
Compiler Construction

Mini Project

D Type Reconstruction

The aim of this mini project is to reconstruct explicit type annotations from
implicitly typed lambda-terms.

The project distribution includes abstract-syntax types for both an implicitly
typed let-polymorphic lambda-calculus and System F. The former comes with a
parser (parse-hm), the latter with a pretty printer (pp-systemf). Our objective
is to implement a type inferencer for terms in the implicitly typed language that,
as a side product, constructs corresponding System-F terms.

Implicitly Typed Language

Starting from a countable infinite set of variable symbols,

x ∈ Var variables,

the terms of the implicitly typed language,

t ∈ TmHM terms,

are given by

t ::= x | λx . t1 | t1 t2 | let x = t1 in t2 ni.

Its type language is stratified into types and type schemes,

τ ∈ TyHM types
σ ∈ TySchemeHM type schemes,

and furthermore constructed from type variables,

α ∈ TyVar type variables.

Types and type schemes are then defined by

τ ::= α | τ1 → τ2
σ ::= τ | ∀α. σ1.

Type environments,

Γ ∈ TyEnvHM type environments,

map from variables to type schemes:

Γ ::= [] | Γ1[x 7→ σ].

We write Γ(x) = σ to indicate that the rightmost binding for x in Γ maps x
to σ. The set of free type variables of a type scheme or type environment are
given by

ftv : (TySchemeHM ∪TyEnvHM)→ P(TyVar)

ftv(α) = {α}

1

Typing Γ `HM t : σ

Γ(x) = σ

Γ `HM x : σ
[hm-var]

Γ[x 7→ τ1] `HM t1 : τ2

Γ `HM λx . t1 : τ1 → τ2
[hm-lam]

Γ `HM t1 : τ2 → τ Γ `HM t2 : τ2

Γ `HM t1 t2 : τ
[hm-app]

Γ `HM t1 : σ1

Γ[x 7→ σ1] `HM t2 : τ

Γ `HM let x = t1 in t2 ni : τ
[hm-let]

Γ `HM t : σ1 α /∈ ftv(Γ)

Γ `HM t : ∀α. σ1

[hm-gen]
Γ `HM t : ∀α. σ1

Γ `HM t : [α 7→ τ0]σ1

[hm-inst]

Figure 1: Typing rules for the implicitly typed language

ftv(τ1 → τ2) = ftv(τ1) ∪ ftv(τ2)
ftv(∀α. σ1) = ftv(σ1)\{α}
ftv([]) = { }
ftv(Γ1[x 7→ σ]) = ftv(Γ1) ∪ ftv(σ).

The typing relation for the implicitly typed language, with judgements of the
form

Γ `HM t : σ,

is defined in Figure ??.

System F

The terms of System F,

t ∈ TmF terms,

containing explicit type terms,

τ ∈ TyF types,

are given by

τ ::= α | τ1 → τ2 | ∀α. τ1
t ::= x | λx : τ . t1 | t1 t2 | Λα. t1 | t1 [τ].

Here, type environments

Γ ∈ TyEnvF type environments,

map from variables to types:

Γ ::= [] | Γ1[x 7→ τ].

The typing rules for System F, with judgements of the form

Γ `F t : τ ,

are given in Figure ??.

2

Typing Γ `F t : τ

Γ(x) = τ

Γ `F x : τ
[f-var]

Γ[x 7→ τ1] `F t1 : τ2

Γ `F λx : τ1. t1 : τ1 → τ2
[f-lam]

Γ `F t1 : τ2 → τ Γ `F t2 : τ2

Γ `F t1 t2 : τ
[f-app]

Γ `F t1 : τ1

Γ `F Λα. t1 : ∀α. τ1
[f-tylam]

Γ `F t1 : ∀α. τ1
Γ `F t1 [τ0] : [α 7→ τ0]τ1

[f-tyapp]

Figure 2: Typing rules for System F

What to Do

Note that TySchemeHM ⊆ TyF.
Assuming conventional dynamic semantics for the implicitly typed langauge

and System F, implement a program hm2systemf that takes as input an ATerm
representation (as produced by parse-hm) for a term t ∈ TmHM and produces
as output an ATerm representation (as consumed by pp-systemf) for an oper-
ationally equivalent term t ′ ∈ TmF, such that if

[] `HM t : σ

with σ a principal type for t in [], then

[] `F t
′ : σ.

If t is ill-typed in [], then an appropriate type-error message should be issued.
As an example, consider the implicitly typed term

λf . λx . let id = λy . y in (id f) (id x) ni

and its possible System-F reconstruction

Λα.Λβ. λf : α→ β. λx : α.
(λid : ∀γ. γ → γ. (id [α→ β] f) (id [α] x)) (Λγ. λy : γ. y).

For the More Ambitious

A näıve implementation, based on, for example, Algorithm W, typically pro-
duces System-F terms that may contain “unnecessary” type abstractions and
type applications. Consider, for instance, the term

λf . λx . let id = λy . y in f (id x) (id x) ni

and its näıve System-F reconstruction

Λα.Λβ. λf : α→ α→ β. λx : α.
(λid : ∀γ. γ → γ. f (id [α] x) (id [α] x)) (Λγ. λy : γ. y).

3

Here, the lambda-bound identity function is applied to the type argument α
exclusively. This suggests a more “direct” reconstruction:

Λα.Λβ. λf : α→ α→ β. λx : α.
(λid : α→ α. f (id x) (id x)) (λy : α. y).

Can you adapt the implementation so that unnecessary type abstractions and
type applications are avoided?

Submitting

The source code of your implementation should be handed in according to the
submission instructions on the website of this course.

Submit the source code of your implementation (including both UUAG sources
and Haskell sources not generated by the UUAG system).

Include in your submission a number of example programs that illustrate
the capabilities of your implementation.

4

