
T-Diagrams Compiler

João Paulo Pizani Flor Liewe Thomas van Binsbergen

Saturday, 9th March, 2013

1 Tc-Tdiag, the typechecker

The input of the typechecker is an ATerm representing a tree of diagrams. The
inner nodes of this tree are ‘executions’ and ‘compilations’. The leaves are the
basic diagrams: programs, platforms, interpreters and compilers. Interpreters
and platforms can be used for executions, we will call them executors. Programs,
interpreters and compilers can be executed and compiled, we will give them the
common name programs. A compiler is the only object that can perform a
compilation.

The goal of the typechecker is to disallow nonsensical constructions, allowing
as many sensible constructions as possible. How many diagrams the system
supports is influenced by a number of design choices which will be explained
“on the fly” while explaining how the typechecker works.

We have implemented our typechecker using the UUAG Attribute Grammar
system.

1.1 Representing types

A typechecker often has type-variables, type-functions and the application of a
type-function to a type-variable.

In our type system, applications of type-functions correspond to the inner
nodes of the Diagram tree, namely ‘executions’ and ‘compilations’.

In our implementation, language names (e.g. “java”) and machine-names
(e.g. “amd64-unix”) form the type variables. They are simply represented as
Strings. However, we need a type that represents a function not having any
type and a type that represents all types. They are represented by ‘NoType’
and ‘AnyType’ respectively. We need these special types for our implementation
of type-functions.

A diagram is such a type-function. They have either both input and output
(interpreters and compilers), only input (platform) or only output (program). A
type-function with an input expects a certain input, one goal of the typechecker
is to compare the expected input with the actual input. Input and output are
represented by a single type-variable.

There is only one kind of output, namely the language the object of the
diagram is constructed in. This output determines on what type of executor this
program can be executed. An input language can be either used for execution or
for compilation, which requires us to have two separate kinds of input. Programs
have in common that they have an output language. Executors have in common
that they expect an input language.

1

The two rules to use are:

1. The application of a type-function should be valid, meaning that the func-
tion should expect input of the right kind. So a compilation can only be
successful if the function expects in input language for compilation. In
other words: the function has to be a compiler. An execution can only be
a successful if the function is an executor. These checks are made at the
time of application, at the nodes of the tree.

2. The expected input language and the received input language should
match. These checks are made at the type-function level, which are the
leaves of the tree. At this point the special ‘NoType’ and ‘AnyType’
type-variables are useful.

Design Choice: The choice is whether we allow to execute a program when it
is not fully completed yet itself, meaning that it is expecting input. For
example whether we allow to execute an interpreter that does not execute
anything itself. We have decided that we do allow this, which requires us
to give ‘AnyType’ as input to the first child of an execution. The same
decision has been made for the input of a compiler.

Design Choice: We could decide that a type-function only returns its input
when its input matches the input it expected. Doing this would make
errors ‘propagate’. For example, an interpreter for Haskell receiving a
Java program would give one error. If we decide it will therefore not give
any output, that would mean we would get an additional error when we
try to execute it. We have decided that errors DO NOT propagate. The
user can benefit more by analyzing and correcting an error in isolation
than immersed in a sea of other error messages. However when we have
an error in a compilation the error does propagate because the result of
the compilation is never created. This is because of the transformation we
perform that is explained later.

1.2 Implementation of errors

We have implemented the rules by using synthesized attributes output and
error, together with inherited attribute input and local fields expects and
ident.

The ident attribute is a unique identifier for a diagram. It consists of a
representation of the constructor, the position in the source code, the identifier
used in the source code. In case of compilation or execution also a compila-
tion or execution count, coming from inherited attribute compnr and execnr
respectively.

The two checks mentioned in the last subsection are implemented as follows:

1. We use a haskell datatype called TypeFunc and an attribute ‘typefunc’
to find out whether the second child of an execution is an executor and
whether the second child of a compilation is a compiler. And add an error
to the errors we already found in the children.

2. We compare the received input and the expected input and return a single-
ton list with an error inside if they do not match. For comparing we have

2

defined an Eq instance for the datatype TypeVar. This instance can not
be derived automatically because of the special type-variables ‘NoType’
and ‘AnyType’.

