
[Faculty of Science
Information and Computing Sciences]

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

Edition 2011/2012

[Faculty of Science
Information and Computing Sciences]

2

Agenda

Simple types

Syntax

Semantics

Type system

Implementation

[Faculty of Science
Information and Computing Sciences]

3

4. Simple types

[Faculty of Science
Information and Computing Sciences]

4

Boolean expressions §4

We extend our language of simple arithmetic expressions
with support for Boolean expressions.

[Faculty of Science
Information and Computing Sciences]

5

4.1 Syntax

[Faculty of Science
Information and Computing Sciences]

6

Terms and values §4.1

n ∈ Num numerals
t ∈ Tm terms
v ∈ Val values

t ::= n | false | true | if t1 then t2 else t3 fi
| t1 + t2 | t1 ∗ t2 | t1 < t2 | t1 ≡ t2 | t2 > t2

v ::= n | false | true

For example:

if 2< 3
then

if false then 5 else 7 fi
else

if 11 ≡ 13 then 17 ∗ 19 else 23 + 29 fi
fi

[Faculty of Science
Information and Computing Sciences]

7

4.2 Semantics

[Faculty of Science
Information and Computing Sciences]

8

Preliminaries §4.2

Recall that Num = N.

We write @ and A for the binary relations “less than” and
“greater then” on natural numbers.

[Faculty of Science
Information and Computing Sciences]

9

Small-step operational semantics §4.2

The semantics for our extended language is given as a
small-step operational semantics, i.e., as a set of inference
rules for deriving judgements of the form

t −→ t ′ reduction

[Faculty of Science
Information and Computing Sciences]

10

Additional and multiplication §4.2

n1 + n2 −→ n1 + n2
[r-add]

t1 −→ t ′1
t1 + t2 −→ t ′1 + t2

[r-add1]

t2 −→ t ′2
v1 + t2 −→ v1 + t ′2

[r-add2]

n1 ∗ n2 −→ n1 ∗ n2
[r-mul]

t1 −→ t ′1
t1 ∗ t2 −→ t ′1 ∗ t2

[r-mul1]

t2 −→ t ′2
v1 ∗ t2 −→ v1 ∗ t ′2

[r-mul2]

[Faculty of Science
Information and Computing Sciences]

11

Less than §4.2

n1 @ n2

n1 < n2 −→ true
[r-lt-true]

n1 6@ n2

n1 < n2 −→ false
[r-lt-false]

t1 −→ t ′1
t1 < t2 −→ t ′1 < t2

[r-lt1]

t2 −→ t ′2
v1 < t2 −→ v1 < t ′2

[r-lt2]

� Two “computational” rules, two congruence rules.
[Faculty of Science

Information and Computing Sciences]

12

Equals §4.2

n1 = n2

n1 ≡ n2 −→ true
[r-eq-true]

n1 6= n2

n1 ≡ n2 −→ false
[r-eq-false]

t1 −→ t ′1
t1 ≡ t2 −→ t ′1 ≡ t2

[r-eq1]

t2 −→ t ′2
v1 ≡ t2 −→ v1 ≡ t ′2

[r-eq2]

[Faculty of Science
Information and Computing Sciences]

13

Greater than §4.2

n1 A n2

n1 > n2 −→ true
[r-gt-true]

n1 6@ n2

n1 > n2 −→ false
[r-gt-false]

t1 −→ t ′1
t1 > t2 −→ t ′1 > t2

[r-gt1]

t2 −→ t ′2
v1 > t2 −→ v1 > t ′2

[r-gt2]

[Faculty of Science
Information and Computing Sciences]

14

Conditionals §4.2

if true then t2 else t3 fi −→ t2
[r-if-true]

if false then t2 else t3 fi −→ t3
[r-if-false]

t1 −→ t ′1
if t1 then t2 else t3 fi −→ if t ′1 then t2 else t3 fi

[r-if]

� Conditionals are nonstrict: one branch is always left un-
evaluated.

[Faculty of Science
Information and Computing Sciences]

15

Example §4.2

if 2 + 1< 3 then 5 ∗ 7 else 11 ∗ 13 fi
−→ if 3< 3 then 5 ∗ 7 else 11 ∗ 13 fi
−→ if false then 5 ∗ 7 else 11 ∗ 13 fi
−→ 11 ∗ 13
−→ 143

[Faculty of Science
Information and Computing Sciences]

16

Not all terms evaluate to a value §4.2

if 3< 3 then 5 else true+ 7 fi
−→ if false then 5 else true+ 7 fi
−→ true+ 7

None of the reduction rules applies to true+ 7.

Still, true+ 7 is not a value!

