
Compiler Construction

Mini Project

B T-Diagrams

The aim of this mini project is to implement a typed domain-specific language
for T-diagrams.

T-diagrams are used to visualise the interactions between programs, plat-
forms, interpreters, and compilers. In this mini project, we implement a system
that processes textual descriptions of T-diagrams, checks their internal con-
sistency by means of a type system, and translates them into LATEX-code for
rendering the diagrams as simple graphics.

Architecture

The implementation of the system comprises (at least) four main components:

1. A program parse-tdiag that consumes and parses textual specifications
of T-diagrams (in a domain-specific language to be defined below) and
produces ATerms that describe the structure of the specifications.

2. A program tc-tdiag that consumes ATerms as produced by the program
parse-tdiag and that typechecks the represented diagram specifications,
producing either descriptive error messages for ill-typed specifications or
else, for well-typed specifications, just the ATrems it consumed.

3. A program tdiag2picture that consumes ATerms as produced by the
programs parse-tdiag and tc-tdiag and that translates the represented
diagram specifications into LATEX-code for rendering the diagrams, pro-
ducing ATerms that describe the structure of the generated LATEX-code.

4. A program pp-picture that consumes ATerms as produced by the pro-
gram tdiag2picture and that produces a pretty printing of the repre-
sented LaTeX-code.

Complete implementations of the programs parse-tdiag and pp-picture are
already provided with the project distribution; hence, it remains to implement
tc-tdiag and tdiag2picture.

Both the typechecker and the translation from the domain-specific language
into LATEX have to be implemented as attribute grammars in the UUAG system.

Syntax

To formally define the syntax of our domain-specific language, we introduce sets
Ident and Diag of identifiers and diagrams, respectively:

C , I ,L,M ,P ∈ Ident identifiers
D ∈ Diag diagrams.

Note that the metavariables C , I , M , and P all range over the same set of
identifiers Ident, of which we leave the actual representation abstract. The set
of diagrams is given by

1

D ::= program P in L | platform M
| interpreter I for L in M | compiler C from L1 to L2 in M
| execute D1 on D2 end | compile D1 with D2 end.

Semantics

The “meaning” of a diagram is defined in terms of its translation to LATEX-code.
Here, we give an informal description of this translation.

Basic blocks. The constructs

program · · · in · · · ,

platform · · · ,

interpreter · · · for · · · in · · · ,

and

compiler · · · from · · · to · · · in · · ·

are used to denote so-called basic blocks. We give an example for each type of
basic block together with its translation into LATEX-code and the rendering of
the associated graphic.

A diagram of the form program P in L denotes a program P written in
some language L. For example, consider

program hello in Haskell

and its LATEX-translation:

\begin{picture}(65,30)

\put(7.5,0){\line(1,0){50}}

\put(7.5,0){\line(0,1){15}}

\put(7.5,15){\line(-1,2){7.5}}

\put(57.5,15){\line(1,2){7.5}}

\put(57.5,0){\line(0,1){15}}

\put(0,30){\line(1,0){65}}

\put(7.5,15){\makebox(50,15){hello}}

\put(7.5,0){\makebox(50,15){Haskell}}

\end{picture}

A
A

�
�hello

Haskell

A diagram platform M represents the platform referred to by the identifier
M . For instance, the diagram

platform i686-windows

is mapped to

\begin{picture}(50,30)

\put(0,15){\line(5,-3){25}}

\put(25,0){\line(5,3){25}}

\put(0,15){\line(0,1){15}}

\put(0,30){\line(1,0){50}}

\put(50,30){\line(0,-1){15}}

\put(0,15){\makebox(50,15){i686-windows}}

\end{picture}

b
bb"

""
i686-windows

2

An interpreter I for a language L that itself can be run on a platform of
interpreter for the language M is, in our domain-specific language, represented
by the diagram interpreter I for L in M . As an example, we have

interpreter hugs for Haskell in i686-windows

and its LATEX-rendering

\begin{picture}(50,30)

\put(0,0){\framebox(50,30){}}

\put(0,20){\makebox(50,10){Haskell}}

\put(0,10){\makebox(50,10){hugs}}

\put(0,0){\makebox(50,10){i686-windows}}

\end{picture}

Haskell
hugs

i686-windows

Finally, we use a diagram of the form compiler C for L1 to L2 in M
to represent a compiler C with source languge L1, target language L2, and
implementation language M . For instance, the diagram

compiler uuagc from UUAG to Haskell in i686-windows

is mapped to LATEX-code as follows:

\begin{picture}(150,30)

\put(50,0){\line(0,1){20}}

\put(50,20){\line(-1,0){50}}

\put(0,20){\line(0,1){10}}

\put(0,30){\line(1,0){150}}

\put(150,30){\line(0,-1){10}}

\put(150,20){\line(-1,0){50}}

\put(100,20){\line(0,-1){20}}

\put(100,0){\line(-1,0){50}}

\put(0,20){\makebox(50,10){UUAG}}

\put(50,20){%

\makebox(50,10){\longrightarrow}}

\put(100,20){\makebox(50,10){Haskell}}

\put(50,10){\makebox(50,10){uuagc}}

\put(50,0){ \makebox(50,10){i686-windows}}

\end{picture}

UUAG −→ Haskell
uuagc

i686-windows

Composite blocks. Diagrams of the forms

execute · · · on · · · end

and

compile · · · with · · · end

denote composite blocks.
A diagram execute D1 on D2 end is used to model the execution of the

program (interpreter, compiler) represented by the diagram D1 on the device
represented by D2, typically itself a platform or an interpreter. Such an exe-
cution is rendered by drawing the graphical representation of D1 on top of the
representation of D2. For example, the diagram

