
Static-link optimization

João Paulo Pizani Flor Liewe Thomas van Binsbergen

Wednesday, 27th March, 2013

1 Introduction

The third practical assignment of the master’s course “Compiler Construction”,
given on the third academic period of 2012/2013 involved the generation and
optimization of assembly code targeting a model stack machine, the Simple
Stack Machine.

More specifically, we were given an implementation of a simple imperative
programming language, and asked to perform an optimization (caching) that
would avoid having to traverse a chain of static links everytime a global variable
is to be accessed.

The imperative source language we had to compile allows for nested function
definitions, and the static link is an element in the stack frame (or incarnation
record) of a function that points to the stack frame of the immediately sur-
rounding lexical scope. Here is an example of a program in the source language:

function main () {
print f(2, 3) ;

}

function f(x, y) {
var z;
function g(a, b) {

var c;
function h (p, q) {

var s;
s = 6 + x;
return x + y + z + a + c + p + s;

}
c = 5;
return h (x, b);

}
z = 4;
return g (x, z);

}

In this example, the deepest level of nesting (the h function) has 3 “outer”
scopes which it can access. In the original implementation, the access to the x
variable would require traversing the static-link chain upto the level of f, which
uses 3 instructions.

1

http://www.staff.science.uu.nl/~dijks106/SSM
http://www.staff.science.uu.nl/~dijks106/SSM

The optimization which we implemented basically created – for each function
stack frame – a “cache” that contains references to the frames of all scopes
outside of it. We have taken measures to ensure that this “cache” is only
created and used in cases in which it’s useful: in particular, we don’t use caching
neither for variables in the immediate enclosing scope, nor for variables which
are reference less than 2 times in the body of a function.

2 Attributes and data structures employed

In order to construct the static-link cache for each incarnation record, as well as
to use the cache while getting and setting the values of variables, we needed to
introduce three new attributes to the attribute grammar in CodeGeneration.ag.

The first attribute that we introduced – and that takes care of fullfilling
subtasks 1, 2 and 3 of the assignment – is an inherited attribute that maps each
identifier in the program to the scope in which it is declared. A scope identifier
is just an integer from 0 to n, where 0 means that an identifier is in the local
scope.

{
type ScopeId = Int -- 0 upto n, where 0 is the innermost (local) scope
type SEnv = [(Ident, ScopeId)]

identUsedEnough :: Ident -> VarRefs -> Bool
identUsedEnough i refs = M.findWithDefault 0 i refs >= minUsages

where minUsages = 2
}

attr Decl Decls Stmt Stmts Exp Exps
inh senv :: {SEnv}
syn copy :: self

sem Prog
| TopLevelDecls ds.senv = [(i, 0) | VarDecl i <- @ds.copy]

sem Decl
| FunDecl

loc.allsenv =
[(i, a+1) | (i, a) <- @lhs.senv] ++ -- parents
[(i, 0) | (i, _) <- @loc.params] ++ -- local parameters
[(i, 0) | Decl (VarDecl i) <- @b.copy] -- local vardecls

loc.senv = filter (flip identUsedEnough @b.colrefs . fst) @loc.allsenv
b.senv = @loc.allsenv

As can be seen in the UUAG code excerpt above, the senv attribute is
“initialized” in the top-level declarations node by associating all declarations
in the global level with scope level 0. Then, at each function declaration, the
function’s locally-declared identifiers are inserted with scope level 0, while the
identifiers carried from the parent have their scope level incremented.

2

This senv attribute is then used in the functions that generate the assembly
responsible for writing the static-link cache, but these functions will be discussed
in section 3.

In order to attack subtask 4 of the assignment (not cacheing the links to
variables used only once in the body of a function), we introduced a pair of
attributes: colrefs and varrefs, respectively synthesized and inherited.