1.3 Transformations

Things become interesting when we compile a program, since a compilation
will have a result. The typechecker has to take this result into account, as
it can be executed or compiled again. To enable this we have implemented a
synthesized attribute that transforms the tree of diagrams. Every compilation
will transform into the result of this compilation, but only if the expected input
language matches the given input language.

Additional transformations that are possible include transforming an exe-
cuted interpreter into the input program now in the language of the interpreter.
Since this is not required we have not implemented it. Another additional trans-
formation could be the transformation of an executed diagram into the diagram
itself. This would be especially useful for an executed compiler.

We need a way to get the input and output language of a compiler when
transforming a compilation and the second child (where we expect a compiler)
of a compilation could well be an execution! So we can not pattern-match on
this second child.

Transforming an execution as mentioned above would be a solution. How-
ever this would give the problem that a program executed on a platform could
endlessly be executed on the same platform, as its output will go unchanged.
To obtain the input and output language of a compiler further down the tree
we have used a synthesized attribute called ‘langs’.

1.3.1 Compiler result only after compilation

We have tried to implement the following rule:

� A compilation will only yield a result if it is sufficiently executed. Meaning
that the compiler used in the compilation need to be run on a platform
directly or indirectly trough one or more interpreters.

To do this a transformation needs to propagate upwards. Starting from a
compilation and being applied when a platform is used for execution. A difficulty
is that this chain of executions might contain an interpreter being compiled first.
Hence we get a nested set of delayed transformations.

We were almost able to implement this using a stack of delayed transforma-
tions, however due to time constraints we were not able to fully work it out.
Since it is also not part of the assignment and since the rule set would be dif-
ferent then the one defined in the assignment, we have decided not to include
this rule in our program. The code that was written to try to implement can
be found in the doc directory.

3

2 TDiag2Pict - Transforming a T-Diagram into
a LATEXPicture

The job of the “backend” in the case of this assignment is to generate LATEXcode
containing the graphical rendition of the T-Diagram, inside the picture envi-
ronment. This is achieved by two components, that communicate through the
use of ATerms:

tdiag2pict This component transforms a T-Diagram (value of type Diag in
a value of the Picture datatype, which was provided in the assignment
package.

pp-picture Pretty-printing of a LATEXpicture, that means, transforming a value
of type Picture into a string with all the drawing commands available in
the latex picture environment. This component was already provided in
the assignment package.

Even though there were some modifications done to the pp-picture com-
ponent, most of the work was focused on the tdiag2pict executable. The
pp-picture module was adapted to output a complete LaTeX document, in-
stead of just the contents of the picture environment.

The development work leading to the tdiag2pict executable can be sub-
divided in two main parts: first, we developed a drawing library, capable of
generating the kind of geometric constructs we needed (lines, texts, rectangles,
triangles, etc.); then we devised recusive rules on how to compose these draw-
ings, i.e, make bigger diagrams from smaller ones. Both of these efforts are
explained in more detail below.

2.1 Geometry.hs, the drawing library

In the module CCO/Drawing/Geometry.hs we define the main drawing API,
which is then used to define the semantics of the Diag datatype using the
UUAG Attribute Grammar System.

The starting point on which to build upon is the Object datatype, already
provided in the assignment package. Values of this type correspond directly to
LaTeX commands inside the picture environment. By combining this Object
with a pair of cartesian coordinates, we get the most basic datatype defined in
our drawing library: PIObject, i.e, a Position-Independent Object. There are
functions to create some basic PIObjects like lines and text boxes as well as
functions to move them.

A collection of PIObjects is then defined as a PIDiagram, a Position-Independent
Diagram. There is a Monoid instance defined for PIDiagram and values of this
type can also be moved.

In the Geometry module we implemented several functions to draw geometric
constructs appropriate to the needs of the assignment, and some of the most
important ones are highlighted below:

rect, penta, tshape, etc. These functions receive dimensions receive dimen-
sions (width and height) as a parameter, and evaluate to drawings of
shapes (rectangles, pentagons and t-shapes) that are needed to represent,
respectively, interpreters, platforms and compilers.

