
[Faculty of Science
Information and Computing Sciences]

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

Edition 2011/2012

[Faculty of Science
Information and Computing Sciences]

2

Agenda

The structure of a compiler

Trees

Running a compiler

Trees and ATerms

Pretty printing

Trees and ATerms

[Faculty of Science
Information and Computing Sciences]

3

2. The structure of a compiler

[Faculty of Science
Information and Computing Sciences]

4

Language-processing systems §2

Typically, compilers are
parts of larger systems.

For example, for the
generation of
machine-executable code
from a source program
written in a high-level
programming langauge,
besides a compiler,
several other programs
may be involved: e.g., a
preprocessor, an
assembler, and/or a linker.

source program

preprocessor

modified source program

compiler

assembly program

assembler

relocatable machine code

linker/loader

machine program

[Faculty of Science
Information and Computing Sciences]

5

Black-box view §2

As a whole, a compiler performs
a meaning-preserving
translation from its source
language into its target
language.

Optionally, it also validates the
source program, reporting
(possible) errors to the user,
and/or produces a log of its
activities.

source program

compiler

target program

[Faculty of Science
Information and Computing Sciences]

6

White-box view §2

Internally, a compiler is typically
implemented as a pipeline of
components.

Each component in the pipeline
takes as input the output of its
predecessor and produces as
output the input for its
successor.

source program

· · ·

target program

[Faculty of Science
Information and Computing Sciences]

7

Analysis and synthesis §2

The first components in the
pipeline form the front end of
the compiler and perform the
analysis of the source program.

The last components form the
back end and take care of the
synthesis of the target program.

source program

· · ·

target program

[Faculty of Science
Information and Computing Sciences]

8

Front end §2

I Breaks up the source
program into its constituent
pieces.

I Imposes a grammatical
structure on it.

I Checks for syntactic and
semantic errors.

I Produces informative
warnings and error
messages.

I Constructs a symbol table.
I Creates an intermediate

representation.

source program

· · ·

target program

[Faculty of Science
Information and Computing Sciences]

9

Back end §2

I Constructs the target
program from the
intermediate representation
and the information stored
in the symbol table.

source program

· · ·

target program

[Faculty of Science
Information and Computing Sciences]

10

Middle end §2

Sometimes we separate out a
middle end in which
optimisations on intermediate
representations of the program
have place.

Ideally, the middle end operates
on an intermediate
representation that is
completely independent from
the source and target
languages. This way, we can
easily combine different front
and back ends.

source program

· · ·

· · ·

target program

[Faculty of Science
Information and Computing Sciences]

11

Phases §2
Logically, the compilation
pipeline consists of a sequence
of phases. In each phase, one
representation of the source
program is transformed into
another.

The logical division of the
compilation process into phases
is not necessarily matched by
the actual implementation. In
practice, several phases are
grouped together or split into
subphases. Furthermore, some
intermediate representations
may not constructed explicitly.

source program

· · ·

target program

[Faculty of Science
Information and Computing Sciences]

12

Phases: example §2

Typical phases in the compilation of a high-level program
into machine-executable code are:

I Lexical analysis.
I Syntactic analysis.
I Semantic analysis.
I Intermediate-code generation.
I Intermediate-code optimisation.
I Code generation.

[Faculty of Science
Information and Computing Sciences]

13

Symbol tables §2

Symbol tables are data structures that contain incrementally
obtained information about the source program. This
information is typically produced in the front end of the
compiler and consumed in the back end.

For example, the symbol table may contain information
about identifiers such as their position in the source program
and their type.

The symbol table may be shared by the different
components that make up a compiler. Alternatively, it can be
passed around by the compiler components.

In practice, the symbol table is not really a single table, but a
compound data structure consisting of multiple tables, that
may each contain subtables and so on.

[Faculty of Science
Information and Computing Sciences]

14

Loose coupling §2

From a software engineer’s point of view it may be
advantageous to construct the components of a compiler as
loosely coupled as possible.

Such modularity keeps the overall design comprehensible
and makes it possible to debug and test components in
isolation.

Ultimately, each component can exist as a stand-alone
executable program, taking its inputs and producing its
outputs from and to the command line or a file. Components
can then be composed at the command line to form
(sub)compilers.

[Faculty of Science
Information and Computing Sciences]

15

Trees and strings §2

Internally, the intermediate representations of the source
program typically take the form of trees.

Interacting with their environments, however, compilers
consume and produce “flat” data streams, i.e., strings of
characters or bytes.

