat against other players’ teams. This paper describes results

from this novel application of machine learning, and demonstrates that rtNEAT makes possible video games

like NERO where agents evolve and adapt in real time. In the future, rtNEAT may allow new kinds of

educational and training applications through interactive and adapting games.

1 Introduction

The world video game market in 2002 was between $15 billion and $20 billion, larger than even that of Hol-

lywood (Thurrott 2002). Video games have become a facet of many people’s lives and the market continues

to expand. Because there are millions of interactive players and because video games carry perhaps the least
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risk to human life of any real-world application, they make an excellent testbed for techniques in artificial

intelligence (Laird and van Lent 2000). Such techniques arealso important for the video game industry:

They can potentially both increase the longevity of video games and decrease their production costs (Fogel

et al. 2004b).

One of the most compelling yet least exploited technologiesis machine learning. Thus, there is an

unexplored opportunity to make video games more interesting and realistic, and to build entirely new genres.

Such enhancements may have applications in education and training as well, changing the way people

interact with their computers.

In the video game industry, the termnon-player-character(NPC) refers to an autonomous computer-

controlled agent in the game. This paper focuses on trainingNPCs as intelligent agents, and the standard

AI term agentsis therefore used to refer to them. The behavior of such agents in current games is often

repetitive and predictable. In most video games, simple scripts cannot learn or adapt to control the agents:

Opponents will always make the same moves and the game quickly becomes boring. Machine learning

could potentially keep video games interesting by allowingagents to change and adapt (Fogel et al. 2004b).

However, a major problem with learning in video games is thatif behavior is allowed to change, the game

content becomes unpredictable. Agents might learn idiosyncratic behaviors or even not learn at all, making

the gaming experience unsatisfying. One way to avoid this problem is to train agents to perform complex

behaviors offline, and then freeze the results into the final,released version of the game. However, although

the game would be more interesting, the agents still could not adapt and change in response to the tactics of

particular players.

If agents are to adapt and change in real-time, a powerful andreliable machine learning method is

needed. This paper describes such a method, a real-time enhancement of the NeuroEvolution of Augmenting

Topologies method (NEAT; Stanley and Miikkulainen 2002b, 2004a). NEAT evolves increasingly complex

neural networks, i.e. itcomplexifies. Real-time NEAT (rtNEAT) is able to complexify neural networks as

the game is played, making it possible for agents to evolve increasingly sophisticated behaviors in real

time. Thus, agent behavior improves visibly during gameplay. The aim is to show that machine learning is

indispensable for an interesting genre of video games, and to show how rtNEAT makes such an application

possible.

In order to demonstrate the potential of rtNEAT, the DigitalMedia Collaboratory (DMC) at the Univer-

sity of Texas at Austin initiated, based on a proposal by Kenneth O. Stanley, the NeuroEvolving Robotic

Operatives (NERO) project in October of 2003 (http://nerogame.org ). The idea was to create a
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game in which learning isindispensable, in other words, without learning NERO could not exist as a game.

In NERO, the player takes the role of a trainer, teaching skills to a set of intelligent agents controlled by

rtNEAT. Thus, NERO is a powerful demonstration of how machine learning can open up new possibilities

in gaming and allow agents to adapt.

NERO opens up new opportunities for interactive machine learning in entertainment, education, and

simulation. This paper describes rtNEAT and NERO, and reviews results from the first year of this ongoing

project. The next section presents a brief taxonomy of gamesthat use learning, placing NERO in a broader

context. NEAT is then described, including how it was enhanced to create rtNEAT. The last sections describe

NERO and summarize the current status and performance of thegame.

2 Related Work

Early successes in applying machine learning (ML) to board games have motivated more recent work in

live-action video games. For example, Samuel (1959) trained a computer to play checkers using a method

similar to temporal difference learning(Sutton 1988) in the first application of machine learning (ML) to

games. Since then, board games such as tic-tac-toe (Gardner1962; Michie 1961), backgammon (Tesauro

and Sejnowski 1987), Go (Richards et al. 1997; Stanley and Miikkulainen 2004b), and Othello (Yoshioka

et al. 1998) have remained popular applications of ML (see F¨urnkranz 2001 for a survey). A notable example

is Blondie24, which learned checkers by playing against itself without any built-in prior knowledge (Fogel

2001); also see Fogel et al. (2004a).

Recently, interest has been growing in applying ML to video games (Fogel et al. 2004b; Laird and van

Lent 2000). For example, Fogel et al. (2004b) trained teams of tanks and robots to fight each other using

a competitive coevolution system designed for training video game agents. Others have trained agents to

fight in first- and third-person shooter games (Cole et al. 2004; Geisler 2002; Hong and Cho 2004). ML

techniques have also been applied to other video game genresfrom Pac-Man1 (Gallagher and Ryan 2003)

to strategy games (Bryant and Miikkulainen 2003; Revello and McCartney 2002; Yannakakis et al. 2004).

This section focuses on how machine learning can be applied to video games.

From the human player’s perspective there are two types of learning in video games. Inout-game

learning (OGL), game developers use ML techniques to pretrain agentsthat no longer learn after the game

is shipped. In contrast, inin-game learning(IGL), agents adapt as the player interacts with them in the game;

1Pac-Manis a registered trademark of Namco, Ltd., of Tokyo, Japan.
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the player can either purposefully direct the learning process or the agents can adapt autonomously to the

player’s behavior. IGL is related to the broader field ofinteractive evolution, in which a user influences the

direction of evolution of e.g. art, music, or any other kind of phenotype (Parmee and Bonham 1999). Most

applications of ML to games have used OGL, though the distinction may be blurred from the researcher’s

perspective when online learning methods are used for OGL. However, the difference between OGL and IGL

is important to players and marketers, and ML researchers will frequently need to make a choice between

the two.

In aMachine Learning Game(MLG), the playerexplicitly attempts to train agents as part of IGL. MLGs

are a new genre of video games that require powerful learningmethods that can adapt during gameplay.

Although some conventional game designs include a “training” phase during which the player accumulates

resources or technologies in order to advance in levels, such games are not MLGs because the agents are not

actually adapting or learning.

Prior examples in the MLG genre include theTamagotchivirtual pet2 and the video “God game”Black

& White3. In both games, the player shapes the behavior of game agentswith positive or negative feedback.

It is also possible to train agents by human example during the game, as van Lent and Laird (2001) described

in their experiments withQuake II4. While these examples demonstrated that limited learning is possible in

a game, NERO is an entirely new kind of MLG; it uses a reinforcement learning method (neuroevolution) to

optimize a fitness function that is dynamically specifiedby the playerwhile watching and interacting with

the learning agents. Thus agent behavior continues to improve as long as the game is played.

A flexible and powerful ML method is needed to allow agents to adapt during gameplay. It is not enough

to simply script several key agent behaviors because adaptation would then be limited to the foresight of the

programmer who wrote the script, and agents would only be choosing from a limited menu of options.

Moreover, because agents need to learn online as the game is played, predetermined training targets are

usually not available, ruling out supervised techniques such as backpropagation (Rumelhart et al. 1986) and

decision tree learning (Utgoff 1989).

Traditional reinforcement learning (RL) techniques such as Q-Learning (Watkins and Dayan 1992) and

Sarsa(�) with a Case-Based function approximator (SARSA-CABA; Santamaria et al. 1998) adapt in do-

mains with sparse feedback (Kaelbling et al. 1996; Sutton and Barto 1998; Watkins and Dayan 1992). These

2Tamagotchiis a registered trademark of Bandai Co., Ltd., of Tokyo, Japan.