[Faculty of Science
Information and Computing Sciences]

17

Possible “solutions” §4.2

I Leave it as it is: some programs are literally
“meaningless”. Implementations will produce a run-time
error if an irreducible term that is not a value is
encountered.

I Extend the language of values such that terms like
true+ 7 are considered values and hence denote
possible meanings of programs.

I Extend the operational semantics so that terms like
true+ 7 can actually be reduced, for example by
performing coercions between natural numbers and
Boolean values.

I Do not consider (some classes of) irreducible terms as
programs.

[Faculty of Science
Information and Computing Sciences]

18

4.3 Type system

[Faculty of Science
Information and Computing Sciences]

19

Type systems §4.3

“A type system is a tractable syntactic method for proving
the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute.”

—Pierce (TAPL)

Type systems provide a means to statically (i.e., at
compile-time, without running the program) calculate an
approximation of the run-time behaviour of a program.

� Sometimes we speak of “dynamically typed languages”
to refer to languages in which run-time tags are used to
distinguish between different kinds of data.

[Faculty of Science
Information and Computing Sciences]

20

What are type systems good for? §4.3

I (Strong) type systems guarantee the absence of certain
sorts of run-time errors.

I Type systems allow programmers to think about their
programs on a more abstract level.

I Type systems provide machine-checkable
documentation for programs.

I Type systems protect the abstractions they provide.
I Type systems enable certain program optimisations:

compilers can take advantage of the fact that the
run-time form of values is known at compile-time.

[Faculty of Science
Information and Computing Sciences]

21

Small-step operational semantics, revisited §4.3

Recall: a small-step (or structured) operational semantics
formalises the notion of a single computational step (or
reduction) in the evaluation of a term:

t −→ t ′ reduction

The complete evaluation of a term can be formalised by
considering chains t1 −→∗ tn of reduction steps:

t1 −→ t2 −→ · · · −→ tn−1 −→ tn

�
The multi-step reduction relation −→∗ on terms is the reflexive, tran-
sitive closure of the single-step reduction relation −→: (1) for all t and
t ′, if t −→ t ′, then t −→∗ t ′ (a singleton chain); (2) for all t , t −→∗ t (the
empty chain); and (3) for all t , t ′, t ′′, if t −→∗ t ′ and t ′ −→∗ t ′′, then
t −→∗ t ′′ (chain concatenation).

[Faculty of Science
Information and Computing Sciences]

22

Normal forms and stuck terms §4.3

An irreducible term (i.e., a term t for which there is no t ′

such that t −→ t ′) is called a normal form.

If t −→∗ t ′ and t ′ is a normal form, then we say that t ′ is a
normal form of t .

A normal form that is not a value (i.e., a normal form t with
t /∈ Val) is called a stuck term.

� So, a normal form is either a stuck term or a value.

[Faculty of Science
Information and Computing Sciences]

23

Stuck terms: example §4.3

if 2 + 1< 3 then 5 else true+ 7 fi
−→ if 3< 3 then 5 else true+ 7 fi
−→ if false then 5 else true+ 7 fi
−→ true+ 7
6−→

We have

if 2 + 1< 3 then 5 else true+ 7 fi −→∗ true+ 7

where the normal form true+ 7 is stuck.

[Faculty of Science
Information and Computing Sciences]

24

Stuck terms and run-time errors §4.3

Intuitively, stuck terms result from evaluating erroneous
programs. (“You cannot add numbers to Booleans.”)

Stuck terms in an operational semantics then correspond to
the notion of a run-time error: in a concrete representation
such an error may be witnessed as, for example, an
exception or a segmentation fault.

[Faculty of Science
Information and Computing Sciences]

25

Types §4.3

Stuck terms corresponding to erroneous programs, we
would like to tell, without evaluating a term, that it will not get
stuck.

Approach: we distinguish between terms that result in
numbers and terms that result in Boolean values.

So, we introduce two types: Nat and Bool .

τ ∈ Ty types

τ ::= Nat | Bool

� Bool is a type both in our object language (simple arith-
metic and boolean expressions) and in our implementa-
tion language (Haskell).

[Faculty of Science
Information and Computing Sciences]

26

Typing §4.3

Next, we classify terms according to their type.

We define a natural deduction system to establish
judgements of the form

t : τ typing

meaning that a term t has type τ , that is, without actually
evaluating t , we can determine that it will evaluate to a value
of the appropriate form.

Values belonging to the type Nat of natural numbers are the
numerals n.

The values that belong to the type Bool are the constants
false and true.

[Faculty of Science
Information and Computing Sciences]

27

Typing: constants §4.3

Numerals n and the constants false and true are already
values: their types follow immediately.

n :Nat
[t-num]

false : Bool
[t-false]

true : Bool
[t-true]

[Faculty of Science
Information and Computing Sciences]

28

Typing: conditionals §4.3

Conditionals (terms of the form if t1 then t2 else t3 fi) are
not normal forms.

