
[Faculty of Science
Information and Computing Sciences]

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

Edition 2011/2012

[Faculty of Science
Information and Computing Sciences]

2

Agenda

Simple arithmetic expressions

Syntax

Semantics

Implementation

[Faculty of Science
Information and Computing Sciences]

3

3. Simple arithmetic expressions

[Faculty of Science
Information and Computing Sciences]

4

Introduction §3

To develop tools and techniques for reasoning about the
syntax and semantics of high-level programming languages,
we will now consider a small “programming language” for
simple arithmetic expressions.

[Faculty of Science
Information and Computing Sciences]

5

3.1 Syntax

[Faculty of Science
Information and Computing Sciences]

6

Syntactic forms §3.1

Our language will consist of just a few syntactic forms:
natural numbers, addition, and multipliation.

For example:

12

7 + 21

18 ∗ 2

3 ∗ (17 + 5)

[Faculty of Science
Information and Computing Sciences]

7

Styles of syntax §3.1

I Inductive definitions.
I Inference rules.
I Generation procedures.
I BNF-notation.

[Faculty of Science
Information and Computing Sciences]

8

Inductive definition §3.1

One way of formally defining the syntax of a language is by
means of an inductive definition.

Let N be the set of natural numbers {0, 1, 2, · · ·}.
Definition: The set of terms is the smallest set Tm such
that:

1. If n ∈ N, then n ∈ Tm.
2. If t1 ∈ Tm and t2 ∈ Tm, then t1 + t2 ∈ Tm.
3. If t1 ∈ Tm and t2 ∈ Tm, then t1 ∗ t2 ∈ Tm.

� Note the use of the word “smallest”: Tm has no ele-
ments other than the ones required by the three clauses
of the definition.

[Faculty of Science
Information and Computing Sciences]

9

Concrete vs. abstract syntax §3.1

The given inductive definition does not say anything about
the use of parentheses and precedence rules to
disambiguate phrases, such as 3 ∗ (17 + 5).

Formally, we are defining trees and the structure of a term is
immediate from the shape of the tree. The rules that
prescribe which trees form terms define the abstract syntax
of our language.

However, if we write down terms in programs etc., we use a
string representation, i.e., a concrete syntax, in which we do
use parentheses and precedence rules.

In an implementation, the translation from concrete into
abstract syntax is carried out by a parser.

[Faculty of Science
Information and Computing Sciences]

10

Inference rules §3.1

An alternative approach to defining abstract syntax, is in
natural deduction style, i.e., by means of so-called inference
rules:

premise1 · · · premisen

conclusion
[name]

Each inference rule consists of zero or more premises, a
conclusion, and, optionally, a name: if we have established
all premises, then we may derive the conclusion.

An inference rule without premises, is called an axiom.

[Faculty of Science
Information and Computing Sciences]

11

Inference rules (cont’d) §3.1

To define our abstract syntax, we employ the following rules:

n ∈ N
n ∈ Tm

[num]

t1 ∈ Tm t2 ∈ Tm

t1 + t2 ∈ Tm
[add]

t1 ∈ Tm t2 ∈ Tm

t1 ∗ t2 ∈ Tm
[mul]

[Faculty of Science
Information and Computing Sciences]

12

Generation procedure §3.1

Yet another means to defining abstract syntax is by giving an
explicit generation procedure:

Tm0 = ∅
Tmi+1 = N ∪ {t1 + t2, t1 ∗ t2 | t1, t2 ∈ Tmi }

And then let

Tm =
⋃

iTmi

[Faculty of Science
Information and Computing Sciences]

13

BNF-notation §3.1

During the course, we will mostly use Backus-Naur Form
(BNF) to define abstract syntax.

First we introduce metavariables:

n ∈ Num = N numerals
t ∈ Tm terms

The metavariable n ranges over the set Num of numerals,
while the metavariable t (or variations such as t1 and t2)
ranges over the set Tm of terms.

The abstract syntax of terms is then given by:

t ::= n | t1 + t2 | t1 ∗ t2
[Faculty of Science

Information and Computing Sciences]

14

3.2 Semantics

[Faculty of Science
Information and Computing Sciences]

15

The meaning of terms §3.2

Now we have established the precise syntax of terms, we
need to rigourously define their meaning, i.e., we need to
formally define the semantics of our language.

For example:

I The meaning of the program 12 is the natural number
12.

I The meaning of the program 7 + 21 is the natural
number 28.

I The program 18 ∗ 2 has the same meaning as the
program 4 ∗ 9.

I The program 3 ∗ (17 + 5) has the same meaning as the
program 3 ∗ 22.

