
Compiler Construction

Mini Project

C Static-link Optimisation

The aim of this mini project is to implement a small optimisation in a supplied
code generator.

Provided with the project distribution is a compiler impc that consumes
programs written in an simple untyped imperative language (to be further dis-
cussed below) and produces code for the Simple Stack Machine. In particular,
the source language is block-structured and has support for nested function
declarations; in the generated code access to global variables is implemented by
means of traversing a chain of static links. In this project we will optimise one
aspect of the usage of these static links.

Syntax

Starting from a countable infinite set of identifier symbols, a set of constants
(including the integers and the boolean constants false and true), and a set
of binary operators,

f , x ∈ Ident identifiers
c ∈ Const constants
⊕ ∈ Op binary operators,

the syntax of the language under consideration is comprised from declarations,
statements, and expressions,

d ∈ Decl declarations
S ∈ Stmt statements
e ∈ Exp expressions

defined by

d ::= var x ; | function f (x1, · · · , xn){S1 · · ·Sn }
S ::= ; | d | x = e; | f (e1, · · · , e2); | print e; | return e;

| if (e) S1 else S2 | {S1 · · ·Sn }
e ::= c | x | f (e1, · · · , en) | e1 ⊕ e2.

Programs,

P ∈ Prog programs,

are constructed from a list of top-level declarations,

P ::= d1 · · · dn ,

one of which should introduce a nullary function main, which then behaves as
the entry point of the program.

1

Semantics

We will not provide a formal semantics for the language as its behaviour is com-
pletely standard and, apart from being untyped, consistent with the procedural
parts of modern object-oriented languages such as Java. Moreover, the mean-
ing of programs can easily be observed by compiling them into SSM-code and
running the resulting code with the SSM-simulator.

Static-link Usage

In the generated code local identifiers are accessed via the mark pointer. In
the code for a function body, global identifiers (i.e., identifiers that are neither
formal parameters of the function nor bound by a variable declaration within
the function body) are accessed by first following a chain of static links and then
using the mark pointer thereby obtained.

Consider, for example, the following program, which uses Euclid’s algorithm
to compute the greatest common divisor of 42 and 56 while maintaining a global
variable count which keeps track of the number of times the nested function loop
is called:

var count ;

function gcd(x , y){
function loop (){

count = count + 1;

if (y ≡ 0) ;
else if (x > y) { x = x − y ; loop(); }

else { y = y − x ; loop(); }
}

if (x ≡ 0) return y ; else { loop(); return x ; }
}

function main(){
var r ; r = gcd(42, 56); print count ; print r ;
}

In the corresponding SSM-code, i.e., the code generated by the compiler from
the project distribution, the code for loading the value of count from within the
body of loop reads

ldl -2
lda -2
lda 1.

Similarly, the code for assigning to count from within loop reads

ldl -2
lda -2
sta 1.

2

count 1

SL for main •

ret. address for main · · ·

DL for main · · ·

r 0

x 42

y 14

SL for gcd •

ret. address for gcd · · ·

DL for gcd · · ·

SL for loop •

ret. address for loop · · ·

DL for loop · · ·

SL for loop •

ret. address for loop · · ·

DL for loop · · · MP

SP

That is, first the static link for loop (po-
sitioned at offset −2 relative to the location
pointed at by the mark pointer) is pushed
onto the stack and then this static link,
targetting the address the mark pointer is
pointing at during a particular invocation
of gcd , is followed to obtain the address at
which the mark pointer was pointing when
execution of the program started. Finally, at
offset 1 relative to this address, the memory
cell containing the value for count is found.
(The inset shows the layout of the stack just
before the body of loop is run for the second
time.)

Note that the same static-link traversal
is thus performed twice: once for loading
the value of count and once for assigning to
count . In general, for subsequent accessses of
any global variables declared at the same lex-
ical level, identical static-link traversals are
performed. A possible optimisation would be
to perform such traversals once before the
code of a function’s body is executed and
then to “cache” the end points of the traver-
sals as local variables.

For example, assuming that the end point
of the traversal for count is precomputed and
stored at offset 1 relative to the stack location pointed at by the mark pointer,
the code for loading count will, under this optimisation, read

ldl 1
lda 1.

What to Do?

Adapt the provided code generator so that, for each function, all static-link
traversals that are guaranteed to be performed more than once from within the
body of the function are performed before the code for the body is executed.
Bind the thus obtained end points to “hidden” local variables and use them as
demonstrated in the example above.

Do not pretraverse more static links than needed. For example, for the
program shown above, from within the body of main, the address relative to
which the global variable count can be accessed does not have to be stored as
a hidden local variable as it is already readily available at offset −2 relative to
the address the mark pointer is pointing at during the execution of main.

Plan of Attack

The following is a possible approach to implementing the required optimisation
incrementally:

3

1. First, extend the code generator so that, for each function body, pre-
traversals are performed for all surrounding lexial levels, without paying
attention to whether the obtained end points are actually needed from
within the body.

2. Next, further adapt the generator so that the pretraversal for the closest
surrounding lexical level is not cached. As mentioned, this end point of
this traversal is already available at offset −2.

3. Then, make sure that from the remaining end points only the ones that are
are guaranteed to be used from within the function body are precomputed.

4. Finally, exclude from precomputation those end points that are used only
once from within the function body, for there is nothing to gain from
caching these. (Even worse, the extra indirection would only make ad-
dressing relative to these end points more expensive.)

For the More Ambitious

In the rare case of very deeply nested functions, one could already use the cached
traversal end point for the second closest surrounding level when looking up the
end point for the third closest surrounding level etc. In determining whether
an end point qualifies for precomputation, such additional uses should then be
taken into account as well.

Submitting

The source code of your implementation should be handed in according to the
submission instructions on the website of this course.

Submit the source code of your implementation (including both UUAG sources
and Haskell sources not generated by the UUAG system).

Include in your submission a number of example programs that illustrate
the capabilities of your implementation.

4