3Black & Whiteis a registered trademark of Lionhead Studios, Ltd., of Guildford, UK.

4Quake II is a registered trademark of Id Software, Inc., of Mesquite,Texas.
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techniques learn to predict the long-term reward for takingactions in different states by exploring the state

space and keeping track of the results. While in principle itis possible to apply them to real-time learning

in video games, it would require significant work to overcomeseveral common demands of video game

domains:

1. Large state/action space. Since games usually have several different types of objects and characters

and many different possible actions, the state/action space that RL must explore is extremely high

dimensional. Dealing with high-dimensional spaces is a known challenge with RL in general (Sutton

and Barto 1998), but in a real-time game there is the additional challenge of having to check the

value of every possible action on every game tick for every agent in the game. Because traditional

RL checks all such action values, the value estimator must execute several times (i.e. once for every

possible action) for each agent in the game on every game tick. Action selection may thus incur a

very large cost on the game engine, reducing the amount of computation available for the game itself.

2. Diverse behaviors. Agents learning simultaneously in a simulated world should not all converge to

the same behavior: A homogeneous population would make the game boring. Yet because many

agents in video games have similar physical characteristics and are evaluated in a similar context,

traditional RL techniques, many of which have convergence guarantees (Kaelbling et al. 1996), risk

converging to largely homogeneous solution behaviors. Without explicitly maintaining diversity, such

an outcome is likely.

3. Consistent individual behaviors. RL depends on occasionally taking a random action in order to

explore new behaviors. While this strategy works well in offline learning, players do not want to

constantly see the same individual agent periodically making inexplicable and idiosyncratic moves

relative to its usual policy.

4. Fast adaptation and sophisticated behaviors. Because players do not want to wait hours for agents

to adapt, it may be necessary to use a simple representation that can be learned quickly. However, a

simple representation would limit the ability to learn sophisticated behaviors. Thus there is a trade-off

between learning simple behaviors quickly and learning sophisticated behaviors more slowly, neither

of which is desirable.

5. Memory of past states. If agents remember past events, they can react more convincingly to the

present situation. However, such memory requires keeping track of more than the current state, ruling
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out traditional Markovian methods. While methods for partially observable Markov processes exist,

significant challenges remain in scaling them up to real-world tasks (Gomez 2003).

Neuroevolution (NE), i.e. the artificial evolution of neural networks using an evolutionary algorithm,

is an alternative RL technique that meets each of these demands naturally: (1) NE works well in high-

dimensional spaces (Gomez and Miikkulainen 2003); evolvedagents do not need to check the value of more

than one action per game tick because agents are evolved to output only a single requested action per game

tick. (2) Diverse populations can be explicitly maintainedthrough speciation (Stanley and Miikkulainen

2002b). (3) The behavior of an individual during its lifetime does not change because it always chooses

actions from the same network. (4) Arepresentationof the solution can be evolved, allowing simple prac-

tical behaviors to be discovered quickly in the beginning and complexified later (Stanley and Miikkulainen

2004a). (5) Recurrent neural networks can be evolved that implement and utilize effective memory struc-

tures; for example, NE has been used to evolve motor-controlskills similar to those in continuous-state

games in many challenging non-Markovian domains (Aharonov-Barki et al. 2001; Floriano and Mondada

1994; Fogel 2001; Gomez and Miikkulainen 1998, 1999, 2003; Gruau et al. 1996; Harvey 1993; Moriarty

and Miikkulainen 1996b; Nolfi et al. 1994; Potter et al. 1995;Stanley and Miikkulainen 2004a; Whitley

et al. 1993). In addition to these five demands, neural networks also make good controllers for video game

agents because they can compute arbitrarily complex functions, can both learn and perform in the presence

of noisy inputs, and generalize their behavior to previously unseen inputs (Cybenko 1989; Siegelmann and

Sontag 1994). Thus, NE is a good match for video games.

There is a large variety of NE algorithms (Yao 1999). While some evolve only the connection weight

values of fixed-topology networks (Gomez and Miikkulainen 1999; Moriarty and Miikkulainen 1996a; Sar-

avanan and Fogel 1995; Wieland 1991), others evolve both weights and network topology simultaneously

(Angeline et al. 1993; Bongard and Pfeifer 2001; Braun and Weisbrod 1993; Dasgupta and McGregor 1992;

Gruau et al. 1996; Hornby and Pollack 2002; Krishnan and Ciesielski 1994; Lee and Kim 1996; Mandischer

1993; Maniezzo 1994; Opitz and Shavlik 1997; Pujol and Poli 1997; Yao and Liu 1996; Zhang and Muh-

lenbein 1993). Topology and Weight Evolving Artificial Neural Networks (TWEANNs) have the advantage

that the correct topology need not be known prior to evolution. Among TWEANNs, NEAT is unique in that

it begins evolution with a population of minimal networks and adds nodes and connections to them over

generations, allowing complex problems to be solved gradually based on simple ones.

Our research group has been applying NE to gameplay for abouta decade. Using this approach, sev-

eral NE algorithms have been applied to board games (Moriarty and Miikkulainen 1993; Moriarty 1997;
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Richards et al. 1997; Stanley and Miikkulainen 2004b). InOthello, NE discovered themobility strategy

only a few years after its invention by humans (Moriarty and Miikkulainen 1993). Recent work has focused

on higher-level strategies and real-time adaptation, which are needed for success in both continuous and

discrete multi-agent games (Agogino et al. 2000; Bryant andMiikkulainen 2003; Stanley and Miikkulainen

2004a). Using such techniques, relatively simple ANN controllers can be trained in games and game-like

environments to produce convincing purposeful and intelligent behavior (Agogino et al. 2000; Gomez and

Miikkulainen 1998; Moriarty and Miikkulainen 1995a,b, 1996b; Richards et al. 1997; Stanley and Miikku-

lainen 2004a).

The current challenge is to achieve evolution inreal time, as the game is played. If agents could be

evolved in a smooth cycle of replacement, the player could interact with evolution during the game and

the many benefits of NE would be available to the video gaming community. This paper introduces such

a real-time NE technique, rtNEAT, which is applied to the NERO multi-agent continuous-state MLG. In

NERO, agents must master both motor control and higher-level strategy to win the game. The player acts

as a trainer, teaching a team of virtual robots the skills they need to survive. The next section reviews the

NEAT neuroevolution method, and Section 4 how it can be enhanced to produce rtNEAT.

3 NeuroEvolution of Augmenting Topologies (NEAT)

The rtNEAT method is based on NEAT, a technique for evolving neural networks for complex reinforcement

learning tasks using an evolutionary algorithm (EA). NEAT combines the usual search for the appropriate

network weights withcomplexificationof the network structure, allowing the behavior of evolved neural

networks to become increasingly sophisticated over generations.

The NEAT method consists of solutions to three fundamental challenges in evolving neural network

topology: (1) What kind of genetic representation would allow disparate topologies to cross over in a mean-

ingful way? The solution is to use historical markings to line up genes with the same origin. (2) How can

topological innovation that needs a few generations to optimize be protected so that it does not disappear

from the population prematurely? The solution is to separate each innovation into a different species. (3)

How can topologies be minimizedthroughout evolutionso the most efficient solutions will be discovered?