[Faculty of Science
Information and Computing Sciences]

16

Styles of semantics §3.2

I Axiomatic semantics.
I Denotational semantics.
I Operational semantics.

I Small-step (structural) operational semantics.
I Big-step (natural) operational semantics.

[Faculty of Science
Information and Computing Sciences]

17

Object language vs. metalanguage §3.2

Before we can formalise the semantics of our language, we
need some notation.

For n1,n2 ∈ N, we write n1 + n2 to denote the “normal”
addition of n1 and n2.

Hence, we distinguish between addition in the object
language, i.e., t1 + t2, for which we have yet to provide a
meaning, and addition in the metalanguage, of which the
meaning is assumed to be well-understood.

Similarly, we write n1 ∗ n2 for the metalanguage multiplication
of two natural numbers.

� + and ∗ only work on natural numbers, while + and ∗ can
be used on arbitrary terms to form new syntactic terms.

[Faculty of Science
Information and Computing Sciences]

18

Axiomatic semantics §3.2

An axiomatic semantics for a language is given by supplying
a set of equalities between terms:

n1 + n2 =ax n1 + n2
n2 ∗ n2 =ax n1 ∗ n2

Example:

3 ∗ (17 + 5)
= {17 + 5 =ax 22}

3 ∗ 22
= {3 ∗ 22 =ax 66 }

66

[Faculty of Science
Information and Computing Sciences]

19

Axiomatic semantics (cont’d) §3.2

An axiomatic semantics is undirected, rendering it less
suitable for a direct mapping to an implementation:

3 ∗ (17 + 5)
= {1 + 2 =ax 3}

(1 + 2) ∗ (17 + 5)
= {11 + 6 =ax 17}

(1 + 2) ∗ (11 + 6 + 5)

Intuitively, a semantics should provide a means to “simplify”
a term.

[Faculty of Science
Information and Computing Sciences]

20

Denotational semantics §3.2

A denotational semantics provides a mapping from the set of
terms to another set:

J·K :Tm→ N
JnK = n
Jt1 + t2K = Jt1K + Jt2K
Jt1 ∗ t2K = Jt1K ∗ Jt2K

[Faculty of Science
Information and Computing Sciences]

21

Denotational semantics (cont’d) §3.2

For example:

J3 ∗ (17 + 5)K = J3K ∗ J17 + 5K
= J3K ∗ (J17K + J5K)
= J3K ∗ (J17K + 5)
= 3 ∗ (J17K + 5)
= 3 ∗ (17 + 5)
= 3 ∗ 22
= 66

� A denotational semantics does not necessarily prescribe
an “order of evaluation.

[Faculty of Science
Information and Computing Sciences]

22

Operational semantics §3.2

An operational semantics describes an abstract “machine”
that operates on terms, simplifying them to values.

For our language, values are just numerals:

v ∈ Val values

v ::= n

Often, but not always, we have that Val ⊂ Tm.

[Faculty of Science
Information and Computing Sciences]

23

Small-step operational semantics §3.2

The first type of operational semantics that we shall consider
is a so-called small-step or structured operational semantics.

A small-step operational semantics defines a machine that
takes a term and performs a single step of computation on it,
yielding a simpler term. Every step is referred to as a
reduction.

Computation halts as soon as the term is transformed into a
value.

We define the semanics as a set of inference rules with
conclusions of the form

t −→ t ′

[Faculty of Science
Information and Computing Sciences]

24

Small-step operational semantics (cont’d) §3.2

n1 + n2 −→ n1 + n2
[r-add]

t1 −→ t ′1
t1 + t2 −→ t ′1 + t2

[r-add1]

t2 −→ t ′2
v1 + t2 −→ v1 + t ′2

[r-add2]

Rules [r-add1] and [r-add2] are examples of so-called
congruence rules: as opposed to the axiom [r-add] they do
not denote a “real” computation step, but rather guide the
reduction of a compound term, effectively dictating an order
of evaluation.

[Faculty of Science
Information and Computing Sciences]

25

Small-step operational semantics (cont’d) §3.2

For multiplication, we have a similar triple of rules:

n1 ∗ n2 −→ n1 ∗ n2
[r-mul]

t1 −→ t ′1
t1 ∗ t2 −→ t ′1 ∗ t2

[r-mul1]

t2 −→ t ′2
v1 ∗ t2 −→ v1 ∗ t ′2

[r-mul2]

[Faculty of Science
Information and Computing Sciences]

26

Small-step operational semantics (cont’d) §3.2

Example:

3 ∗ (17 + 5) −→ 3 ∗ 22 −→ 66

As a pair of deriviation trees, one for each step:

17 + 5 −→ 22

3 ∗ (17 + 5) −→ 3 ∗ 22

3 ∗ 22 −→ 66

[Faculty of Science
Information and Computing Sciences]

27

Small-step operational semantics (cont’d) §3.2

A sequence of reduction steps.

t1 −→ t2 −→ · · · −→ tn

such that ti −→ ti+1 for 1 6 i 6 n is sometimes also written
as t1 −→∗ tn .