Implementing a compiler, we therefore have to be able to
convert between flat data and trees, and to transform one
type of trees into another.

[Faculty of Science
Information and Computing Sciences]

16

2.1 Trees

[Faculty of Science
Information and Computing Sciences]

17

Algebraic data types §2.1

Internally, a compiler passes around tree-shaped
representations of the source program.

In Haskell, such tree-structured data is typically represented
in terms of algebraic data types.

For example:

data Exp = Const Int
| Add Exp Exp
| Mul Exp Exp

� Recall: a declaration of an algebraic data type introduces
both a type constructor (Exp) and a family of data con-
structors (Const , Add , and Mul).

[Faculty of Science
Information and Computing Sciences]

18

A need for flat representations §2.1

But if we want to encapsulate each compiler component in
its own executable program, we need to pass tree-shaped
data between programs.

Hence, we need to be able to convert between tree-shaped
and “flat”, textual representations of trees, so that we can
read and write tree-structured data from and to files and
terminals.

[Faculty of Science
Information and Computing Sciences]

19

Read and Show §2.1

One possibility is to rely on implementations of Haskell’s
Read and Show classes:

class Read α where
read :: String → α

class Show α where
show :: α→ String

� Type classes are groups of types that share some com-
mon functionality.

[Faculty of Science
Information and Computing Sciences]

20

Read and Show: deriving instances §2.1

Read and Show are so-called derivable type classes: for a
large set of programmer-defined data types, a Haskell
compiler can automatically derive instances of these
classes:

data Exp = Const Int
| Add Exp Exp
| Mul Exp Exp

deriving (Read ,Show)

[Faculty of Science
Information and Computing Sciences]

21

Read and Show: examples §2.1

*Main> Const 2 ‘Add‘ Const 3

Add (Const 2) (Const 3)

*Main> show (Const 2 ‘Add‘ Const 3)

"Add (Const 2) (Const 3)"

*Main> read ("Add (Const 2) (Const 3)") :: Exp

Add (Const 2) (Const 3)

� Why do we need the explicit type annotation in
read ("Add (Const 2) (Const 3)") :: Exp?

[Faculty of Science
Information and Computing Sciences]

22

Read and Show: assessment §2.1

Pro:
I Easy implementable: for most data types, Read and Show

can be derived by the Haskell compiler.

Cons:
I Haskell-centric: the format on which Read and Show operate

is essentially the Haskell syntax for constructor application. If
we consider exchange between components with different
implementation languages, there may be formats that are
better supported across different programming languages.

I Single-line output: derived implementations of show
produce their output on a single line and, hence, the display
of large trees appears quite chaotic. Inspecting the output of
a compiler component, it may be hard to recognise the tree
structure.

[Faculty of Science
Information and Computing Sciences]

23

Alternatives §2.1

As an alternative to Read and Show we may consider a more
widespread format for representing tree-shaped structures,
such as XML or ATerm.

XML is ubiquitous and has excellent tool support. However,
the format is quite verbose.

The ATerm format is perhaps less known, but it is specifically
targeted at compilers and has fairly good tool support.

[Faculty of Science
Information and Computing Sciences]

24

The ATerm format §2.1

Annotated Term format: a strucutured representation of
arbitrary tree-shaped data.

See:

I Mark van den Brand, Hayco de Jong, Paul Klint, and
Pieter A. Olivier. Efficient annotated terms.
Software—Practice and Experience (SPE),
30(3):259–291, 2000.

I http://www.meta-environment.org/

Meta-Environment/ATerms.

As a means of representing trees, ATerms are, in a sense,
comparable to both XML and algebraic data types.

[Faculty of Science
Information and Computing Sciences]

25

The ATerm format: structure §2.1

An ATerm A can be:

I An integer constant: 2, 3, . . .

I A floating-point constant: 3.14, . . .

I A string constant: "x", "abc", "", . . .

I A constructor application C (A1, · · · ,An):
Const(2), Ident("x"), Pos(1, 1), EOF , . . .

I A tuple (A1, · · · ,An): (Ident("x"),Op("*")), . . .

I A list [A1, · · · ,An]: [Const(2),Op("+")], . . .

I An annotated term A {A1, · · · ,An }:
Ident("x") {Pos(1, 9)}, . . .