The solution is to start from a minimal structure and add nodes and connections incrementally. This section

explains how each of these solutions is implemented in NEAT,using the genetic encoding described in the

first subsection.
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Figure 1: A NEAT genotype to phenotype mapping example. A genotype is depicted that produces the shown
phenotype. There are three input nodes, one hidden node, oneoutput node, and seven connection definitions, one
of which is recurrent. The second gene is disabled, so the connection that it specifies (between nodes 2 and 4) is
not expressed in the phenotype. The genotype can have arbitrary length, and thereby represent arbitrarily complex
networks. Innovation numbers, which allow NEAT to identifywhich genes match up between different genomes, are
shown on top of each gene. This encoding is efficient and allows changing the network structure during evolution.

3.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding. Inorder to allow structures to complexify, their

representations must be dynamic and expandable. Each genome in NEAT includes a list ofconnection

genes, each of which refers to twonode genesbeing connected (Figure 1). Each connection gene specifies

the in-node, the out-node, the weight of the connection, whether or not the connection gene is expressed (an

enable bit), and aninnovation number, which allows finding corresponding genes during crossover.

Mutation in NEAT can change both connection weights and network structures. Connection weights

mutate as in any NE system, with each connection either perturbed or not. Structural mutations, which form

the basis of complexification, occur in two ways (Figure 2). Each mutation expands the size of the genome

by adding genes. In theadd connectionmutation, a single new connection gene is added connecting two

previously unconnected nodes. In theadd nodemutation, an existing connection is split and the new node

placed where the old connection used to be. The old connection is disabled and two new connections added

to the genome. The connection between the first node in the chain and the new node is given a weight of

one, and the connection between the new node and the last nodein the chain is given the same weight as the

connection being split. Splitting the connection in this way introduces a nonlinearity (the sigmoid function)
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Figure 2: The two types of structural mutation in NEAT. In each genome, the innovation number is shown on
top, the two nodes connected by the gene in the middle, and the“disabled” symbol at the bottom; the weights and
the node genes are not shown for simplicity. A new connectionor a new node is added to the network by adding
connection genes to the genome. Assuming the node is added after the connection, the genes would be assigned
innovation numbers 7, 8, and 9, as the figure illustrates. NEAT can keep an implicit history of the origin of every gene
in the population, allowing matching genes to be identified even in different genome structures.

where there was none before. This nonlinearity changes the function only slightly, and the new node is

immediately integrated into the network. Old behaviors encoded in the preexisting network structure are not

destroyed and remain qualitatively the same, while the new structure provides an opportunity to elaborate

on these original behaviors.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying sizes will

result, sometimes with different connections at the same positions. Any crossover operator must be able

to recombine networks with differing topologies, which canbe difficult (Radcliffe 1993). The next section

explains how NEAT addresses this problem.

3.2 Tracking Genes through Historical Markings

The historical origin of each gene can be used to determine exactly which genes match up betweenanyindi-

viduals in the population. Two genes with the same historical origin represent the same structure (although

possibly with different weights), since they were both derived from the same ancestral gene at some point

in the past. Thus, in order to properly align and recombine any two disparate topologies in the population

the system only needs to keep track of the historical origin of each gene.
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Tracking the historical origins requires very little computation. Whenever a new gene appears (through

structural mutation), aglobal innovation numberis incremented and assigned to that gene. The innovation

numbers thus represent a chronology of every gene in the population. As an example, say the two mutations

in Figure 2 occurred one after another. The new connection gene created in the first mutation is assigned the

number7, and the two new connection genes added during the new node mutation are assigned the numbers8 and9. In the future, whenever these genomes cross over, the offspring will inherit the same innovation

numbers on each gene. Thus, the historical origin of every gene is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation numbers in

the same generation if it occurs by chance more than once. However, by keeping a list of the innovations

that occurred in the current generation, it is possible to ensure that when the same structure arises more than

once through independent mutations in the same generation,each identical mutation is assigned the same

innovation number.

Through innovation numbers, the system now knows exactly which genes match up with which (Figure

3). Genes that do not match are eitherdisjoint or excess, depending on whether they occur within or outside

the range of the other parent’s innovation numbers.

When crossing over, the genes with the same innovation numbers are lined up. The offspring is then

formed in one of two ways: In uniform crossover, matching genes are randomly chosen for the offspring

genome. In blended crossover (Wright 1991), the connectionweights of matching genes are averaged. These

two types of crossover were found to be most effective in NEATin extensive testing compared to one-point

crossover.

The disjoint and excess genes are inherited from the more fit parent, or if they are equally fit, from both

parents. Disabled genes have a chance of being reenabled during crossover, allowing networks to make use

of older genes once again.

Historical markings allow NEAT to perform crossover without analyzing topologies. Genomes of differ-

ent organizations and sizes stay compatible throughout evolution, and the variable-length genome problem

is essentially avoided. This methodology allows NEAT to complexify structure while different networks

still remain compatible.

However, it turns out that it is difficult for a population of varying topologies to support new innovations

that add structure to existing networks. Because smaller structures optimize faster than larger structures,

and adding nodes and connections usually initially decreases the fitness of the network, recently augmented

structures have little hope of surviving more than one generation even though the innovations they represent
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Figure 3:Matching up genomes for different network topologies usinginnovation numbers. Although Parent
1 and Parent 2 look different, their innovation numbers (shown at the top of each gene) indicate that several of their
genes match up even without topological analysis. A new structure that combines the overlapping parts of the two
parents as well as their different parts can be created in crossover. In this case, the two parents are assumed to have
equal fitness, and therefore the offspring inherits all suchgenes from both parents. Otherwise these genes would be
inherited from the more fit parent only. The disabled genes may become enabled again in future generations: There
is a preset chance that an inherited gene is enabled if it is disabled in either parent. By matching up genes in this
way, it is possible to determine the best alignment for crossover between any two arbitrary network topologies in the
population.

might be crucial towards solving the task in the long run. Thesolution is to protect innovation by speciating

the population, as explained in the next section.

3.3 Protecting Innovation through Speciation

NEAT speciates the population so that individuals compete primarily within their own niches instead of

with the population at large. This way, topological innovations are protected and have time to optimize their

structure before they have to compete with other niches in the population. Protecting innovation through

speciation follows the philosophy that new ideas must be given time to reach their potential before they are

eliminated. A secondary benefit of speciation is that is prevents bloating of genomes: Species with smaller
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genomes survive as long as their fitness is competitive, ensuring that small networks are not replaced by

larger ones unnecessarily.

Historical markings make it possible for the system to divide the population into species based on how

similar they are topologically (figure 4). The distanceÆ between two network encodings can be measured

as a linear combination of the number of excess (E) and disjoint (D) genes, as well as the average weight

differences of matching genes (W ): Æ = 1EN + 2DN + 3 �W: (1)

The coefficients1, 2, and3 adjust the importance of the three factors, and the factorN , the number

of genes in the larger genome, normalizes for genome size (N can be set to one unless both genomes are

excessively large). Genomes are tested one at a time; if a genome’s distance to a randomly chosen member

of the species is less thanÆt, a compatibility threshold, the genome is placed into this species.

If a genome is not compatible with any existing species, a newspecies is created. The problem of

choosing the best value forÆt can be avoided by makingÆt dynamic; that is, given a target number of

species, the system can slightly raiseÆt if there are too many species, and lowerÆt if there are too few. Each

genome is placed into the first species from theprevious generationwhere this condition is satisfied, so that

no genome is in more than one species. Keeping the same set of species from one generation to the next

allows NEAT to remove stagnant species, i.e. species that have not improved for several generations.

