
[Faculty of Science
Information and Computing Sciences]

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

Edition 2010/2011

[Faculty of Science
Information and Computing Sciences]

2

Agenda

Mini project B: T-diagrams

[Faculty of Science
Information and Computing Sciences]

3

2. Mini project B: T-diagrams

[Faculty of Science
Information and Computing Sciences]

4

T-diagrams §2

Recall: T-diagrams are a means to visualise the interactions
and relationships between programs, platforms, interpreters,
and compilers.

Haskell −→ i686-darwin

ghc

i686-darwin

i686-darwin

hello

Haskell

hello

i686-darwin

i686-darwin

� T-diagrams should be well-formed: for instance, one can-
not execute Java-programs with a Haskell-interpreter.



[Faculty of Science
Information and Computing Sciences]

5

Drawing T-diagrams §2

Drawing large, well-formed T-diagrams in LATEX can be quite
involved. A little help is welcome.

Some options:

I Copy-paste.
I Custom LATEX-macros.
I An embedded domain-specific language for drawing

pictures in LATEX, such as TikZ.
I Custom LATEX-macros on top of such an EDSL.
I An embedded domain-specific language in Haskell in

lieu with lhs2TEX.
I A domain-specific language proper.

[Faculty of Science
Information and Computing Sciences]

6

A DSL for T-diagrams §2

The aim of this mini-project is to design and implement a
typed domain-specific language for T-diagrams.

More specifically, we implement a compilation pipeline that
consumes high-level descriptions of T-diagrams and
produces LATEX-code for drawing these diagrams.

[Faculty of Science
Information and Computing Sciences]

7

Syntax §2

C , I ,L,M ,P ∈ Ident identifiers
D ∈ Diag diagrams

D ::= program P in L
| platform M
| interpreter I for L in M
| compiler C from L1 to L2 in M
| execute D1 on D2 end
| compile D1 with D2 end

� The metavariables C , I , L, M , and P range over the
same set of identifiers.

[Faculty of Science
Information and Computing Sciences]

8

Semantics: example §2

program hello in Haskell

AA ��hello

Haskell

\begin{picture}(65,30)
\put(7.5,0){\line(1,0){50}}
\put(7.5,0){\line(0,1){15}}
\put(7.5,15){\line(-1,2){7.5}}
\put(57.5,15){\line(1,2){7.5}}
\put(57.5,0){\line(0,1){15}}
\put(0,30){\line(1,0){65}}
\put(7.5,15){\makebox(50,15){hello}}
\put(7.5,0){\makebox(50,15){Haskell}}

\end{picture}



[Faculty of Science
Information and Computing Sciences]

9

Type system §2

To enforce the well-formedness of diagrams, we equip our
domain-specific language with a type system.

For example, diagrams like

execute
program hello in Haskell

on
interpreter hugs for Haskell in i686-windows

end

should just typecheck.

[Faculty of Science
Information and Computing Sciences]

10

Type system (cont’d) §2

Ill-formed diagrams like

compile
program hello in Haskell

with
compiler javac from Java to JVM in i686-windows

end

should be rejected by the type checker.

� Hint: the type system should typically involve judgements like

compiler C from L1 to L2 in M : Compiler L1 L2 M

[Faculty of Science
Information and Computing Sciences]

11

Type system (cont’d) §2

Devising a set of type rules for just the basic operations like
executing a program with an interpreter or compiling a
program with a compiler should not be very difficult.

However, things get more involved if we consider that

I programs can also be directly executed on platforms;
I compilers and interpreters are programs as well, so

they can be executed and compiled themselves;
I the output program of a compiler can be executed or

compiled;
I if the output program of a compiler is an interpreter, it

can be used to execute other programs;
I if the output program of a compiler is a compiler, it can

be used to compile other programs.
[Faculty of Science

Information and Computing Sciences]

12

Architecture §2

As a starting point, we are provided with formal definitions
and Haskell implementations of the syntax of the
domain-specific language and the syntax of the target
language as well as an informal description of the
(denotational) semantics for the DSL.

Furthermore, we already have

I a program parse-tdiag for parsing T-diagrams and
I a program pp-picture for pretty-printing LATEX-pictures.

Then, we are to implement

I a program tc-tdiag for typechecking T-diagrams and
I a program tdiag2picture for compiling T-diagrams into

a pictures.



[Faculty of Science
Information and Computing Sciences]

13

Attribute grammars §2

The different components will be implemented as attribute
grammars.

Using the UU Attribute Grammar Compiler.

[Faculty of Science
Information and Computing Sciences]

14

Tasks §2

You will have to:

I Design and formalise a type system for T-diagrams that
supports

I basic operations like executing and compiling a simple
program, and

I more involved diagram compositions.

I Implement the type system.
I Implement a translation from T-diagrams to

LATEX-pictures.


