
[Faculty of Science
Information and Computing Sciences]

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

Edition 2010/2011

[Faculty of Science
Information and Computing Sciences]

2

Agenda

Overview

Mini project A: BibTeX2HTML

Tools

Questions

[Faculty of Science
Information and Computing Sciences]

3

1. Overview

[Faculty of Science
Information and Computing Sciences]

4

Mini projects §1

The lab work that is to be handed in consists of four mini
projects.

Deadlines for these have been announced on the wiki. Each
project takes about two weeks.

[Faculty of Science
Information and Computing Sciences]

5

Library §1

Utility code for often occurring tasks in compiler construction
will be made available through the wiki by means of a
“Cabalised” Haskell library: cco.

This library comes with Haddock documentation and will be
extended incrementally.

It relies on the ansi-terminal package, which is available
from Hackage.

[Faculty of Science
Information and Computing Sciences]

6

2. Mini project A: BibTeX2HTML

[Faculty of Science
Information and Computing Sciences]

7

Mini project: BIBTEX2HTML §2

BIBTEX is a tool for generating bibliographies and including
them in LATEX-documents. Bibliographies are produced from
bibliographic databases written in a domain-specific
language.

The aim of this project is to implement a set of
command-line tools that facilitate the rendering of
BIBTEX-databases in HTML.

[Faculty of Science
Information and Computing Sciences]

8

BIBTEX-database: example §2

@book{pierce02types,

author = "Pierce, Benjamin C.",

title = "Types and Programming Languages",

publisher = "The MIT Press",

address = "Cambridge, Massachusetts",

year = 2002}

@inproceedings{loeh03dependency,

author = "L{\"o}h, Andres and Clarke, Dave and Jeuring,

Johan",

title = "Dependency-style {G}eneric {H}askell",

editor = "Runciman, Colin and Shivers, Olin",

booktitle = "Proceedings of the Eighth ACM SIGPLAN

International Conference on Functional

Programming, ICFP 2003, Uppsala, Sweden,

August 25--29, 2003",

pages = "141--152",

publisher = "ACM Press",

year = 2003}

[Faculty of Science
Information and Computing Sciences]

9

HTML-output: example §2
<html>

<head><title>Bibliography</title></head>

<body>

[LCJ03] |

[P02]

<hr>

<table border="0">

<tr valign="top">

<td>[LCJ03]</td>

<td>

Andres Löh, Dave Clarke, and Johan

Jeuring. Dependency-style Generic Haskell. In:

Colin Runciman and Olin Shivers, editors,

Proceedings of the Eighth ACM SIGPLAN

International Conference on Functional

Programming, ICFP 2003, Uppsala, Sweden,

August 25–29, 2003, pages

141–152. ACM Press, 2003.

</td>

</tr>

<tr valign="top">

<td>[P02]</td>

<td>

Benjamin C. Pierce. Types and Programming

Languages. The MIT Press, Cambridge,

Massachusetts, 2002.

</td>

</tr>

</table>

</body>

</html>
[Faculty of Science

Information and Computing Sciences]

10

BIBTEX-format §2

Detailed descriptions of the BIBTEX-format can be found on
the web.

A full and faithful implementation of the format will need to
deal with a lot of subtleties: variations in syntax, cross
references, formatting of names, . . .

� You will probably not be able to implement all of these,
but your implementation should support at least a rea-
sonable subset of the format.

[Faculty of Science
Information and Computing Sciences]

11

Validation §2

A BIBTEX-database consists of zero or more entries.
Each entry is of a specific type (book, inproceedings, . . .).

Each type comes with a number of required and optional
fields (author, publisher, . . .).
Your implementation should check, for each entry, that all
required fields are present and emit error messages if this
check fails.
If fields are provided that are neither required nor optional for
a specific entry type, warning messages should be issued
and these fields should be ignored when HTML is generated.

[Faculty of Science
Information and Computing Sciences]

12

Architecture §2

Your implementation should consist of (at least) three main
components:

I A program parse-bib that consumes a BIBTEX-database
and produces an ATerm for it.

I A program bib2html that consumes an ATerm for a
BIBTEX-database, validates the database, and produces
an ATerm for the HTML-rendering of the database.

I A program pp-html that consumes an ATerm for an
HTML-document and produces a pretty printing of the
actual HTML-code for the document.

� These need to be stand-alone programs, invocable and
combinable from the command line.

[Faculty of Science
Information and Computing Sciences]

13

Tasks §2

You will have to implement:

I A tree respresentation for BIBTEX-databases.
I A parser for BIBTEX.
I A parser for ATerms.
I A validator for BIBTEX-trees.
I A tree representation of HTML-documents.
I A translation from BIBTEX-trees to HTML-trees.
I A pretty printer for HTML.

� You will not need to support all of HTML.