As the reproduction mechanism, NEAT usesexplicit fitness sharing(Goldberg and Richardson 1987),

where organisms in the same species must share the fitness of their niche. Thus, a species cannot afford to

become too big even if many of its organisms perform well. Therefore, any one species is unlikely to take

over the entire population, which is crucial for speciated evolution to support a variety of topologies. The

adjusted fitnessf 0i for organismi is calculated according to its distanceÆ from every other organismj in the

population: f 0i = fiPnj=1 sh(Æ(i; j)) : (2)

The sharing functionsh is set to0 when distanceÆ(i; j) is above the thresholdÆt; otherwise,sh(Æ(i; j)) is

set to 1 (Spears 1995). Thus,
Pnj=1 sh(Æ(i; j)) reduces to the number of organisms in the same species as

organismi. This reduction is natural since species are already clustered by compatibility using the thresholdÆt. Every species is assigned a potentially different number of offspring in proportion to the sum of adjusted

fitnessesf 0i of its member organisms.

The net effect of fitness sharing in NEAT can be summarized as follows. LetFk be the average fitness of
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The Genome Loop:

Take the next genome g from population P
The Species Loop:

If all species in S have been checked,

create new species snew and place g in it

Else

Get the next species s from S
If g is compatible with s, add g to s

If g has not been placed,

continue the Species Loop

Else exit the Species Loop

If not all genomes in G have been placed,

continue the Genome Loop

Else exit the Genome Loop

Figure 4:Procedure for speciating the population in NEAT. The speciation procedure consists of two nested loops
that allocate the entire population into species. Figure 6 shows how it can be done continuously in real time.

speciesk andjP j be the size of the population. LetF tot =Pk Fk be the total of all species fitness averages.

The number of offspringnk allotted to speciesk is:nk = FkF tot jP j: (3)

Species reproduce by first eliminating the lowest performing members from the population. The entire

population is then replaced by the offspring of the remaining individuals in each species.

The main effect of speciating the population is that structural innovation is protected. The final goal

of the system, then, is to perform the search for a solution asefficiently as possible. This goal is achieved

through complexification from a simple starting structure,as detailed in the next section.

3.4 Minimizing Dimensionality through Complexification

Other systems that evolve network topologies and weights begin evolution with a population of random

topologies (Angeline et al. 1993; Gruau et al. 1996; Yao 1999; Zhang and Muhlenbein 1993). In contrast,

NEAT begins with a uniform population of simple networks with no hidden nodes, differing only in their

13



initial random weights. Speciation protects new innovations, allowing diverse topologies to gradually accu-

mulate over evolution. Thus, NEAT can start minimally, and grow the necessary structure over generations.

New structures are introduced incrementally as structuralmutations occur, and only those structures

survive that are found to be useful through fitness evaluations. In this way, NEAT searches through a

minimal number of weight dimensions, significantly reducing the number of generations necessary to find

a solution, and ensuring that networks become no more complex than necessary. This gradual increase in

complexity over generations is similar to complexificationin biology (Amores et al. 1998; Carroll 1995;

Force et al. 1999; Martin 1999). In effect, then, NEAT searches for the optimal topology by incrementally

complexifying existing structure.

3.5 NEAT Performance

In previous work, each of the three main components of NEAT (i.e. historical markings, speciation, and

starting from minimal structure) were experimentally ablated in order to determine how they contribute to

performance (Stanley and Miikkulainen 2002b). The ablation study demonstrated that all three components

are interdependent and necessary to make NEAT work.

The NEAT approach is also highly effective: NEAT outperforms other neuroevolution (NE) methods,

e.g. on the benchmark double pole balancing task (Stanley and Miikkulainen 2002a,b). In addition, because

NEAT starts with simple networks and expands the search space only when beneficial, it is able to find

significantly more complex controllers than fixed-topologyevolution (Stanley and Miikkulainen 2004a).

These properties make NEAT an attractive method for evolving neural networks in complex tasks such as

video games. The next section explains how NEAT can be enhanced to work in real time.

4 Real-time NEAT (rtNEAT)

Like most EAs, NEAT was originally designed to runoffline. Individuals are evaluated one or two at a time,

and after the whole population has been tested, a new population is created to form the next generation. In

other words, in a normal EA it is not possible for a human to interact with the evolving agents while they

are evolving. This section describes how NEAT can be modifiedto make it possible for players to interact

with evolving agentsin real time.
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2 high−fitness agents

1 low−fitness agent

Cross over

New agent

Mutate

X   

Figure 5:The main replacement cycle in rtNEAT. NE agents (represented as small circles with an arrow indicating
their direction) are depicted playing a game in the large box. Every few ticks, two high-fitness agents are selected to
produce an offspring that replaces another of lower fitness.This cycle of replacement operates continually throughout
the game, creating a constant turnover of new behaviors thatis largely invisible to the player.

4.1 Motivation

At each generation, NEAT evaluates one complete generationof individuals before creating the next gener-

ation. Real-time neuroevolution is based on the observation that in a video game, the entire population of

agents playsat the same time. Therefore, fitness statistics are collected constantly asthe game is played,

and the agents could in principle be evolved continuously aswell.

The central question is how the agents can be replaced continuously so that offspring can be evaluated.

Replacing the entire population together on each generation would look incongruous to the player since

everyone’s behavior would change at once. In addition, behaviors would remain static during the large gaps

of time between generations.

The alternative is to replace a single individual every few game ticks as is done in some evolutionary

strategy algorithms (Beyer and Paul Schwefel 2002). One of the worst individuals is removed and replaced

with a child of parents chosen from among the best. If this cycle of removal and replacement happens

continually throughout the game (figure 5), evolution is largely invisible to the player.

Real-time evolution using continuous replacement was firstimplemented using conventional neuroevo-

lution before NEAT was developed and applied to a Warcraft II5-like video game (Agogino et al. 2000). A

5Warcraft II is a registered trademark of Blizzard Entertainment, of Irvine, California.
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The rtNEAT Loop:

Calculate the adjusted fitness of all current

individuals in the population

Remove the agent with the worst adjusted

fitness from the population provided one has

been alive sufficiently long so that it has

been properly evaluated.

Re-estimate the average fitness F for all

species

Choose a parent species to create the new

offspring

Adjust Æt dynamically and reassign all agents

to species

Place the new agent in the world

Figure 6:Operations performed everyn ticks by rtNEAT. These operations allow evolution to proceed continu-
ously, with the same dynamics as in original NEAT.

similar real-time conventional neuroevolution system waslater demonstrated by Yannakakis et al. (2004)

in a predator/prey domain. However, conventional neuroevolution is not sufficiently powerful to meet the

demands of modern video games. In contrast, a real-time version of NEAT offers the advantages of NEAT:

Agent neural networks can become increasingly sophisticated and complex during gameplay. The challenge

is to preserve the usual dynamics of NEAT, namely protectionof innovation through speciation and com-

plexification. While original NEAT assigns offspring to speciesen massefor each new generation, rtNEAT

cannot do the same because it only produces one new offspringat a time. Therefore, the reproduction cycle

must be modified to allow rtNEAT to speciate in real-time. This cycle constitutes the core of rtNEAT.