Evaluation can only proceed (cf. rule [r-if]) towards a normal
form if t1 evaluates (in zero or more steps) to false (rule
[r-if-false]) or true (rule [r-if-true]), i.e. a value of type Bool .

To determine that the conditional evaluates to a value of
some type τ , both branches t2 and t3 must evaluate to a
value of that same type τ .

t1 : Bool t2 : τ t3 : τ

if t1 then t2 else t3 fi : τ
[t-if]

�
The three uses of the single metavariable τ denote the constraint that
the type assigned to the conditional must be the same as that of both
the then- and the else-branch.

[Faculty of Science
Information and Computing Sciences]

29

Typing: arithmetic operators §4.3

If both operands of an addition or multiplication evaluate to a
natural number, then the arithmetic operation will evaluate to
a number.

t1 :Nat t2 :Nat

t1 + t2 :Nat
[t-add]

t1 :Nat t2 :Nat

t1 ∗ t2 :Nat
[t-mul]

[Faculty of Science
Information and Computing Sciences]

30

Typing: relational operators §4.3

If both operands of a relational operator evaluate to a natural
number, then the comparison will evaluate to a Boolean
value.

t1 :Nat t2 :Nat

t1 < t2 : Bool
[t-lt]

t1 :Nat t2 :Nat

t1 ≡ t2 : Bool
[t-eq]

t1 :Nat t2 :Nat

t1 > t2 : Bool
[t-gt]

[Faculty of Science
Information and Computing Sciences]

31

Typing: example §4.3

if 2 + 1< 3 then 5 ∗ 7 else 11 ∗ 13 fi :Nat

Inference tree:

2 :Nat 1 :Nat

2 + 1 :Nat 3 :Nat

2 + 1< 3 : Bool

5 :Nat 7 :Nat

5 ∗ 7 :Nat
11 :Nat 13 :Nat

11 ∗ 13 :Nat
if 2 + 1< 3 then 5 ∗ 7 else 11 ∗ 13 fi :Nat

[Faculty of Science
Information and Computing Sciences]

32

Well- and ill-typed terms §4.3

If there exist a type τ such that t : τ , then t is a well-typed
term.

Similarly, if there does not exist a type τ for which it can be
established that t : τ , then t is an ill-typed term.

[Faculty of Science
Information and Computing Sciences]

33

Ill-typed terms: example §4.3

There is no type τ such that

if 2 + 1< 3 then 5 else true+ 7 fi : τ

Hence, the term if 2 + 1< 3 then 5 else true+ 7 fi is
ill-typed.

� The ill-typedness of a term does not follow from a single
rule: it is the lacking of some extra, suitable rule that
makes that we cannot assign a type to the example term
above.

[Faculty of Science
Information and Computing Sciences]

34

Type safety §4.3

Well-typed terms share two important properties:

1. Progress: A well-typed term t is never stuck, i.e., either
t is a value or else there exists a term t ′ with t −→ t ′.

2. Preservation: If t is a well-typed term and t ′ is a term
with with t −→ t ′, then t ′ is also well-typed. (Often, but not
always, t and t ′ even have the same type.)

Together, progress and preservation establish type safety: a
normal form of a well-typed term is never stuck (Wright and
Felleisen, Inf. Comput. 115).

� Preservation is sometimes also referred to as subject re-
duction or subject evaluation.

[Faculty of Science
Information and Computing Sciences]

35

Static vs. dynamic semantics §4.3

A type system provides a static semantics for a
programming language: a way to assign a meaning to a
program without actually running it.

To contrast it with a static semantics, the formalisation of the
evaluation of a program (for example, by means of a set of
reduction rules) is called a dynamic semantics.

The meaning (i.e., the type) assigned to a program by a
static semantics is an abstraction of the dynamic semantics
(i.e., the value) of the program.

For example: the type Bool abstracts away from the
concrete values false and true.

[Faculty of Science
Information and Computing Sciences]

36

Soundness §4.3

We consider a type system correct if it makes accurate
predictions of the form of the values a term evaluates to:

A type system is sound with respect to the operational
semantics if for every well-typed term t , t : τ and t −→∗ v
imply that v : τ .

� Well-typedness of a term does not imply that it actually does
evaluate to a value. In a more involved language there may be
nonterminating terms that do not have any normal form at all.

� A type system is generally not complete w.r.t. the operational
semantics: t −→∗ v and v : τ do not imply that t : τ .