[Faculty of Science
Information and Computing Sciences]

14

3. Tools

[Faculty of Science
Information and Computing Sciences]

15

Haskell Utrecht Tools §3

I Haskell Utrecht Tools Library:
I Parameterisable scanner
I Fast, error-correcting parser combinators
I Pretty-printing combinators

I Utrecht University Attribute Grammar Compiler

[Faculty of Science
Information and Computing Sciences]

16

Haskell Utrecht Tools Library §3

Package uulib. (Latest stable version: 0.9.5.)

Available from Hackage:
http://hackage.haskell.org/cgi-bin/

hackage-scripts/package/uulib.

Installation:

% runhaskell Setup.hs configure --user --prefix=...

...

% runhaskell Setup.hs build

...

% runhaskell Setup.hs install

...

[Faculty of Science
Information and Computing Sciences]

17

Parameterisable scanner §3

Performs some simple lexical analysis on an input text,
producing a stream of tokens to be consumed by a separate
parser.

Disposes of whitespace and Haskell-style comments.

[Faculty of Science
Information and Computing Sciences]

18

Parameterisable scanner: interface §3

data Pos = Pos ! Line ! Column Filename

type Line = Int
type Column = Int
type Filename = String

scan :: [String]→ -- reserved identifiers
[String]→ -- reserved operators
[Char]→ -- special characters
[Char]→ -- operator characters
Pos → -- initial source position
String → -- input
[Token]

data Token = · · ·

[Faculty of Science
Information and Computing Sciences]

19

Parser combinators §3

I Sophisticated implementation of the applicative
interface ((<$>), (<*>), (<|>), ...).

I Far more efficient than the backtracking parser
combinators from the course on Grammars and
parsing/Languages and compilers.

I Repairs syntax errors when encountered.
I Complicated types.
I A little thin on documentation.
I To be replaced by a new library in the near future.

� Interaction with CCO library (Feedback monad,
Component arrow) requires some additional pro-
gramming.

[Faculty of Science
Information and Computing Sciences]

20

Parser combinators: interface §3

Type of parsers consuming symbols of type σ and producing
values of type α:

type Parser σ α = · · ·

pSucceed :: α→ Parser σ α
pFail :: Parser σ α
pSym :: σ → Parser σ σ

(<*>) :: Parser σ (α→ β)→ Parser σ α→ Parser σ β
(<$>) :: (α→ β)→ Parser σ α→ Parser σ β
(<|>) :: Parser σ α→ Parser σ α→ Parser σ α

[Faculty of Science
Information and Computing Sciences]

21

Parser combinators: interface (cont’d) §3

opt :: Parser σ α→ α→ Parser σ α

pList :: Parser σ α→ Parser σ [α]
pList1 :: Parser σ α→ Parser σ [α]

pChainl :: Parser σ (α→ α→ α)→
Parser σ α→ Parser σ α

pChainr :: Parser σ (α→ α→ α)→
Parser σ α→ Parser σ α

[Faculty of Science
Information and Computing Sciences]

22

Parser combinators: parsing tokens §3

Parsing reserved identifiers and operators:

pKey :: String → Parser Token String

Parsing special characters:

pSpec :: Char → Parser Token String

Parsing identifiers and operators:

pVarid , pConid :: Parser Token String
pVarsym, pConsym :: Parser Token String

� Indeed, the scanner is somewhat Haskell-centric.

[Faculty of Science
Information and Computing Sciences]

23

Parser combinators: parsing tokens (cont’d) §3

Parsing literals:

pInteger :: Parser Token String
pFraction :: Parser Token String
pChar :: Parser Token String
pString :: Parser Token String

[Faculty of Science
Information and Computing Sciences]

24

Parser combinators: running a parser §3

parseIO :: (Eq σ,Show σ,Symbol σ)⇒
Parser σ α→
[σ]→
IO α

� A more involved, lower-level interface is available that al-
lows you, for example, to integrate the parser combina-
tors with the CCO library.

[Faculty of Science
Information and Computing Sciences]

25

4. Questions

[Faculty of Science
Information and Computing Sciences]

26

Q: how do I import the parseATerm function? §4

The slides of one of the previous lectures mentioned the
function parseATerm.

You have to write a component providing this functionality
yourself as part of Mini Project A. ;-)

[Faculty of Science
Information and Computing Sciences]

27

Q: how do I import <$>? §4

The libraries that we have considered provide two distinct
versions of <$>.

The module UU.Parsing from the package uulib provides

(<$>) :: (α→ β)→ Parser σ α→ Parser σ β
f <$> p = pSucceed f <*> p

The module Control.Applicative from the base package
provides

(<$>) :: Functor ϕ⇒ (α→ β)→ ϕ α→ ϕ β
f <$> xs = fmap f xs

� The type ArgumentParser from CCO.Tree.Parser is an in-
stance of Functor .