4.2 The rtNEAT Algorithm

In the rtNEAT algorithm, a sequence of operations aimed at introducing a new agent into the population are

repeated at a regular time interval, i.e. everyn ticks of the game clock (figure 6). The new agent will replace a

poorly performing individual in the population. The algorithm preserves the speciation dynamics of original

NEAT by probabilistically choosing parents to form the offspring and carefully selecting individuals to

replace. Each of the steps in figure 6 is discussed in more detail below.
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4.2.1 Calculating adjusted fitness

Let fi be the original fitness of individuali. Fitness sharing adjusts it tofijSj , wherejSj is the number of

individuals in the species (Section 3.3).

4.2.2 Removing the worst agent

The goal of this step is to remove a poorly performing agent from the game, hopefully to be replaced by

something better. The agent must be chosen carefully to preserve speciation dynamics. If the agent with

the worstunadjustedfitness were chosen, fitness sharing could no longer protect innovation because new

topologies would be removed as soon as they appear. Thus, theagent with the worstadjustedfitness should

be removed, since adjusted fitness takes into account species size, so that new, smaller species are not

removed as soon as they appear.

It is also important that agents are evaluated sufficiently before they are considered for removal. In

original NEAT, networks are generally all evaluated for thesame amount of time. However, in rtNEAT,

new agents are constantly being born, meaning different agents have been around for different lengths of

time. Therefore, rtNEAT only removes agents who have playedfor more than the minimum amount of timem. This parameter is set experimentally, by observing how much time is required for an agent to execute a

substantial behavior in the game.

4.2.3 Re-estimatingF
Assuming there was an agent old enough to be removed, its species now has one less member and therefore

its average fitnessF has likely changed. It is important to keepF up-to-date becauseF is used in choosing

the parent species in the next step. Therefore,F needs to be calculated in each step.

4.2.4 Creating offspring

Because only one offspring is created at a time, equation 3 does not apply to rtNEAT. However, its effect can

be approximated by choosing the parent species probabilistically based on the same relationship of adjusted

fitnesses: Pr(Sk) = FkF tot : (4)
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In other words, the probability of choosing a given parent species is proportional to its average fitness

compared to the total of all species’ average fitnesses. Thus, over the long run, the expected number of

offspring for each species is proportional tonk, preserving the speciation dynamics of original NEAT. A

single new offspring is created by recombining two individuals from the parent species.

4.2.5 Reassigning Agents to Species

As was discussed in Section 3.3, the dynamic compatibility thresholdÆt keeps the number of species rela-

tively stable throughout evolution. Such stability is particularly important in a real-time video game since

the population may need to be consistently small to accommodate CPU resources dedicated to graphical

processing.

In original NEAT,Æt can be adjusted before the next generation is created. In rtNEAT, changingÆt alone

is not sufficient because most of the population would still remain in their current species. Instead, the

entire population must be reassigned to the existing species based on the newÆt. As in original NEAT, if a

network does not get assigned to any of the existing species,a new species is created with that network as its

representative. Depending on the specific game, species do not need to be reorganized at every replacement.

The number of ticks between adjustments can be chosen by the game designer based on how rapidly the

species evolve. In NERO, evolution progresses rather quickly, and the reorganization is done every five

replacements.

4.2.6 Replacing the old agent with the new one

Since an individual was removed in step 4.2.2, the new offspring needs to replace it. How agents are replaced

depends on the game. In some games (such as NERO), the neural network can be removed from a body

and replaced without doing anything to the body. In others, the body may have been destroyed and need to

be replaced as well. The rtNEAT algorithm can work with any ofthese schemes as long as an old neural

network gets replaced with a new one.

4.3 Running the algorithm

The 6-step rtNEAT algorithm is necessary to approximate original NEAT in real-time. However, there is

one remaining issue. The entire loop should be performed at regular intervals, everyn ticks: How shouldn
be chosen?
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If agents are replaced too frequently, they do not live long enough to reach the minimum timem to be

evaluated. On the other hand, if agents are replaced too infrequently, evolution slows down to a pace that

the player no longer enjoys.

Interestingly, the appropriate frequency can be determined through a principled approach. LetI be the

fraction of the population that is too young and therefore cannot be replaced. As before,n is the number

of ticks between replacements,m is the minimum time alive, andjP j is the population size. Alaw of

eligibility can be formulated that specifies what fraction of the population can be expected to be ineligible

once evolution reaches a steady state (i.e. after the first few time steps when no one is eligible):I = mjP jn: (5)

According to Equation 5, the larger the population and the more time between replacements, the lower the

fraction of ineligible agents. This principle makes sense since in a larger population it takes more time

to replace the entire population. Also, the more time passesbetween replacements, the more time the

population has to age, and hence fewer are ineligible. On theother hand, the larger the minimum age, the

more are below it, and fewer agents are eligible.

It is also helpful to think ofmn as thenumberof individuals that must be ineligible at any time; over the

course ofm ticks, an agent is replaced everyn ticks, and all the new agents that appear overm ticks will

remain ineligible for that duration since they cannot have been around for overm ticks. For example, ifjP j
is 50, m is 500, andn is 20, 50% of the population would be ineligible at any one time.

Based on the law of eligibility, rtNEAT can decide on its own how many ticksn should lapse between

replacements for a preferred level of ineligibility, specific population size, and minimum time between

replacements: n = mjP jI : (6)

It is best to let the user chooseI because in general it is most critical to performance; if toomuch of the

population is ineligible at one time, the mating pool is not sufficiently large. Equation 6 then allows rtNEAT

to determine the appropriate number of ticks between replacements. In NERO, 50% of the population

remains eligible using this technique.

By performing the right operations everyn ticks, choosing the right individual to replace and replacing

it with an offspring of a carefully chosen species, rtNEAT isable to replicate the dynamics of NEAT in
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Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

Figure 7: A turret training sequence. The figure depicts a sequence of increasingly difficult and complicated
training exercises in which the agents attempt to attack turrets without getting hit. In the first exercise there is only a
single turret but more turrets are added by the player as the team improves. Eventually walls are added and the turrets
are given wheels so they can move. Finally, after the team hasmastered the hardest exercises, it is deployed in a real
battle against another team.

real-time. Thus, it is now possible to deploy NEAT in a real video game and interact with complexifying

agents as they evolve. The next section describes such a game.

5 NeuroEvolving Robotic Operatives (NERO)

NERO is representative of a new MLG genre that is only possible through machine learning. The idea is

to put the player in the role of atrainer or adrill instructor who teaches a team of agents by designing a

curriculum. Of course, for the player to be able to teach agents, the agents must be able tolearn; rtNEAT is

the learning algorithm that makes NERO possible.