{
type VarRefs = M.Map Ident Int -- variables referenced, with their refcount
}

attr Decl Decls Stmt Stmts Exp Exps
syn colrefs use {M.unionWith (+)} {M.empty} :: {VarRefs}

attr Stmt Stmts Exp Exps
inh varrefs :: {VarRefs}

sem Stmt | Decl lhs.colrefs = M.empty

sem Decl
| FunDecl b.varrefs = @b.colrefs

sem Exp
| Var lhs.colrefs = M.fromList [(@x, 1)]

Both attributes contain a mapping of all identifiers in a function body to the
number of times they are referenced in the body. If an identifier is not present
at all in the map, it is assumed that it is referenced 0 times in the body of the
function.

The idea is that attribute colrefs is propagated up the tree, from the ex-
pressions up until the function declaration node. Then we pass we down again
as the varrefs inherited attribute. The varrefs attribute will then be used to
determine whether the link to a function stack frame should or should not be
included in the static-link cache.

3 Changes in the generated code

To comply with all the requirements established in the assignment, we needed
to perform 4 changes in the way in which code is generated, incorporating the
attributes previously discussed in section 2.

3.1 Change #1: Shifting offsets

The attribute offsets, present in the original grammar, carries a mapping from
each identifier to the offset inside the stack frame in which it is declared. This
attribute had to be extended, so that all offsets were incremented by n, where
n is the number of elements in the static-link cache of the function.

sem Decl

3

| VarDecl lhs.offset = @lhs.offset + 1
| FunDecl

b.offset =
let unique = nub $ filter ((> 1) . snd) @loc.senv
in 1 + length unique

sem Stmt
| Block lhs.offset = @lhs.offset

3.2 Change #2: Inserting assembly code to write the
cache

Having in hand the mapping from each identifier to the scope level in which it is
declared, the next step is to effectively generate the assembly code which writes
the static-link cache to the stack frame of a function.

storecache :: SEnv -> CodeS
storecache senv = storecache_ (filter (> 1) scopes)

where scopes = nub (map snd senv)

storecache_ :: [ScopeId] -> CodeS
storecache_ [] = id
storecache_ (i:is) = ldl (-2) . lda (-2) . storecache__ is

storecache__ :: [ScopeId] -> CodeS
storecache__ [] = id
storecache__ (i:is) = lds 0 . lda (-2) . storecache__ is

3.3 Change #3: Accessing variables (possibly) using the
cache

In the original code, there were two functions (get and set) that were used,
respectively, the obtain the value of a variable and to assign to it. These func-
tions were very similar, thus they were refactored into a single parameterized
function, called access. Then we proceeded to change access: Depending on
the number of times that a variable is used in the function body, the access
can be done using the static-link cache or by traversing the whole static-link
chain.

get :: VarRefs -> Ident -> Syms -> CodeS
get = access ldl lda

set :: VarRefs -> Ident -> Syms -> CodeS
set = access stl sta

type OffsetInst = Int -> CodeS

access :: OffsetInst -> OffsetInst -> VarRefs -> Ident -> Syms -> CodeS
access close_i far_i refs x (local : globals) = case lookup x (vars local) of

Just (V offset) -> close_i offset
Nothing ->

if identUsedEnough x refs
then accessCache far_i 1 x globals
else ldl (-2) . accessGlobal far_i x globals

4

accessCache :: OffsetInst -> Int -> Ident -> Syms -> CodeS
accessCache _ _ x [] = error ("unknown variable: " ++ x)
accessCache inst level x (env : envs) = case lookup x (vars env) of

Just (V offset) -> ldl slcacheidx . inst offset
Nothing -> accessCache inst (level+1) x envs
where slcacheidx = if level == 1 then -2 else (level-1)

accessGlobal :: OffsetInst -> Ident -> Syms -> CodeS
accessGlobal inst x [] = error ("unknown variable: " ++ x)
accessGlobal inst x (env : envs) = case lookup x (vars env) of

Nothing -> lda (- 2) . accessGlobal inst x envs
Just (V offset) -> lda offset

3.4 Change #4: Returning

5

	Introduction
	Attributes and data structures employed
	Changes in the generated code
	Change #1: Shifting offsets
	Change #2: Inserting assembly code to write the cache
	Change #3: Accessing variables (possibly) using the cache
	Change #4: Returning

