
Algorithm W Step by Step

Martin Grabmüller

Sep 26 2006 (Draft)

Abstract

In this paper we develop a complete implementation of the classic algorithm W for Hindley-
Milner polymorphic type inference in Haskell.

1 Introduction

Type inference is a tricky business, and it is even harder to learn the basics, because most pub-
lications are about very advanced topics like rank-N polymorphism, predicative/impredicative
type systems, universal and existential types and so on. Since I learn best by actually developing
the solution to a problem, I decided to write a basic tutorial on type inference, implementing
one of the most basic type inference algorithms which has nevertheless practical uses as the basis
of the type checkers of languages like ML or Haskell.

The type inference algorithm studied here is the classic Algoritm W proposed by Milner [4].
For a very readable presentation of this algorithm and possible variations and extensions read
also [2]. Several aspects of this tutorial are also inspired by [3].

This tutorial is the typeset output of a literate Haskell script and can be directly loaded into
an Haskell interpreter in order to play with it. This document in electronic form as well as the
literate Haskell script are available from my homepage1

This module was tested with version 6.6 of the Glasgow Haskell Compiler [1]

2 Algorithm W

The module we’re implementing is called AlgorithmW (for obvious reasons). The exported
items are both the data types (and constructors) of the term and type language as well as
the function ti , which performs the actual type inference on an expression. The types for the
exported functions are given as comments, for reference.

module AlgorithmW (Exp (. .),
Type (. .),
ti -- ti :: TypeEnv → Exp → (Subst ,Type)

) where

We start with the necessary imports. For representing environments (also called contexts in
the literature) and substitutions, we import module Data.Map. Sets of type variables etc. will
be represented as sets from module Data.Set .

import qualified Data.Map as Map
import qualified Data.Set as Set

Since we will also make use of various monad transformers, several modules from the monad
template library are imported as well.

1Just search the web for my name.

1

import Control .Monad .Error
import Control .Monad .Reader
import Control .Monad .State

The module Text .PrettyPrint provides data types and functions for nicely formatted and
indented output.

import qualified Text .PrettyPrint as PP

2.1 Preliminaries

We start by defining the abstract syntax for both expressions (of type Exp), types (Type) and
type schemes (Scheme).

data Exp = EVar String
| ELit Lit
| EApp Exp Exp
| EAbs String Exp
| ELet String Exp Exp
deriving (Eq ,Ord)

data Lit = LInt Integer
| LBool Bool
deriving (Eq ,Ord)

data Type = TVar String
| TInt
| TBool
| TFun Type Type
deriving (Eq ,Ord)

data Scheme = Scheme [String] Type

In order to provide readable output and error messages, we define several pretty-printing func-
tions for the abstract syntax. These are shown in Appendix A.

We will need to determine the free type variables of a type. Function ftv implements this
operation, which we implement in the type class Types because it will also be needed for type
environments (to be defined below). Another useful operation on types, type schemes and the
like is that of applying a substitution.

class Types a where
ftv :: a → Set .Set String
apply :: Subst → a → a

instance Types Type where
ftv (TVar n) = {n}
ftv TInt = ∅
ftv TBool = ∅
ftv (TFun t1 t2) = ftv t1 ∪ ftv t2
apply s (TVar n) = case Map.lookup n s of

Nothing → TVar n
Just t → t

apply s (TFun t1 t2) = TFun (apply s t1) (apply s t2)
apply s t = t

2

instance Types Scheme where
ftv (Scheme vars t) = (ftv t) \ (Set .fromList vars)
apply s (Scheme vars t) = Scheme vars (apply (foldr Map.delete s vars) t)

It will occasionally be useful to extend the Types methods to lists.

instance Types a ⇒ Types [a] where
apply s = map (apply s)
ftv l = foldr Set .union ∅ (map ftv l)

Now we define substitutions, which are finite mappings from type variables to types.

type Subst = Map.Map String Type
nullSubst :: Subst
nullSubst = Map.empty
composeSubst :: Subst → Subst → Subst
composeSubst s1 s2 = (Map.map (apply s1) s2) ‘Map.union‘ s1

Type environments, called Γ in the text, are mappings from term variables to their respective
type schemes.

newtype TypeEnv = TypeEnv (Map.Map String Scheme)

We define several functions on type environments. The operation Γ\x removes the binding for
x from Γ and is called remove.

remove :: TypeEnv → String → TypeEnv
remove (TypeEnv env) var = TypeEnv (Map.delete var env)
instance Types TypeEnv where

ftv (TypeEnv env) = ftv (Map.elems env)
apply s (TypeEnv env) = TypeEnv (Map.map (apply s) env)