In NERO, the learning agents are simulated robots, and the goal is to train a team of these agents for

military combat. The agents begin the game with no skills andonly the ability to learn. In order to prepare

for combat, the player must design a sequence of training exercises and goals. Ideally, the exercises are

increasingly difficult so that the team can begin by learningbasic skills and then gradually build on them

(figure 7). When the player is satisfied that the team is well prepared, the team is deployed in a battle against

another team trained by another player, making for a captivating and exciting culmination of training. The

challenge is to anticipate the kinds of skills that might be necessary for battle and build training exercises to

hone those skills. The next two sections explain how the agents are trained in NERO and how they fight an

opposing team in battle.
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(a) Objects (b) Sliders

Figure 8:Setting up training scenarios. These NERO screenshots show examples of items that the player can place
on the field, and sliders used to control the agents’ behavior. (a) Three types of enemies are shown from left to right:
a rover that runs in a preset pattern, a static enemy that stands in a single location, and a rotating turret with a gun. To
the right of the turret is a flag that NERO agents can learn to approach or avoid. Behind these objects is a wall. The
player can place any number and any configuration of these items on the training field. (b) Interactive sliders specify
the player’s preference for the behavior the team should tryto optimize. For example the “E” icon means “approach
enemy,” and the descending bar above it specifies that the player wants to punish agents that approach the enemy.
The crosshair icon represents “hit target,” which is being rewarded. The sliders are used to specify coefficients for the
corresponding components of the fitness function that NEAT optimizes. Through placing items on the field and setting
sliders, the player creates training scenarios where learning takes place.

5.1 Training Mode

The player sets up training exercises by placing objects on the field and specifying goals through several

sliders (figure 8). The objects include static enemies, enemy turrets, rovers (i.e. turrets that move), flags,

and walls. To the player, the sliders serve as an interface for describing ideal behavior. To rtNEAT, they

represent coefficients for fitness components. For example,the sliders specify how much to reward or punish

approaching enemies, hitting targets, getting hit, following friends, dispersing, etc. Each individual fitness

component is normalized to a Z-score (i.e. the number of standard deviations from the mean) so that each

fitness component is measured on the same scale. Fitness is computed as the sum of all these components

multiplied by their slider levels, which can be positive or negative. Thus, the player has a natural interface

for setting up a training exercise and specifying desired behavior.

Agents have several types of sensors. Although NERO programmers frequently experiment with new

sensor configurations, the standard sensors include enemy radars, an “on target” sensor, object rangefinders,

and line-of-fire sensors. Figure 9 shows a neural network with the standard set of sensors and outputs, and

figure 10 describes how the sensors function.

Training mode is designed to allow the player to set up a training scenario on the field where the agents

can continually be evaluated while the worst agent’s neuralnetwork is replaced every few ticks. Thus,

training must provide a standard way for agents to appear on the field in such a way that every agent has

an equal chance to prove its worth. To meet this goal, the agents spawn from a designated area of the field
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Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
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Sensors
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Evolved Topology

Figure 9: NERO input sensors and action outputs. Each NERO agent can see enemies, determine whether an
enemy is currently in its line of fire, detect objects and walls, and see the direction the enemy is firing. Its outputs
specify the direction of movement and whether or not to fire. This configuration has been used to evolve varied and
complex behaviors; other variations work as well and the standard set of sensors can easily be changed in NERO.

(a) Enemy Radars (b) Rangefinders

(c) On-Target Sensor (d) Line-of-fire sensors

Figure 10: NERO sensor design. All NERO sensors are egocentric, i.e. they tell where the objects are from
the agent’s perspective. (a) Several enemy radar sensors divide the 360 degrees around the agent into slices. Each
slice activates a sensor in proportion to how close an enemy is within that slice. If there is more than one enemy
in it, their activations are summed. (b) Rangefinders project rays at several angles from the agent. The distance
the ray travels before it hits an object is returned as the value of the sensor. Rangefinders are useful for detecting
long contiguous objects whereas radars are appropriate forrelatively small, discrete objects. (c) The on-target sensor
returns full activation only if a ray projected along the front heading of the agents hits an enemy. This sensor tells
the agent whether it should attempt to shoot. (d) The line of fire sensors detect where a bullet stream from the closest
enemy is heading. Thus, these sensors can be used to avoid fire. They work by computing where the line of fire
intersects rays projecting from the agent, giving a sense ofthe bullet’s path. Together, these four kinds of sensors
provide sufficient information for agents to learn successful behaviors for battle. Other sensors can be added based on
the same structures, such as radars for detecting a flag or friendly agents on the same team.
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called thefactory. Each agent is allowed a limited time on the field during whichits fitness is assessed.

When their time on the field expires, agents are transported back to the factory, where they begin another

evaluation. Neural networks are only replaced in agents that have been put back in the factory. The factory

ensures that a new neural network cannot get lucky (or unlucky) by appearing in an agent that happens to be

standing in an advantageous (or difficult) position: All evaluations begin consistently in the factory.

The fitness of agents that survive more than one deployment onthe field is updated through a diminishing

average that gradually forgets deployments from the distant past. A true average is first computed over the

first few trials (e.g. 2) and a continuous leaky average (similar to TD(0) reinforcement learning update

(Sutton and Barto 1998)) is maintained thereafter:ft+1 = ft + st � ftr (7)

whereft is the current fitness,st is the score from the current evaluation, andr controls the rate of forgetting.

The lowerr is set, the sooner recent evaluations are forgotten. In thisprocess, older agents have more reliable

fitness measures since they are averaged over more deployments than younger agents, but their fitness does

not become out of date.

Training begins by deploying 50 agents on the field. Each agent is controlled by a neural network with

random connection weights and no hidden nodes, which is the usual starting configuration for NEAT (see

Appendix A for a complete description of the rtNEAT parameters used in NERO). As the neural networks

are replaced in real-time, behavior improves dramatically, and agents eventually learn to perform the task

the player sets up. When the player decides that performancehas reached a satisfactory level, he or she can

save the team in a file. Saved teams can be reloaded for furthertraining in different scenarios, or they can

be loaded into battle mode. In battle, they face off against teams trained by an opponent player, as will be

described next.

5.2 Battle Mode

In battle mode, the player discovers how well the training worked out. Each player assembles a battle team

of 20 agents from as many different trained teams as desired.For example, perhaps some agents were trained

for close combat while others were trained to stay far away and avoid fire. A player may choose to compose

a heterogeneous team from both training sessions, and deploy it in battle.

Battle mode is designed to run over a server so that two players can watch the battle from separate
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(a) (b) (c)

Figure 11: Battlefield configurations. A range of possible configurations from an open pen (a) to a maze-like
environment (c) can be created for NERO. Players can construct their own battlefield configurations and train for
them. The basic configuration, which is used in Section 6, is the empty pen surrounded by four bounding walls, as
shown in (a).

terminals on the Internet. The battle begins with the two teams arrayed on opposite sides of the field. When

one player presses a “go” button, the neural networks obtaincontrol of their agents and perform according

to their training. Unlike in training, where being shot doesnot lead to an agent body being damaged, the

agents are actually destroyed after being shot several times (currently five) in battle. The battle ends when

one team is completely eliminated. In some cases, the only surviving agents may insist on avoiding each

other, in which case action ceases before one side is completely destroyed. In that case, the winner is the

team with the most agents left standing.

The basic battlefield configuration is an empty pen surrounded by four bounding walls, although it is

possible to compete on a more complex field with walls or otherobstacles (figure 11). In the experiments

described in this paper, the battlefield was the basic pen, and the agents were trained specifically for this

environment. The next section gives examples of actual NEROtraining and battle sessions.