4

fitWRect, fitWPenta, etc. These functions take a String as an extra argu-
ment and create the corresponding shape so that the given text fits inside
the drawing.

Having the drawing working, we proceeded to combining diagrams, which is
descrbed in more detail in the next subsection.

2.2 TElement.hs and Compose.hs, combining diagrams

The graphical rendition of a T-Diagrams is not only the lines and text labels
which are actually drawn, but also a tag defining the type of the diagram and
a set of pivot points, which are points in the diagram in which it can be bound
to other diagrams, depending on which role it is playing in the combination.

This information is combined with the visible geometric content in the
TElement datatype, defined as below:

data PivotTag
= PvIE -- Pivot in the case where the diagram acts as Input of Execution
| PvOE -- When the diagram acts as Output of Execution (platform)
| PvIC -- When the diagram is acting as Input of Compilation
| PvOC -- When the diagram is acting as Output of Compilation
| PvIT -- The diagram EXPECTS an Input for Translation
| PvOT -- The diagram GENERATES an Output of Translation
deriving (Eq, Show, Ord, Enum, Bounded)

type Pivot = (PivotTag, Pos)

data TEType = TEInterpreter | TEProgram | TEPlatform | TECompiler | TEComposite
deriving (Eq, Show, Ord, Enum, Bounded)

data TElement = TElement TEType [Pivot] PIDrawingO
deriving Eq

Further in the TElement.hs module we have functions defining TElements for
all of the 4 basic diagrams in the T-Diagrams language: programs, interpreters,
platforms and compilers. Then, in the module Compose.hs we have defined the
rules for the recursive combinations of TElements among themselves.

There are exactly two such combination rules, and they correspond directly
to the compound constructs (inner nodes) in the Diag tree:

drawExecution This function receives two TElements as arguments, the first
one being the source of the execution (geometrically on top) and the sec-
ond being the executor.

drawCompilation Receives two arguments, source and compiler, and gener-
ates a resulting diagram which contains, besides source and compiler, also
the translated target. Receives an extra argument containing information
about the source, so that this information can be copied to the generated
target diagram.

These two functions just mentioned need (each of them) two sets of rules to
work:

pivot matching the first rule set defines which pivots to match from the left
and right child. The geometrical “merging” of the two child diagrams
is done so that the two chosen pivot points (one from each child) are
superimposed in the final coordinate space.

5

parent pivots the second rule obtains the pivot points for a parent diagram,
based on the pivot points of the children.

Below there are the pivot matching rules for both the execution and compi-
lation combinators:

-- Matching the pivots of source and executor
executionMatch src exe = (l PvIE src, l PvOE exe)

-- Rule for matching the pivots of source program and compiler
compilationSrcMatch src com = (l PvIC src, l PvIT com)

-- Rule for matching pivots of the source-compiler composite AND the produced target
compilationTrgMatch srcPcom trg = (l PvOT srcPcom, l PvOC trg)

And, as an example of a parent-pivots choice rule, we show the rule set
defining how to derive the pivots for an execution, given the pivots of both
source and executor:

executionComb src exe =
catMaybes

[g PvIE exe PvIE -- the PvIE pivot of the parent is the PvIE of the exe child
, g PvOE src PvOE
, g PvIC src PvIC
, g PvOC exe PvOC
, g PvIT src PvIT
, g PvOT src PvOT]

These 2 combination functions (drawExecution and drawCompilation), to-
gether with the aforementioned 4 basic TElement construction functions (program,
compiler, etc.), give us 6 functions, corresponding precisely to each of the 6 con-
structors of the Diag datatype.

Having these 6 functions in hand, the last piece in the puzzle in to define
some semantics for the Diag datatype, using these functions. This task is accom-
plished by the attribute grammar defined in th file CCO/Drawing/AG/Drawing.ag.
In the attribute grammar defined there we have a synthesized attribute called
drawing, and this attribute in the root is exactly the graphical rendition of the
full input.

6

	Tc-Tdiag, the typechecker
	Representing types
	Implementation of errors
	Transformations
	Compiler result only after compilation

	TDiag2Pict - Transforming a T-Diagram into a LaTeXPicture
	Geometry.hs, the drawing library
	TElement.hs and Compose.hs, combining diagrams