[Faculty of Science
Information and Computing Sciences]

26

The ATerm format: examples §2.1

ATerm for Const 2:

Const(2)

ATerm for Const 2 ‘Add ‘ Const 3:

Add(Const(2),Const(3))

ATerm for Const 2 ‘Add ‘ (Const 3 ‘Mul ‘ Const 5):

Add(Const(2)
,Mul(Const(3),Const(5)
) {size(5), depth(3), value(17)}

[Faculty of Science
Information and Computing Sciences]

27

Representing ATerms in Haskell §2.1

The CCO library exposes a module CCO.Tree that contains
an algebraic data type for representing ATerms:

data ATerm = Integer Integer
| Float Double
| String String
| App Con [ATerm]
| Tuple [ATerm]
| List [ATerm]
| Ann ATerm [ATerm]

deriving (Eq ,Read ,Show)

type Con = String

[Faculty of Science
Information and Computing Sciences]

28

A class for tree types §2.1

The class Tree contains types that can be represented as
ATerms:

class Tree α where
fromTree :: α→ ATerm
toTree :: ATerm → α

The methods fromTree and toTree convert between trees
and ATerms.

[Faculty of Science
Information and Computing Sciences]

29

A class for tree types: example §2.1

To make Exp a member of the Tree class, we need to
provide an instance declaration:

instance Tree Exp where
fromTree = · · ·
toTree = · · ·

[Faculty of Science
Information and Computing Sciences]

30

A class for tree types: example (cont’d) §2.1

fromTree (Const n)
= App "Const" [Integer (toInteger n)]

fromTree (Add e1 e2)
= App "Add" [fromTree e1, fromTree e2]

fromTree (Mul e1 e2)
= App "Mul" [fromTree e1, fromTree e2]

Haskell integers are converted to ATerm integers.

Haskell constructor applications are converted to ATerm
constructor applications.

[Faculty of Science
Information and Computing Sciences]

31

A class for tree types: example (cont’d) §2.1

toTree (App "Const" [Integer n]) = Const (fromInteger n)
toTree (App "Add" [a1, a2]) = Add (toTree a1) (toTree a2)
toTree (App "Mul" [a1, a2]) = Mul (toTree a1) (toTree a2)
toTree (Ann a) = toTree a
toTree = error "toTree: ..."

Converting from ATerms to tree types constitutes a partial
function.

In this particular example, annotations are ignored.

[Faculty of Science
Information and Computing Sciences]

32

2.2 Running a compiler

[Faculty of Science
Information and Computing Sciences]

33

A feedback monad §2.2

For dealing with feedback it is relevant to virtually all parts of
a compilation pipeline, we introduce a monad for feedback
management:

data Feedback α -- abstract, instance of Monad

� A monad is a data type µ for representing and con-
structing effectful computations, supporting the opera-
tions return :: α → µ α and (>>=) :: µ α → (α → µ β) →
µ β (“bind”).

[Faculty of Science
Information and Computing Sciences]

34

Issuing messages §2.2

Feedback is constructed from three types of messages: log
messages, warning messages, and error messages.

Log and warning messages have, respectively, a verbosity
and a severity level associated, that allows control over the
amount of feedback that is generated.

trace :: Int → String → Feedback () -- for log messages
warn :: Int → String → Feedback () -- for warning messages
fail :: String → Feedback α -- for error messages

� Actually, fail is just fail :: Monad µ⇒ String → µ α from
the Monad class.

[Faculty of Science
Information and Computing Sciences]

35

Running a feedback computation §2.2

We can “run” a feedback computation and, as a side effect,
have its messages written to some file-system object:

runFeedback :: Feedback α→ -- the computation
Int → -- verbosity level
Int → -- severity level
Handle → -- object to write messages to
IO (Maybe α)

Feedback computations fail if an error message has been
issued.

� Maybe is the Prelude type of computations that may fail:

data Maybe α = Nothing -- for failure
| Just α -- for succes

[Faculty of Science
Information and Computing Sciences]

36

Example of a feedback computation §2.2

divider :: Int → Int → Feedback Int
divider m n = do trace 2 "Start divider ..."

if n ≡ 0 then fail "Error: division by zero!"

else do trace 1 "Dividing ..."

return (m ‘div ‘ n)

runDivider :: Int → Int → Int → IO ()
runDivider v m n = do let d = divider m n

result ← runFeedback d v 1 stderr
case result of

Nothing → return ()
Just k → print k

[Faculty of Science
Information and Computing Sciences]

37

Example of a feedback computation (cont’d) §2.2

*Divider> runDivider 2 8 4

Start divider ...