6 Playing NERO

Behavior can be evolved very quickly in NERO, fast enough so that the player can be watching and inter-

acting with the system in real time. The game engine Torque, licensed from GarageGames

(http://www.garagegames.com/ ), drives NERO’s simulated physics and graphics. An important

property of the Torque engine is that its physics is slightlynondeterministic, so that the same game is never

played twice. In addition, Torque makes it possible for the player to take control of enemy robots using a

joystick, an option that can be useful in training.
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(a) 5s: Confusion (b) 100s: Success

Figure 12:Learning to approach the enemy. These screenshots show the training field before and after the agents
evolved seeking behavior. The factory is at the bottom of each panel and the enemy being sought is at the top. (a)
Five seconds after the training begins, the agents scatter haphazardly around the factory, unable to effectively seek
the enemy. (b) After ninety seconds, the agents consistently travel to the enemy. Some agents prefer swinging left,
while others swing right. These pictures demonstrate that behavior improves dramatically in real-time over only 100
seconds.

The first playable version of NERO was completed in May of 2004. At that time, several NERO pro-

grammers trained their own teams and held a tournament. As examples of what is possible in NERO, this

section outlines the behaviors evolved for the tournament,the resulting battles, and the real-time perfor-

mance of NERO and rtNEAT.

6.1 Training Basic Battle Skills

NERO is capable of evolving behaviors very quickly in real-time. The most basic battle tactic is to aggres-

sively seek the enemy and fire. To train for this tactic, a single static enemy was placed on the training

field, and agents were rewarded for approaching the enemy. This training required agents to learn to run

towards a target, which is difficult since agents start out inthe factory facing in random directions. Starting

from random neural networks, it takes on average 99.7 seconds for 90% of the agents on the field to learn to

approach the enemy successfully (10 runs,sd = 44:5s) It is important to note that the criterion for success

is partly subjective, based on visually assessing the team’s performance. Nevertheless, success in seeking is

generally unambiguous as shown in figure 12.

NERO differs from most applications of EAs in that the quality of evolution is judged from the player’s
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Figure 13:Avoiding the enemy effectively. This training screenshot shows several agents running awaybackwards
and shooting at the enemy, which is being controlled from a first-person perspective by a human trainer with a joystick.
Agents discovered this behavior during avoidance trainingbecause it allows them to shoot as they flee. This result
demonstrates how evolution can discover novel and effective behaviors in response to the tasks that the player sets up
for them.

perspective based on the performance of theentirepopulation, instead of that of the population champion.

However, even though the entire population must solve the task, it does not converge to the same solution.

In seek training, some agents evolved a tendency to run slightly to the left of the target, while others run to

the right. The population diverges because the 50 agents interact as they move simultaneously on the field at

the same time. If all the agents chose exactly the same path, they would often crash into each other and slow

each other down, so naturally some agents take slightly different paths to the goal. In other words, NERO is

actually a massively parallel coevolving ecology in which the entire population is evaluated together.

After the agents learned to seek the enemy, they were furthertrained to fire at the enemy. It is possible

to train agents to aim by rewarding them for hitting a target,but this behavior requires fine tuning that is

slow to evolve. It is also aesthetically unpleasing to watchwhile agents fire haphazardly in all directions

and slowly figure out how to aim. Therefore, the fire output of neural networks was connected to an aiming

script that points the gun properly at the enemy closest to the agent’s current heading within a fixed distance

of 30 meters. Thus, agents quickly learn to seek and accurately attack the enemy.

Agents were also trained to avoid the enemy. In fact, rtNEAT was flexible enough todevolvea population

that had converged on seeking behavior into a completely opposite, avoidance, behavior.

For avoidance training, players controlled an enemy robot with a joystick and ran it towards the agents

on the field. The agents learned to back away in order to avoid being penalized for being too near the enemy.

Interestingly, the agents preferred to run away from the enemy backwards, because that way they could still

see and shoot at the enemy (figure 13).
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Figure 14:Avoiding turret fire. The black arrow points in the current direction of the turretfire (the arrow is not
part of the NERO display and is only added for illustration).Agents learn to run safely around turret’s fire and attack
from behind. When the turret moves, the agents change their attack trajectory accordingly. This behavior shows how
evolution can discover behaviors that combine multiple goals.

By placing a turret on the field and asking agents to approach it without getting hit, agents were able

to learn to avoid enemy fire (figure 14). Agents evolved to run to the side that is opposite of the spray of

bullets, and approach the turret from behind, a tactic that is promising for battle.

6.2 Training More Complex Behaviors

Other interesting behaviors were evolved to test the limitsof rtNEAT, rather than specifically prepare the

troops for battle. For example, agents were trained to run around walls in order to approach the enemy.

As performance improved, players incrementally added morewalls until the agents could navigate an entire

maze (figure 15). This behavior is remarkable because it is successful without any path-planning. The agents

developed the general strategy of following any wall that stands between them and the enemy until they

found an opening. Interestingly, different species evolved to take different paths through the maze, showing

that topology and function are correlated in rtNEAT, and confirming the success of real-time speciation. The

evolved strategies were also general enough to navigate significantly varied mazes (figure 16).

In a powerful demonstration of real-time adaptation, agents that were trained to approach a designated

location (marked by a flag) through a hallway were then attacked by an enemy controlled by the player

(figure 17). After two minutes, the agents learned to take an alternative path through an adjacent hallway in

order to avoid the enemy’s fire. While such training is used inNERO to prepare agents for battle, the same
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Figure 15:Navigating a maze. Incremental training on increasingly complex wall configurations produced agents
that could navigate this complex maze to find the enemy. The agents spawn from the factory at the top of the maze and
proceed down to the enemy at the bottom. In this picture, the numbers above the agents specify their species. Notice
that species “4” evolved to take the path through the right side of the maze while other species evolved to take the left
path. This result suggests that protecting innovation in rtNEAT supports a range of diverse behaviors, each with its
own network topology.

Figure 16: Successfully navigating different maze configurations. The agents spawn from the left side of the
maze and proceed to an enemy at the right. The agents trained to navigate mazes can run through both the maze in
figure 15 and the maze in this figure, showing that a general path-navigation ability was evolved.
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(a) Agents approach flag (b) Player attacks on left (c) Agents learn new approach

Figure 17:Adapting to Changing Situations. The agents spawn from the top of the screen and must approach the
flag (circled) at the bottom left. White arrows point in the direction of their general motion. (a) The agents first learn
to take the left hallway since it is the shortest path to the flag. (b) A human-controlled enemy (identified by a square)
attacks inside the left hallway and decimates the agents. (c) The agents learn that they can avoid the enemy by taking
the right hallway, which is protected from the enemy’s fire bya wall. The rtNEAT method allows the agents to adapt
in this way to the player’s tactics in real time, demonstrating its potential to enhance a variety of video game genres
outside of NERO.

kind of adaptation could be used in any interactive game to make it more realistic and interesting.

6.3 Battling Other Teams

In battle, some teams that were trained differently were nevertheless evenly matched, while some training

types consistently prevailed against others. For example,an aggressive seeking team had only a slight

advantage over an avoidant team, winning six out of ten battles in the tournament, losing three, and tying one

(Table 1). The avoidant team runs in a pack to a corner of the field’s enclosing wall (figure 18). Sometimes,

if they make it to the corner and assemble fast enough, the aggressive team runs into an ambush and is

obliterated. However, slightly more often the aggressive team gets a few shots in before the avoidant team

can gather in the corner. In that case, the aggressive team traps the avoidant team with greater surviving

numbers. The conclusion is that seeking and running away arefairly well-balanced tactics, neither providing

a significant advantage over the other. The interesting challenge of NERO is to conceive strategies that are

clearly dominant over others.

One of the best teams was trained by observing a phenomenon that happened consistently in battle.