The function generalize abstracts a type over all type variables which are free in the type but
not free in the given type environment.

generalize :: TypeEnv → Type → Scheme
generalize env t = Scheme vars t

where vars = Set .toList ((ftv t) \ (ftv env))

Several operations, for example type scheme instantiation, require fresh names for newly
introduced type variables. This is implemented by using an appropriate monad which takes
care of generating fresh names. It is also capable of passing a dynamically scoped environment,
error handling and performing I/O, but we will not go into details here.

data TIEnv = TIEnv{ }
data TIState = TIState{tiSupply :: Int ,

tiSubst :: Subst }
type TI a = ErrorT String (ReaderT TIEnv (StateT TIState IO)) a
runTI :: TI a → IO (Either String a,TIState)
runTI t =

do (res, st)← runStateT (runReaderT (runErrorT t) initTIEnv) initTIState
return (res, st)

where initTIEnv = TIEnv{ }

3

initTIState = TIState{tiSupply = 0,
tiSubst = Map.empty }

newTyVar :: String → TI Type
newTyVar prefix =

do s ← get
put s{tiSupply = tiSupply s + 1}
return (TVar (prefix ++ show (tiSupply s)))

The instantiation function replaces all bound type variables in a type scheme with fresh type
variables.

instantiate :: Scheme → TI Type
instantiate (Scheme vars t) = do nvars ← mapM (λ → newTyVar "a") vars

let s = Map.fromList (zip vars nvars)
return $ apply s t

This is the unification function for types. The function varBind attempts to bind a type variable
to a type and return that binding as a subsitution, but avoids binding a variable to itself and
performs the occurs check.

mgu :: Type → Type → TI Subst
mgu (TFun l r) (TFun l ′ r ′) = do s1 ← mgu l l ′

s2 ← mgu (apply s1 r) (apply s1 r ′)
return (s1 ‘composeSubst ‘ s2)

mgu (TVar u) t = varBind u t
mgu t (TVar u) = varBind u t
mgu TInt TInt = return nullSubst
mgu TBool TBool = return nullSubst
mgu t1 t2 = throwError $ "types do not unify: " ++ show t1 ++

" vs. " ++ show t2
varBind :: String → Type → TI Subst
varBind u t | t ≡ TVar u = return nullSubst

| u ‘Set .member ‘ ftv t = throwError $ "occur check fails: " ++ u ++
" vs. " ++ show t

| otherwise = return (Map.singleton u t)

2.2 Main type inference function

Types for literals are inferred by the function tiLit .

tiLit :: TypeEnv → Lit → TI (Subst ,Type)
tiLit (LInt) = return (nullSubst ,TInt)
tiLit (LBool) = return (nullSubst ,TBool)

The function ti infers the types for expressions. The type environment must contain bindings
for all free variables of the expressions. The returned substitution records the type constraints
imposed on type variables by the expression, and the returned type is the type of the expression.

ti :: TypeEnv → Exp → TI (Subst ,Type)
ti (TypeEnv env) (EVar n) =

case Map.lookup n env of
Nothing → throwError $ "unbound variable: " ++ n

4

Just sigma → do t ← instantiate sigma
return (nullSubst , t)

ti env (ELit l) = tiLit env l
ti env (EAbs n e) =

do tv ← newTyVar "a"
let TypeEnv env ′ = remove env n

env ′′ = TypeEnv (env ′ ‘Map.union‘ (Map.singleton n (Scheme [] tv)))
(s1 , t1)← ti env ′′ e
return (s1 ,TFun (apply s1 tv) t1)

ti env (EApp e1 e2) =
do tv ← newTyVar "a"

(s1 , t1)← ti env e1
(s2 , t2)← ti (apply s1 env) e2
s3 ← mgu (apply s2 t1) (TFun t2 tv)
return (s3 ‘composeSubst ‘ s2 ‘composeSubst ‘ s1 , apply s3 tv)

ti env (ELet x e1 e2) =
do (s1 , t1)← ti env e1

let TypeEnv env ′ = remove env x
t ′ = generalize (apply s1 env) t1
env ′′ = TypeEnv (Map.insert x t ′ env ′)

(s2 , t2)← ti (apply s1 env ′′) e2
return (s1 ‘composeSubst ‘ s2 , t2)

This is the main entry point to the type inferencer. It simply calls ti and applies the returned
substitution to the returned type.

typeInference :: Map.Map String Scheme → Exp → TI Type
typeInference env e =

do (s, t)← ti (TypeEnv env) e
return (apply s t)