Dividing ...

2

*Divider> runDivider 1 8 4

Dividing ...

2

*Divider> runDivider 2 8 0

Start divider ...

Error: division by zero!

[Faculty of Science
Information and Computing Sciences]

38

Components §2.2

Recall that a compiler is typically implemented as a pipeline
of components.

Components inside the pipeline take as input the output of
their predecessor and produce as output the input to their
successor. The component at the beginning of a pipeline
reads its input from a file or the command line, while the
component at the end of a pipeline writes its output to a file
or the command line.

To represent components that take inputs of type α and
produce outputs of type β, the CCO library provides an
abstract type constructor Component :

data Component α β -- abstract, instance of Arrow

[Faculty of Science
Information and Computing Sciences]

39

Arrows §2.2

Arrows are a generalisation of monads and provide a
common interface to effectful computations:

class Arrow ϕ where
pure :: (α→ β)→ ϕ α β
(≫) :: ϕ α β → ϕ β γ → ϕ α γ
first :: ϕ α β → ϕ (α, γ) (β, γ)
second :: ϕ α β → ϕ (γ, α) (γ, β)

See: John Hughes. Generalising monads to arrows. Science of
Computer Programming, 37(1–3):67–111, 2000.

For Component , we have:

pure :: (α→ β)→ Component α β
(≫) :: Component α β → Component β γ → Component α γ
first :: Component α β → Component (α, γ) (β, γ)
second :: Component α β → Component (γ, α) (γ, β)

[Faculty of Science
Information and Computing Sciences]

40

Creating components §2.2

Primitive components can be created either from pure
computations,

pure :: (α→ β)→ Component α β

or from computations that involve Feedback :

component :: (α→ Feedback β)→ Component α β

[Faculty of Science
Information and Computing Sciences]

41

Creating components: example §2.2

Assume we have to construct a compilation pipeline that

I Reads a floating-point value from the standard input.
I Checks that the value is nonnegative.
I Calculates the square root of the value.
I Writes the square root to the standard output.

[Faculty of Science
Information and Computing Sciences]

42

Creating components: example (cont’d) §2.2

To read, we create a Component that consumes a String
and produces a Double. If the String cannot be parsed into a
Double, we issue an error message.

parser :: Component String Double
parser = component $ λinput → do

trace "Parsing ..."

case [r | (r ,)← reads input] of
r : → return r

→ fail "Parse error!"

�
The function trace is defined as trace = trace 1.

�
For the actual parsing, we instantiate the list-of-successes parser
reads :: Read α⇒ String → [(α,String)] for Double.

[Faculty of Science
Information and Computing Sciences]

43

Creating components: example (cont’d) §2.2

Next, we define a Component that checks whether its
Double-input is nonnegative. If the check fails, a warning
message is emitted. The component always returns its input
unmodified.

validator :: Component Double Double
validator = component $ λr → do

trace "Validating ..."

when (r < 0) (warn "Warning: negative input!")
return r

�
The function warn is defined as warn = warn 1.

[Faculty of Science
Information and Computing Sciences]

44

Creating components: example (cont’d) §2.2

The actual calculation is performed by a Component that
simply applies the Prelude function sqrt to its input:

calculator :: Component Double Double
calculator = component $ λr → do

trace "Calculating ..."

return (sqrt r)

[Faculty of Science
Information and Computing Sciences]

45

Creating component: example (cont’d) §2.2

The final Component in the pipeline uses the function show
to turn a Double into a String .

printer :: Component Double String
printer = component $ λr → do

trace "Printing ..."

return (show r)

[Faculty of Science
Information and Computing Sciences]

46

Composing components: example §2.2

To assemble a pipeline, we compose individual
Component-values by means of the Arrow -combinator (≫):

pipeline :: Component String String
pipeline = parser ≫ validator ≫ calculator ≫ printer

The pipeline itself constitutes a Component that takes
String-inputs to String-outputs.

[Faculty of Science
Information and Computing Sciences]

47

Wrapping components §2.2

Recall that a compilation pipeline, at its source and sink
sides, is supposed to exchange flat data with file-system
objects.

Indeed, if a Component consumes and produces flat data,
i.e., String-values, it can be turned into a stand-alone
program that reads from the standard input channel and
writes to the standard output channel:

ioWrap :: Component String String → IO ()

[Faculty of Science
Information and Computing Sciences]

48

Wrapping components: example §2.2

For our square-root calculator with
pipeline :: Component String String , we have:

main :: IO ()
main = ioWrap pipeline

� The main function is where a Haskell program starts its
execution.

