= . o e
% Universiteit Utrecht

AN

Edition 2010/2011

Information and Computing Sciences]

[Faculty of Science

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

2. Mini project B: T-diagrams

N2
§ &) % Universiteit Utrecht

N

[Faculty of Science
Information and Computing Sciences]

NI

(4]
%

£

Mini project B: T-diagrams

%
N4

=
=

Universiteit Utrecht

T-diagrams

[Faculty of Science

Information and Computing Sciences]

§2

Recall: T-diagrams are a means to visualise the interactions
and relationships between programs, platforms, interpreters,

and compilers.

hello
Haskell

Universiteit Utrecht

—

ghc
i686-darwin

i686-darwin

1z= T-diagrams should be well-formed: for instance, one can-
not execute Java-programs with a Haskell-interpreter.

i686-darwin

hello
i686-darwin

i686-darwin

[Faculty of Science
Information and Computing Sciences]

Drawing T-diagrams §2

Drawing large, well-formed T-diagrams in IATEX can be quite
involved. A little help is welcome.

Some options:

» Copy-paste.
» Custom IATEX-macros.

» An embedded domain-specific language for drawing
pictures in IATEX, such as TikZ.

» Custom IATEX-macros on top of such an EDSL.

» An embedded domain-specific language in Haskell in
lieu with Ihs2TEX.

» A domain-specific language proper.

i
Su % Universiteit Utrecht

5 %%ﬂ§§

[Faculty of Science
Information and Computing Sciences]

Syntax §2

C,I,.L,M,P € Ident
D € Diag

identifiers
diagrams

D program P in L

platform M

interpreter [for L in M
compiler C from L to Ly in M
execute D; on D; end

compile D; with Dy end

Iz The metavariables C, I, L, M, and P range over the
same set of identifiers.

[Faculty of Science
Information and Computing Sciences]

Y
NS

% b = Universiteit Utrecht

KN

™

8

A DSL for T-diagrams §2

The aim of this mini-project is to design and implement a
typed domain-specific language for T-diagrams.

More specifically, we implement a compilation pipeline that
consumes high-level descriptions of T-diagrams and
produces IATEX-code for drawing these diagrams.

[Faculty of Science
Information and Computing Sciences]

<

2 .
&) % Universiteit Utrecht

Semantics: example §2

‘ program hello in Haskell ‘

hello
Haskell
\begin{picture}(65,30)

\put(7.5,0){\1line(1,0){50}}

\put(7.5,0){\1line(0,1){15}}

\put(7.5,15){\1line(-1,2){7.5}}

\put (57.5,15){\1ine(1,2){7.5}}

\put (567.5,0){\1ine(0,1){15}}

\put (0,30){\1ine(1,0){65}}

\put(7.5,15){\makebox (50,15) {hello}}

\put (7.5,0) {\makebox (50, 15) {Haskell}}
\end{picture}

NI
= N] -ﬁc Universiteit Utrecht

KN

[Faculty of Science
Information and Computing Sciences]

Type system §2

To enforce the well-formedness of diagrams, we equip our
domain-specific language with a type system.

For example, diagrams like

execute
program hello in Haskell
on

interpreter hugs for Haskell in 1686-windows
end

should just typecheck.

5‘\\\\“% [Faculty of Science
= § Universiteit Utrecht Information and Computing Sciences]

o N
Type system (cont'd) §2

Devising a set of type rules for just the basic operations like
executing a program with an interpreter or compiling a
program with a compiler should not be very difficult.

However, things get more involved if we consider that

» programs can also be directly executed on platforms;

» compilers and interpreters are programs as well, so
they can be executed and compiled themselves;

» the output program of a compiler can be executed or
compiled;

» if the output program of a compiler is an interpreter, it
can be used to execute other programs;

» if the output program of a compiler is a compiler, it can

mpil her programs.
& be used to compile other programs Facuty of Science
% & i Universiteit Utrecht Information and Computing Sciences]

1 KN

Type system (cont'd) §2

lll-formed diagrams like

compile

program hello in Haskell
with

compiler javac from Java to JVM in i686-windows
end

should be rejected by the type checker.

& Hint: the type system should typically involve judgements like

‘ compiler C from L, to Ly in M : Compiler Ly Ly M ‘

Sy
= b % Universiteit Utrecht

o N

[Faculty of Science
Information and Computing Sciences]

Architecture §2

As a starting point, we are provided with formal definitions
and Haskell implementations of the syntax of the
domain-specific language and the syntax of the target
language as well as an informal description of the
(denotational) semantics for the DSL.

Furthermore, we already have

» a program parse-tdiag for parsing T-diagrams and
» a program pp-picture for pretty-printing IATEX-pictures.

Then, we are to implement

» a program tc-tdiag for typechecking T-diagrams and
» a program tdiag2picture for compiling T-diagrams into
§W)}/; a pl ctures. [Faculty of Science

& = Universiteit Utrecht

KN

Information and Computing Sciences]
12

tribute grammars

grammars.

Universiteit Utrecht

The different components will be implemented as attribute

Using the UU Attribute Grammar Compiler.

§2

You will have to:

supports

» Design and formalise a type system for T-diagrams that
program, and

» basic operations like executing and compiling a simple

» more involved diagram compositions.
» Implement the type system.

» Implement a translation from T-diagrams to
IATEX-pictures.

[Faculty of Science
Information and Computing Sciences]
[

DA

Universiteit Utrecht

O

[Faculty of Science
Information and Computing Sciences]
=

DA™

§2

