Genetic algorithm with iterated local search for solving a location-routing problem (2012) by Houda Derbel, Bassem Jarboui, Saïd Hanafi, Habib Chabchoub

L.T. van Binsbergen S. Fafianie J.P. Pizani Flor

Department of Information and Computing Sciences Utrecht University

Monday 7th January, 2013

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Table of Contents

Problem Description

Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison

Test instances Comparison Conclusions

Universiteit Utrecht

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Problem Description

Problem Definition

- Location Routing Problem (LRP)
- set of costumers $I = \{1, \ldots, n\}$
- set of potential depots $J = \{1, \ldots, m\}$
- limited capacity b_j and fixed cost f_j
- non-negative demand d_i
- travelling cost c_{ij}

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Problem Definition

- each depot has a single incapacitated vehicle
- vehicle begins and ends its route at its depot
- find a subset of depots to be opened
- elaborate vehicle tours to meet customer demands
- minimize total cost of location and delivery

Problem Description

Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Related Work

- combination of Vehicle Routing Problem(VRP) and Facility Location Problem(FLP)
- branch and bound method Laporore and Norbert(1981)
 - single-facility LRP
 - no tour length restrictions
- branch and cut method Laport, Norbert and Arpin(1986)
 - capacitated vehicles and depots (CLRP)
 - fixed number of vehicles
- heuristic approaches
 - simulated annealing Wu, Low and Bai (2002)
 - greedy randomized adaptive procedure (GRASP)
 - tabu search Albreda-Sambola et al. (2005)

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Hybrid Approach

- Genetic Algorithm
 - population of solutions may lead to global optimum
 - sub-optimal solutions are not improved fast enough
- Iterated Local Search
 - find local optimum quickly
 - may not find global optimum
- hybrid approach maximizes the chance of convergence to an optimal solution by using various search spaces

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Hybrid Approach

- generate and evaluate random population of solutions
- in each cycle:

- select parents x₁ and x₂
- apply crossover to x₁ and x₂ to generate child x_{new}
- apply mutation to x_{new}
- apply ILS to x_{new} if fitness $(x_{new}) < (1 + \delta) \cdot fitness_{best}$
- select fittest

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Genetic Algorithm

Solution Representation

- solution x is represented by:
 - A(x) = {a₁,..., a_n} assignment configuration
 - $a_i = j$ means costumer *i* is assigned to depot *j*
 - $P(x) = \{p_1, \dots, p_n\}$ rank of a costumer on a given route
 - customer p_i is served before $p_{i'}$ if i < i'

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison

Solution Representation

Fig. 1. An example of LRP solution representation.

Problem Description Problem Definit Related Work

Genetic Algorithm Solution

Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison

Parent Selection

- $\mathbb{P}([k]) = \frac{2k}{M(M+1)}$
- ▶ [k] is the kth chromosome in descending order
- M is the population size

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm Solution Representation Parent selection

Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison

Crossover operator

- ▶ 1-point crossover for the assignment configuration A
- I-point order crossover for the permutation configuration P:

Fig. 2. Crossover operation for the permutation vector.

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison

Mutation

Assignment configuration

- Mutating A by randomly changing an assignment to any other depot
- Possibly introducing a new depot, or removing one
- Performed according to a probability distribution \mathbb{P}_a

Permutation configuration

- Mutation on P is performed by taking a random customer and inserting it at a random position
- Shifting other customers towards the old location of the customer
- Performed according to probability distribution \mathbb{P}_p

Problem Description Problem Definition Related Work Hybrid Approach

Algorithm Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Fitness function

- fitness(x) = cost(x) + penalty(x)
- cost(x) is the sum of all the driving and depot costs
- penalty(x) = $\sum_{j \in J} \alpha \max\{0, D_j(x) b_j\}$

Genetic Algorithm Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Replacement

 The newly created child is compared to the worst in the current population

Algorithm Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison

Iterated Local Search

ILS structure

Problem Description Problem Definitio Related Work

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description

Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Local search method used

Algorithm 2 General structure of the local search method used **Require:** an initial solution *x*

 $x_1 \leftarrow$ first improvement on x using neighbourhood $\mathcal{N}1$ $x_2 \leftarrow$ first improvement on x_1 using neighbourhood $\mathcal{N}2$ $x_3 \leftarrow$ first improvement on x_2 using neighbourhood $\mathcal{N}3$ $x_4 \leftarrow$ first improvement on x_3 using neighbourhood $\mathcal{N}4$ **if** fitness(x_4) < fitness(x_1) **then**

 $x \leftarrow x_4$ Go to line 1

end if

Problem Description Problem Definitior Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description

Neighborhood structures Perturbation

Neighbourhood structures

Four structures were used:

- N1 and N2: involving 2 routes
 - N1: swap two customers

(a) initial solution x

(b) neighboring solution in $\mathcal{N}1(x)$

• N2: move customer from one route to another

(a) initial solution x

(b) neighboring solution in $\mathcal{N}2(x)$

Problem Description Problem Definitio Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description

Neighborhood structures Perturbation

Neighbourhood structures

Four structures were used:

・ロト ・部ト ・ヨト ・ヨト

- N3 and N4: intra-route
 - N3: swap two customers

E

• N4: move customer to another position in the route

(a) initial solution x

(b) neighboring solution in $\mathcal{N}4(x)$

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description

Neighborhood structures

Conclusions and Comparison Test instances Comparison Conclusions

Perturbation criterion

- Local moves concern only open depots
- Perturbation opens new depots, preserving variability
- Perturbation criterion:
 - Select a random open depot
 - Move the customer assigned from the original depot to another (open or closed) one.
 - Affects only configuration A of each chromossome (assignment)

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures

Perturbation

Conclusions and Comparison

Test instances

- ▶ Benchmarks proposed by Albreda-Sambola et al. (2005)
- ▶ Five sets of instances: S1, S2, S3, M2, M3
 - S1, S2 and S3: 5 facilities, 10, 20 and 30 customers
 - M2 and M3: 10 facilities, 20 and 30 customers
- Instances further parameterized by 2 other variables:
 - *R*₁: Ratio between total customer demand and total depot capacity
 - R_2 : Value proportional to the fixed cost of opening a depot

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison

Test instances Comparison Conclusions

Parameter setting

- Generic parameters:
 - Population size (M): 40
 - Mutation probability on configuration A (\mathbb{P}_p): 0.7
 - Mutation probability on configuration P (\mathbb{P}_p): 0.9
 - Penalty constant used in fitness evaluation (α): 1000

ILS parameters:

- δ coefficient: 0.1 (ILS used rarely)
- Termination condition: 100 sucessive iterations with no improvement

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison

Test instances Comparison Conclusions

Comparative study

- Execution results compared with best-known solutions
- Best-known solutions: Albreda-Sambola et al. (2005), using tabu search
- Two dimensions were measured in the experiment:
 - *%gap*: average deviaton of found solution to the a-priori lower bound (global optimum)
 - Time: running time over ten instances
- t-test done over %gap to verify the divergence between the two scenarios

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison

Some notable results from the comparative study:

 S1: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (%gap) in less time.

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Some notable results from the comparative study:

- S1: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (%gap) in less time.
- S2: GA&ILS has slightly smaller %gap than pure ILS, both much better than TS

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Some notable results from the comparative study:

- S1: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (%gap) in less time.
- S2: GA&ILS has slightly smaller %gap than pure ILS, both much better than TS
- M3 (largest): ILS beats TS completely and GA&ILS slightly in terms of %gap, TS has around 10x larger running time than both others.

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

(a)

Some notable results from the comparative study:

- S1: GA&ILS finds all optima and beats TS in running time, but pure ILS comes close (%gap) in less time.
- S2: GA&ILS has slightly smaller %gap than pure ILS, both much better than TS
- M3 (largest): ILS beats TS completely and GA&ILS slightly in terms of %gap, TS has around 10x larger running time than both others.
- t-test (%gap): ILS and GA&ILS beat TS with error risk close to 0. GA&ILS beats pure ILS with error risk of 15%.

Universiteit Utrecht

High-level description Neighborhood structures Perturbation

Conclusions and Comparison

Comparison Conclusions

Conclusions

- Hybridization between GA and ILS to solve the LRP efficiently
 - ILS improves each generation outputted by the GA
 - Genetic operators AND neighbourhood structures take into account location and routing *simultaneously*

roblem Description Problem Definitio Related Work

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Conclusions

- Hybridization between GA and ILS to solve the LRP efficiently
 - ILS improves each generation outputted by the GA
 - Genetic operators AND neighbourhood structures take into account location and routing *simultaneously*
- Proposed algorithm was compared to five problem sets from the literature
 - Improves over best-known approach (TS) both in quality of solutions and in computational requirements

Problem Description Problem Definition Related Work Hybrid Approach

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

Conclusions

- Hybridization between GA and ILS to solve the LRP efficiently
 - ILS improves each generation outputted by the GA
 - Genetic operators AND neighbourhood structures take into account location and routing *simultaneously*
- Proposed algorithm was compared to five problem sets from the literature
 - Improves over best-known approach (TS) both in quality of solutions and in computational requirements
- Authors suggest applying VNS (Variable Neighbourhood Search) combined with GA as future study

Problem Description Problem Definition Related Work

Genetic Algorithm

Solution Representation Parent selection Genetic Operators

Iterated Local Search

High-level description Neighborhood structures Perturbation

Conclusions and Comparison Test instances Comparison Conclusions