3

execute
program hello in Haskell

on
interpreter hugs for Haskell in i686-windows

end

is mapped to

\begin{picture}(65,60)

\put(7.5,30){\line(1,0){50}}

\put(7.5,30){\line(0,1){15}}

\put(7.5,45){\line(-1,2){7.5}}

\put(57.5,45){\line(1,2){7.5}}

\put(57.5,30){\line(0,1){15}}

\put(0,60){\line(1,0){65}}

\put(7.5,45){\makebox(50,15){hello}}

\put(7.5,30){\makebox(50,15){Haskell}}

\put(7.5,0){\framebox(50,30){}}

\put(7.5,20){\makebox(50,10){Haskell}}

\put(7.5,10){\makebox(50,10){hugs}}

\put(7.5,0){\makebox(50,10){i686-windows}}

\end{picture}

AA ��hello

Haskell

Haskell
hugs

i686-windows

A diagram compile D1 with D2 end denotes the compilation of the pro-
gram (interpreter, compiler) represented by D1 with the compiler represented
by D2. Compilations are rendered by attaching the graphic for D1 to the left of
the graphic for D2 and by attaching a new graphic, representing the program
(interpreter, compiler) produced by the compiler, to the right of the rendering
of D2.

For example, rendering the diagram

compile
program hello in UUAG

with
compiler uuagc from UUAG to Haskell in i686-windows
end

results in

A
A

�
�hello

UUAG UUAG −→ Haskell
uuagc

i686-windows

A
A

�
�hello

Haskell

\begin{picture}(265,45)

\put(7.5,20){\line(1,0){50}}

\put(7.5,20){\line(0,1){15}}

\put(7.5,35){\line(-1,2){7.5}}

\put(57.5,35){\line(1,2){7.5}}

\put(57.5,20){\line(0,1){15}}

\put(0,50){\line(1,0){65}}

\put(7.5,35){\makebox(50,15){hello}}

\put(7.5,20){\makebox(50,15){UUAG}}

\put(107.5,0){\line(0,1){20}}

\put(107.5,20){\line(-1,0){50}}

4

\put(57.5,20){\line(0,1){10}}

\put(57.5,30){\line(1,0){150}}

\put(207.5,30){\line(0,-1){10}}

\put(207.5,20){\line(-1,0){50}}

\put(157.5,20){\line(0,-1){20}}

\put(157.5,0){\line(-1,0){50}}

\put(57.5,20){\makebox(50,10){UUAG}}

\put(107.5,20){\makebox(50,10){\longrightarrow}}

\put(157.5,20){\makebox(50,10){Haskell}}

\put(107.5,10){\makebox(50,10){uuagc}}

\put(107.5,0){\makebox(50,10){i686-windows}}

\put(207.5,20){\line(1,0){50}}

\put(207.5,20){\line(0,1){15}}

\put(207.5,35){\line(-1,2){7.5}}

\put(257.5,35){\line(1,2){7.5}}

\put(257.5,20){\line(0,1){15}}

\put(200,50){\line(1,0){65}}

\put(207.5,35){\makebox(50,15){hello}}

\put(207.5,20){\makebox(50,15){Haskell}}

\end{picture}

When a compilation-diagram is itself used as a part of a composite diagram,
executions and compilations are always to be performed on the synthesized
program. For instance, the diagram

execute
compile

program hello in UUAG

with
compiler uuagc from UUAG to Haskell in i686-windows

end
on

interpreter hugs for Haskell in i686-windows
end

is rendered as

AA ��hello

UUAG UUAG −→ Haskell
uuagc

i686-windows

AA ��hello

Haskell

Haskell
hugs

i686-windows

Type System

The purpose of a type system for T-diagrams is to exclude nonsensical construc-
tions such as executing a Java-program with a Haskell-interpreter or compiling
a UUAG-program with a C-compiler. To this end, you should design and imple-
ment a type system that excludes nonsensical diagrams, still admitting as many
sensible diagrams as possible.

Nonsensical constructions are:

1. executing a platform;

5

2. executing a program, interpreter, or compiler on a program or a compiler;

3. executing a program, interpreter, or compiler on a nonmatching platform
or interpreter;

4. compiling a platform;

5. compiling a program, interpreter, or compiler with a program, a platform,
or an interpreter; and

6. compiling a program, interpreter, or compiler with a compiler for an in-
compatible source langauge.

For the More Ambitious

You may extend the domain-specific language with a facility to bind diagrams
to variables, so that you can reuse subdiagrams that occur more than once.

Submitting

The source code of your implementation should be handed in according to the
submission instructions on the website of this course.

Submit the source code of your implementation (including both UUAG sources
and Haskell sources not generated by the UUAG system).

Include in your submission a number of example diagrams (both well-typed
and ill-typed).

6