2.3 Tests

The following simple expressions (partly taken from [2]) are provided for testing the type infer-
ence function.

e0 = ELet "id" (EAbs "x" (EVar "x"))
(EVar "id")

e1 = ELet "id" (EAbs "x" (EVar "x"))
(EApp (EVar "id") (EVar "id"))

e2 = ELet "id" (EAbs "x" (ELet "y" (EVar "x") (EVar "y")))
(EApp (EVar "id") (EVar "id"))

e3 = ELet "id" (EAbs "x" (ELet "y" (EVar "x") (EVar "y")))
(EApp (EApp (EVar "id") (EVar "id")) (ELit (LInt 2)))

e4 = ELet "id" (EAbs "x" (EApp (EVar "x") (EVar "x")))
(EVar "id")

e5 = EAbs "m" (ELet "y" (EVar "m")
(ELet "x" (EApp (EVar "y") (ELit (LBool True)))

(EVar "x")))

This simple test function tries to infer the type for the given expression. If successful, it prints
the expression together with its type, otherwise, it prints the error message.

5

test :: Exp → IO ()
test e =

do (res,)← runTI (typeInference Map.empty e)
case res of

Left err → putStrLn $ "error: " ++ err
Right t → putStrLn $ show e ++ " :: " ++ show t

2.4 Main Program

The main program simply infers the types for all the example expression given in Section 2.3
and prints them together with their inferred types, or prints an error message if type inference
fails.

main :: IO ()
main = mapM test [e0 , e1 , e2 , e3 , e4 , e5]

This completes the implementation of the type inference algorithm.

3 Conclusion

This literate Haskell script is a self-contained implementation of Algorithm W [4]. Feel free to
use this code and to extend it to support better error messages, type classes, type annotations
etc. Eventually you may end up with a Haskell type checker. . .

References

[1] The GHC Developers. Glasgow Haskell Compiler Homepage. Available from:
http://www.haskell.org/ghc, 2006. Last visited: 2006-06-14.

[2] Bastiaan Heeren, Jurriaan Hage, and Doaitse Swierstra. Generalizing Hindley-Milner type
inference algorithms. Technical Report UU-CS-2002-031, Institute of Information and Com-
puting Sciences, Utrecht University, 2002.

[3] Mark P. Jones. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell Workshop,
1999. Published in Technical Report UU-CS-1999-28, Department of Computer Science,
University of Utrecht.

[4] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, 1978.

A Pretty-printing

This appendix defines pretty-printing functions and instances for Show for all interesting type
definitions.

instance Show Type where
showsPrec x = shows (prType x)

prType :: Type → PP .Doc
prType (TVar n) = PP .text n
prType TInt = PP .text "Int"
prType TBool = PP .text "Bool"
prType (TFun t s) = prParenType tPP . 〈+〉PP .text "->"PP . 〈+〉 prType s

6

prParenType :: Type → PP .Doc
prParenType t = case t of

TFun → PP .parens (prType t)
→ prType t

instance Show Exp where
showsPrec x = shows (prExp x)

prExp :: Exp → PP .Doc
prExp (EVar name) = PP .text name
prExp (ELit lit) = prLit lit
prExp (ELet x b body) = PP .text "let"PP . 〈+〉

PP .text xPP . 〈+〉PP .text "="PP . 〈+〉
prExp bPP . 〈+〉PP .text "in" PP .$$
PP .nest 2 (prExp body)

prExp (EApp e1 e2) = prExp e1PP . 〈+〉 prParenExp e2
prExp (EAbs n e) = PP .char ’\\’PP . 〈+〉PP .text nPP . 〈+〉

PP .text "->"PP . 〈+〉
prExp e

prParenExp :: Exp → PP .Doc
prParenExp t = case t of

ELet → PP .parens (prExp t)
EApp → PP .parens (prExp t)
EAbs → PP .parens (prExp t)

→ prExp t
instance Show Lit where

showsPrec x = shows (prLit x)
prLit :: Lit → PP .Doc
prLit (LInt i) = PP .integer i
prLit (LBool b) = if b then PP .text "True" else PP .text "False"
instance Show Scheme where

showsPrec x = shows (prScheme x)
prScheme :: Scheme → PP .Doc
prScheme (Scheme vars t) = PP .text "All"PP . 〈+〉

PP .hcat
(PP .punctuate PP .comma (map PP .text vars))

PP . <> PP .text "."PP . 〈+〉 prType t

7

	Introduction
	Algorithm W
	Preliminaries
	Main type inference function
	Tests
	Main Program

	Conclusion
	Pretty-printing