[Faculty of Science
Information and Computing Sciences]

28

Q: how do I parse an ATerm for a nullary
constructor? §4

data Direction = North | East | South |West

instance Tree Direction where
fromTree North = App "North" []
fromTree East = App "East" []
fromTree South = App "South" []
fromTree West = App "West" []

toTree = parseTree [app "North" (pure North)
, app "East" (pure East)
, app "South" (pure South)
, app "West" (pure West)
]

� pure :: Applicative ϕ⇒ α→ ϕ α
is exported by Control.Applicative.

� ArgumentParser is an instance of Applicative.

[Faculty of Science
Information and Computing Sciences]

29

Functors §4

From the Prelude:

class Functor ϕ where
fmap :: (α→ β)→ ϕ α→ ϕ β

[Faculty of Science
Information and Computing Sciences]

30

Applicative functors §4

From Control.Applicative:

class Functor ϕ⇒ Applicative ϕ where
pure :: α→ ϕ α
(<*>) :: ϕ (α→ β)→ ϕ α→ ϕ β

[Faculty of Science
Information and Computing Sciences]

31

Monads §4

From the Prelude:

class Monad µ where
return :: α→ µ α
(>>=) :: µ α→ (α→ µ β)→ µ β
(〉) :: µ α→ µ β → µ β
fail :: String → µ α

[Faculty of Science
Information and Computing Sciences]

32

Arrows §4

From Control.Arrow :

class Arrow ϕ α β where
arr :: (α→ β) → ϕ α β
pure :: (α→ β) → ϕ α β
(≫) :: ϕ α β → ϕ β γ → ϕ α γ
first :: ϕ α β → ϕ (α, γ) (β, γ)
second :: ϕ α β → ϕ (γ, α) (γ, β)
(∗∗∗) :: ϕ α β → ϕ γ δ → ϕ (α, γ) (β, δ)
(&&&) :: ϕ α β → ϕ α γ → ϕ α (β, γ)

[Faculty of Science
Information and Computing Sciences]

33

Arrows (cont’d) §4

Or—as of GHC version 6.10.1:
class Category ϕ⇒ Arrow ϕ where

arr :: (α→ β) → ϕ α β
first :: ϕ α β → ϕ (α, γ) (β, γ)
second :: ϕ α β → ϕ (γ, α) (γ, β)
(∗∗∗) :: ϕ α β → ϕ γ δ → ϕ (α, γ) (β, δ)
(&&&) :: ϕ α β → ϕ α γ → ϕ α (β, γ)

From Control.Category :
class Category ϕ where

id :: ϕ α α
(◦) :: ϕ β γ → ϕ α β → ϕ α γ

(≫) :: Category ϕ⇒ ϕ α β → ϕ β γ → ϕ α γ
(≫) = flip (◦)

[Faculty of Science
Information and Computing Sciences]

34

Q: why do we need a parser for ATerms? §4

A term:

2 + 3 ∗ 5

Its Haskell representation:

Add 2 (Mul 3 5) :: Tm

The Haskell representation of the corresponding ATerm:
App "Add" [Integer 2,App "Mul" [Integer 3, Integer 5]] :: ATerm

Concrete syntax for the ATerm:

Add(2,Mul(3, 5))

The parser for ATerms mediates between the concrete
syntax and the Haskell representation of an ATerm.

[Faculty of Science
Information and Computing Sciences]

35

Q: why do I need to define my own tree types? §4

Although the ATerm format is mainly an exchange format, in
principle you could program just against the unified interface
that ATerms provide.

However, you miss out on quite a bit of safety then: little
guarantees are provided by the implementation language on
the actual shape of trees. In particular, if trees (not only
those that are given as inputs to a compiler, but also those
constructed by the compiler itself) are of an incorrect form,
this can only be detected when the compiler is run (as
opposed to when the compiler is compiled).

Moreover, programming against the unified ATerm-interface
is typically more complicated than programming in terms of
abstractions that are tailored to a specific domain.

[Faculty of Science
Information and Computing Sciences]

36

Q: is there a bug in the parser for trees? §4

Will the following program compile?

import CCO.Tree (ATerm (App),Tree (fromTree, toTree))
import CCO.Tree.Parser (parseTree, app, arg)
import Control.Applicative ((<$>))

data Unit = Unit

instance Tree Unit where
fromTree Unit = App "Unit" []
toTree = parseTree [app "Unit" (Unit <$> arg)]

No, it will not:

Couldn’t match expected type ‘a -> Unit’

against inferred type ‘Unit’

In the first argument of ‘(<$>)’, namely ‘Unit’

In the second argument of ‘app’, namely ‘(Unit <$> arg)’

In the expression: app "Unit" (Unit <$> arg)

Failed, modules loaded: none.