[Faculty of Science
Information and Computing Sciences]

49

Wrapping components: example (cont’d) §2.2

At the command line:

% ls

Sqrt.hs

% ghc --make -o sqrt Sqrt.hs

[1 of 1] Compiling Main (Sqrt.hs, Sqrt.o)

Linking sqrt ...

% ls

Sqrt.hi Sqrt.hs Sqrt.o sqrt

% echo 25.0 | ./sqrt

Parsing ...

Validating ...

Calculating ...

Printing ...

5.0

[Faculty of Science
Information and Computing Sciences]

50

Wrapping components: example (cont’d) §2.2

% echo xyz | ./sqrt

Parsing ...

Parse error!

% echo -3.14 | ./sqrt

Parsing ...

Validating ...

Warning: negative input!

Calculating ...

Printing ...

NaN

[Faculty of Science
Information and Computing Sciences]

51

Wrapping components: example (cont’d) §2.2

% cat > in.dbl

49.0

^D

% ls

Sqrt.hi Sqrt.hs Sqrt.o in.dbl sqrt

% cat in.dbl | ./sqrt > out.dbl

Parsing ...

Validating ...

Calculating ...

Printing ...

% ls

Sqrt.hi Sqrt.hs Sqrt.o in.dbl out.dbl sqrt

% cat out.dbl

7.0

[Faculty of Science
Information and Computing Sciences]

52

2.3 Trees and ATerms

[Faculty of Science
Information and Computing Sciences]

53

ATerms §2.3

Recall that the ATerm format provides a generic
representation for the tree-like structures that typically
appear in the internals of the compilation pipeline.

In Haskell, we represented ATerms by

data ATerm = Integer Integer
| Float Double
| String String
| App Con [ATerm]
| Tuple [ATerm]
| List [ATerm]
| Ann ATerm [ATerm]

deriving (Eq ,Read ,Show)

[Faculty of Science
Information and Computing Sciences]

54

ATerms: example §2.3

As an example of an ATerm, consider

Mul(
Add(Const(2),Mul(Const(3),Const(5)))

, Mul(Add(Const(7),Const(9)),Const(11))
)

represented in Haskell by

App "Mul" [
App "Add" [

App "Const" [Integer 2]
,App "Mul" [App "Const" [Integer 3],App "Const" [Integer 5]]
]

,App "Mul" [
App "Add" [App "Const" [Integer 7],App "Const" [Integer 9]]

,App "Const" [Integer 11]
]

]

[Faculty of Science
Information and Computing Sciences]

55

Converting between trees and ATerms §2.3

The class Tree contains types that can be represented as
ATerms:

class Tree α where
fromTree :: α→ ATerm
toTree :: ATerm → α

toTree is a partial function: not every ATerm can be
converted into a tree of the appropriate type.

Hence, we let toTree produce its result in the Feedback
monad:

class Tree α where
fromTree :: α→ ATerm
toTree :: ATerm → Feedback α

[Faculty of Science
Information and Computing Sciences]

56

2.4 Pretty printing

[Faculty of Science
Information and Computing Sciences]

57

Displaying trees §2.4

Often it is necessary to display trees in a human-readable
format; for instance, for testing or debugging purposes.

Rather than relying on a derived Show instance,

App "Mul" [App "Add" [App "Const" [Integer 2],Ap\
p "Mul" [App "Const" [Integer 3],App "Const" [In\
teger 5]]],App "Mul" [App "Add" [App "Const" [In\
teger 7],App "Const" [Integer 9]],App "Const" [I\
nteger 11]]]

we typically want to present the user with a representation in
concrete syntax:

Mul(Add(Const(2), Mul(Const(3), Const(5))), Mul(\
Add(Const(7), Const(9)), Const(11)))

[Faculty of Science
Information and Computing Sciences]

58

Displaying trees (cont’d) §2.4

Ideally, the concrete-syntax representation makes the tree
structure explicit:

Mul(

Add(Const(2), Mul(Const(3), Const(5)))

, Mul(Add(Const(7), Const(9)), Const(11))

)

To display a tree in a human-readable form so that the
structure of the tree is easily perceivable, we employ a
so-called pretty printer.

[Faculty of Science
Information and Computing Sciences]

59

Pretty-printer combinators §2.4

The CCO library exposes a module CCO.Printing that
provides a family of pretty-printer combinators.