Chases among agents from opposing teams frequently caused them to eventually reach the field’s bounding

walls. Particularly for agents trained to avoid turret fire by attacking from behind (figure 14), enemies

standing against the wall present a serious problem since itis not possible to go around them. Thus, training

a team against a turret with its back against the wall, it was possible to familiarize agents with attacking

enemies that are against a wall. This team learned to hover near the turret and fire when it turned away, but
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Table 1: Seekers vs. Avoiders

Battle Number Seekers Avoiders

1 6 0

2 4 7

3 8 0

4 7 7

5 8 3

6 6 10

7 5 4

8 5 2

9 3 7

10 8 0

The number of agents still alive at the ends of 10 battles are shown between a team trained to aggressively seek and

attack the enemy and another team taught to run away backwards and shoot at the same time. The seeking team won

six out of the 10 games, tied one and lost three. This outcome demonstrates that even when strategies contrast they

can still be evenly matched, making the game interesting. Results like this one can be unexpected, teaching players

about relative strengths and weaknesses of different tactics.

Figure 18:Seekers chasing avoiders in battle.In this battle screenshot, agents trained to seek and attackthe enemy
pursue avoidant agents that have backed up against the wall.Teams trained for different tactics are clearly discernable
in battle, demonstrating the ability of the training to evolve diverse tactics.
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(a) Seeker (b) Wall-fighter

Figure 19: Simplest Successful Seeker and Wall-fighter Networks. Nodes are shown as squares beside their
node numbers, and line thickness represents the strength ofconnections. (a) The aggressive seeking strategy is simple
enough so that it does not require any hidden nodes. (b) Fighting near a wall requires an agent to move away when
an enemy points in its direction. This more sophisticated strategy always utilized at least two hidden nodes. These
examples demonstrate that NERO can evolve the appropriate network complexity for each desired strategy.

back off quickly when it turned towards them. This tactic works when several agents from the same team

are nearby since an enemy can only be facing one direction at atime. In fact, the wall-based team won the

first NERO tournament by using this strategy: In particular,it won all games against the aggressive seeking

team (Table 2).

Figure 19 shows the simplest networks evolved for successful seekers and wall-fighters. While the

simplest seeking network does not include hidden nodes, thesimplest wall-trained network utilizes two,

demonstrating that more complex networks indeed evolve to produce more sophisticated strategies. Thus, it

is possible to learn sophisticated tactics that dominate over simpler ones like seek and avoid.

7 Discussion

Participants in the first NERO tournament agreed that the game was engrossing and entertaining. Battles

were exciting events for all the participants, evoking plentiful clapping and cheering. Players spent many

hours honing behaviors and assembling teams with just the right combination of tactics. This experience is

promising, suggesting that NERO succeeded as a game, i.e. that it was fun to play it.

An important point of this project is that NERO would not be possible without rtNEAT. With rtNEAT, it

was possible to evolve interesting tactics quickly in real-time while players interacted with NERO, showing

that neuroevolution can be deployed in a real game and work fast enough to provide entertaining results. This

result suggests that rtNEAT could also be applied to commercial games. Any game in which agent behavior

is repetitive or scripted can potentially be improved by allowing rtNEAT to at least partially modify them in

real-time. Especially in persistent video games such as Massive Multiplayer Online Games (MMOGs) that
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Table 2: Wall-fighters vs. Seekers

Battle Number Wall-fighters Seekers

1 7 2

2 9 0

3 4 3

4 7 2

5 10 0

6 8 2

7 12 2

8 7 2

9 4 2

10 9 1

The final scores from 10 battles between a team trained to fightnear walls and another trained to aggressively seek

and attack the enemy are shown. The wall-fighters win every battle because they know how to avoid fire near a wall,

while the aggressive team runs directly into fire when fighting near a wall. The total superiority of the wall-fighters

shows that the right tactical training indeed matters in battle, and that rtNEAT was able to evolve sophisticated fighting

tactics.

last for months or years, rtNEAT could be used to continuallyadapt and optimize agent behavior, thereby

permanently altering the gaming experience for millions ofplayers around the world.

Since the first tournament took place, new features have beenadded to NERO, increasing its appeal

and complexity. For example, agents can now duck behind walls and milestones can be set to ensure that

previously learned behaviors are not forgotten even after later training for different tasks. The game con-

tinues to be developed and new features and sensors are constantly being added. The goal is to have a full

network-playable version with an intuitive user interfacein the near future.

An important issue for the future is how to assess results in agame in which behavior is largely subjec-

tive. One possible approach is to train benchmark teams and measure the success of future training against

those benchmarks. This idea and others will be employed as the project matures and standard strategies are

identified.

NERO is also being used as a common platform for quickly implementing complicated real-time neu-

roevolution experiments. While video games are intended mainly for entertainment, they are an excellent

catalyst for improving machine learning technology. Because of the gaming industry’s financial success and
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low physical risk, it makes sense to explore gaming as a stepping stone to other more critical applications.

In the long term, the real-time neuroevolution technology could be used to adapt the game as human

players get better. In this manner, it may finally be possibleto use games for training people as has long been

envisioned. Such applications would begin with a population of agents with rudimentary skills that provide

a gentle initiation to the domain. As the player improves, evolution develops increasingly challenging

behaviors in response. Thus, the game becomes more sophisticated at the same rate as the player improves,

a highly desirable property in any training situation.

For example, young children could improve hand-eye coordination by interacting with agents that sur-

vive by avoiding being collected or arranged. At first, the agents would need almost no skills to provide

a challenge, but as the child improves at the basic task, the agents would need to invent new behaviors.

More adult applications include training police or emergency workers in catastrophic situations, or teach-

ing citizens how to evacuate buildings during increasinglyhostile conditions. By making such applications

possible, rtNEAT creates new opportunities for interactive entertainment and educational media.

8 Conclusion

A real-time version of NEAT (rtNEAT) was developed to allow users to interact with evolving agents. In

rtNEAT, an entire population is simultaneously and asynchronously evaluated as it evolves. Using this

method, it was possible to build a new kind of video game, NERO, where the characters adapt in real

time in response to the player’s actions. In NERO, the playertakes the role of a trainer and constructs

training scenarios for a team of simulated robots. The rtNEAT technique can make future video games more

interesting and extend their longevity, and eventually make it possible to use gaming as a method for training

people in sophisticated tasks.

A NERO System Parameters

The coefficients for measuring compatibility were1 = 1:0, 2 = 1:0, and3 = 0:4. The initial compatibil-

ity distance wasÆt = 4:0. The population was kept small, i.e. 50, so that the CPU couldaccommodate all

the agents being evaluated simultaneously. A target of fourspecies was assigned. If the number of species

grew larger than four,Æt was increased by0:3. Conversely, if the number of species fell below four,Æt was

decreased by0:3. The interspecies mating rate was 0.001. The probability ofadding a new node was 0.05
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and the probability of a new connection mutation was 0.03. These parameter values were found experimen-

tally, but they do follow intuitively meaningful rules: Links need to be added significantly more often than

nodes, and weight differences are given low weight since thepopulation is small. Performance is robust to

moderate variations in these values.

The percentage of the population allowed to be ineligible atone time,I, was 50%, the number of ticks

between replacements was 20, and the minimum evaluation time was 500. The number of ticks between

replacements can also be derived from equation 6. The rate offorgetting (Section 5.1),r, was 2. The values

for these parameters were determined through extensive testing, and again the system was found to be robust

against minor variations.
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