If tn is a value, tn = v , we say that t1 evaluates to v in
(n − 1) steps.

For instance, 3 ∗ (17 + 5) evaluates to 66 in two steps:

3 ∗ (17 + 5) −→∗ 66

[Faculty of Science
Information and Computing Sciences]

28

Big-step operational semantics §3.2

An alternative style of operational semantics, big-step or
natural operational semantics, formalises the concept of
evaluation directly.

A big-step operational semantics for our language of
arithmetic expressions is defined as an natural deduction
system with rules for deriving judgements of the form

t ⇓ v

where t is term and v the value that it evaluates to.

[Faculty of Science
Information and Computing Sciences]

29

Big-step operational semantics (cont’d) §3.2

n ⇓ n
[e-num]

t1 ⇓ n1 t2 ⇓ n2

t1 + t2 ⇓ n1 + n2
[e-add]

t1 ⇓ n1 t2 ⇓ n2

t1 ∗ t2 ⇓ n1 ∗ n2
[e-mul]

� The big-step operational semantics is quite similar to the
denotational semantics for our language.

� The big-step operational semantics is not as precise as
the small-step operational semantics with respect to the
order of evaluation.

[Faculty of Science
Information and Computing Sciences]

30

Big-step operational semantics (cont’d) §3.2

For example:

3 ∗ (17 + 5) ⇓ 66

Derivation tree:

3 ⇓ 3

17 ⇓ 17 5 ⇓ 5

17 + 5 ⇓ 22

3 ∗ (17 + 5) ⇓ 66

[Faculty of Science
Information and Computing Sciences]

31

Language = syntax + semantics §3.2

Syntax:

n ∈ Num numerals
t ∈ Tm terms
v ∈ Val values

t ::= n | t1 + t2 | t1 ∗ t2
v ::= n

Semantics:

t −→ t ′ reduction

or

t ⇓ v evaluation
[Faculty of Science

Information and Computing Sciences]

32

3.3 Implementation

[Faculty of Science
Information and Computing Sciences]

33

Syntax: numerals §3.3

type Num = Integer

� Integer is the Haskell type of arbitrary sized integers. In
contrast to the the set Num it also contains negative
numbers, so some carefulness is in order.

� The name Num (with the underscore postfix) is used to
avoid a name conflict with the type class Num of numeric
types.

[Faculty of Science
Information and Computing Sciences]

34

Syntax: terms and values §3.3

data Tm = Num Num | Add Tm Tm | Mul Tm Tm
data Val = VNum Num

instance Tree Tm where
fromTree (Num n) = App "Num" [fromTree n]
fromTree (Add t1 t2) = App "Add" [fromTree t1 t2]
fromTree (Mul t1 t2) = App "Mul" [fromTree t1 t2]

toTree = parseTree [app "Num" (Num <$> arg)
, app "Add" (Add <$> arg <*> arg)
, app "Mul" (Mul <$> arg <*> arg)
]

instance Tree Val where
fromTree (VNum n) = App "VNum" [fromTree n]
toTree = parseTree [app "VNum" (VNum <$> arg)]

[Faculty of Science
Information and Computing Sciences]

35

Syntax: terms and values (cont’d) §3.3

Some helper functions related to the observation that
Val ⊆ Tm:

isValue :: Tm → Bool

isValue (Num) = True
isValue = False

fromTm :: Tm → Val

fromTm (Num n) = VNum n
fromTm (Add) = error "fromTm: Add"

fromTm (Mul) = error "fromTm: Mul"

[Faculty of Science
Information and Computing Sciences]

36

Small-step operational semantics §3.3

reduce :: Tm → Maybe Tm -- produces Nothing for irreducible
-- terms

(exercise)

eval :: Tm → Val

eval t = case reduce t of
Nothing | isValue t → fromTm t

| otherwise → ⊥ -- impossible
Just t ′ → eval t ′

[Faculty of Science
Information and Computing Sciences]

37

Big-step operational semantics §3.3

eval :: Tm → Val

eval (Num n) = VNum n

eval (Add t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in VNum (n1 + n2)

eval (Mul t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in VNum (n1 ∗ n2)

� Big-step semantics is implemented more directly.
� Evaluation order is enforced by Haskell’s + and ∗.