These combinators can be used to construct and combine
values of the abstract data type Doc of printable documents:

data Doc -- abstract

[Faculty of Science
Information and Computing Sciences]

60

Primitive document constructors §2.4

The empty document:

empty :: Doc

A document containing a specified text:

text :: String → Doc

For example:

text "pretty"

yields

pretty

[Faculty of Science
Information and Computing Sciences]

61

Stacking §2.4

The combinator (>-<) is used to place one document on top
of another:

infixr 2 >-<

(>-<) :: Doc → Doc → Doc

For example:

text "pretty" >-< text "printing"

yields

pretty

printing

[Faculty of Science
Information and Computing Sciences]

62

Identation §2.4

The function indent is used to indent a document by a given
amount of spaces:

ident :: Int → Doc → Doc

For example:

text "pretty" >-< indent 2 (text "printing")

yields

pretty

printing

[Faculty of Science
Information and Computing Sciences]

63

Concatenation §2.4

The combinator (>|<) is used to concatenate two
documents:

infixr 3 >|<

(>|<) :: Doc → Doc → Doc

For example:

text "pretty" >|< text "printing"

yields

prettyprinting

[Faculty of Science
Information and Computing Sciences]

64

Dovetailing §2.4

If its first operand is a multiline document, (>|<) performs
what is known as “dovetailing”.

For example:

(text "combinators" >-< text "for ") >|<
(text "pretty" >-< text "printing")

yields

combinators

for pretty

printing

[Faculty of Science
Information and Computing Sciences]

65

Parallelisation §2.4

The combinator (>//<) is used to introduce a choice
between two alternative formattings. When a document is
printed, the most space-efficient one is chosen.

infixr 1 >//<

(>//<) :: Doc → Doc → Doc

Parallelisation should only be used with care: nested uses of
(>//<) can easiliy cause an explosion in the number of
alternatives to consider. Therefore, a local choice can be
enforced by means of the function join:

join :: Doc → Doc

[Faculty of Science
Information and Computing Sciences]

66

Rendering §2.4

Documents are rendered by means of the function render :

render :: Int → Doc → Maybe String

render takes as its first argument the amount of horizontal
space that is available for printing. It then constructs the
most space-efficient rendering specified by its Doc argument
that still fits the available space. If the document cannot be
rendered within the available space, Nothing is returned.

As an alternative, render always produces a rendering,
enlarging the given amount of space as necessary:

render :: Int → Doc → String

[Faculty of Science
Information and Computing Sciences]

67

2.5 Trees and ATerms

[Faculty of Science
Information and Computing Sciences]

68

Exercise: utilities for turning ATerms into trees
§2.5

class Tree α where
fromTree :: α→ ATerm
toTree :: ATerm → Feedback α

data Either α β = Left α | Right β

instance (Tree α,Tree β)⇒ Tree (Either α β) where
fromTree (Left x) = App "Left" [fromTree x]
fromTree (Right y) = App "Right" [fromTree y]

toTree = parseTree [app "Left" (Left <$> arg)
, app "Right" (Right <$> arg)
]

[Faculty of Science
Information and Computing Sciences]

69

From ATerms to trees: example §2.5

test :: String → IO ()
test input = case runFeedback feedback 1 1 stderr of

Nothing → return ()
Just tree → print tree

where
feedback :: Feedback (Either Bool Int)
feedback = toTree (parseATerm input)

[Faculty of Science
Information and Computing Sciences]

70

From ATerms to trees: example (cont’d) §2.5

*Test> test "Left(False)"

Left False

*Test> test "InBetween(True)"

Error in ATerm.

*** Unexpected : InBetween

*** Expected : Left or Right

*** In term : InBetween(True)

*Test> test "Left(Perhaps)"

Error in ATerm.

*** Unexpected : Perhaps

*** Expected : False or True

*** In term : Perhaps

[Faculty of Science
Information and Computing Sciences]

71

From ATerms to trees: example (cont’d) §2.5

*Test> test "Left()"

Error in ATerm: Left takes 1 argument, but none

were given.

*** In term : Left()

*Test> test "Left(False, True)"

Error in ATerm: Left takes 1 argument, but 2

were given.

*** In term : Left(False, True)

[Faculty of Science
Information and Computing Sciences]

72

Implementation §2.5

318 lines of Haskell code:

I comment and whitespace: 161 lines
I generating error messages: 146 lines

Available from the CCO library through the
CCO.Tree.Parser module.