[Faculty of Science
Information and Computing Sciences]

37

Conservativeness §4.3

Being static, type systems typically need to be conservative:
even though some terms do evaluate to values, they are
considered ill-typed.

For example:

if false then 0 else true fi

evaluates to true but cannot be assigned a type.

� In the example above, it is of course possible to statically pre-
dict that the term will evaluate to a Boolean value. In general,
however, and for less trival languages, the guard of a condi-
tional can be an arbitrary and potentially nonterminating ex-
pression.

[Faculty of Science
Information and Computing Sciences]

38

Algorithms §4.3

An algorithm for assigning types to terms should fulfill two
fundamental requirements:

1. Soundness: If the algorithm assigns a type τ to a term
t , then we can in fact establish, by means of the typing
rules, that t : τ .

2. Completeness: The algorithm should assign a type to
every well-typed term.

As a result, a correct algorithm should fail assign a type to
an ill-typed term.

�
Soundness and completeness of a typing algorithm with respect to
a type system are sometimes also referred to as syntactic sound-
ness and syntactic completeness (as a means to distinguish syntactic
soundness from semantic soundness, i.e., soundness w.r.t. a dynamic
semantics).

[Faculty of Science
Information and Computing Sciences]

39

4.4 Implementation

[Faculty of Science
Information and Computing Sciences]

40

An interpreter with simple types §4.4

We now construct an interpreter for our simple language of
arithmetic and Boolean expressions.

To our interpreter, an input is a (valid) program, if it is both a
syntactically correct and well-typed term.

The components it consists of are:

I A parser.
I A type checker.
I An evaluator.
I A pretty printer.

[Faculty of Science
Information and Computing Sciences]

41

Syntax: numerals, terms, and values §4.4

type Num = Integer
data Tm = Num Num | False | True

| If Tm Tm Tm
| Add Tm Tm | Mul Tm Tm
| Lt Tm Tm | Eq Tm Tm | Gt Tm Tm

data Val = VNum Num | VFalse | VTrue

� We include underscore postfixes in the constructor names
False and True to distinguish them from the Bool -
constructors False and True.

Alternatively, we could represent them by a single constructor
Bool : Bool → Tm that delegates to the Prelude-type Bool .

[Faculty of Science
Information and Computing Sciences]

42

Syntax: numerals, terms, and values (cont’d) §4.4

instance Tree Tm where
fromTree = fromTreeTm

toTree = toTreeTm

[Faculty of Science
Information and Computing Sciences]

43

Syntax: numerals, terms, and values (cont’d) §4.4

fromTreeTm :: Tm → ATerm

fromTreeTm (Num n) = App "Num" [fromTree n]
fromTreeTm False = App "False" []
fromTreeTm True = App "True" []
fromTreeTm (If t1 t2 t3) = App "If" [fromTree t1, fromTree t2,

fromTree t3]
fromTreeTm (Add t1 t2) = App "Add" [fromTree t1, fromTree t2]
fromTreeTm (Mul t1 t2) = App "Mul" [fromTree t1, fromTree t2]
fromTreeTm (Lt t1 t2) = App "Lt" [fromTree t1, fromTree t2]
fromTreeTm (Eq t1 t2) = App "Eq" [fromTree t1, fromTree t2]
fromTreeTm (Gt t1 t2) = App "Gt" [fromTree t1, fromTree t2]

[Faculty of Science
Information and Computing Sciences]

44

Syntax: numerals, terms, and values (cont’d) §4.4

toTreeTm ::ATerm → Feedback Tm

toTreeTm = parseTree
[app "Num" (Num <$> arg)
, app "False" (pure False)
, app "True" (pure True)
, app "If" (If <$> arg <*> arg <*> arg)
, app "Add" (Add <$> arg <*> arg)
, app "Mul" (Mul <$> arg <*> arg)
, app "Lt" (Lt <$> arg <*> arg)
, app "Eq" (Eq <$> arg <*> arg)
, app "Gt" (Gt <$> arg <*> arg)
]

[Faculty of Science
Information and Computing Sciences]

45

Syntax: numerals, terms, and values (cont’d) §4.4

instance Tree Val where
fromTree (VNum n) = App "VNum" [fromTree n]
fromTree VFalse = App "VFalse" []
fromTree VTrue = App "VTrue" []

toTree = parseTree [app "VNum" (VNum <$> arg)
, app "VFalse" (pure VFalse)
, app "VTrue" (pure VTrue)
]

[Faculty of Science
Information and Computing Sciences]

46

Syntax: types §4.4

data Ty = Nat | Bool deriving Eq

instance Tree Ty where
fromTree Nat = App "Nat" []
fromTree Bool = App "Bool" []

toTree = parseTree [app "Nat" (pure Nat)
, app "Bool" (pure Bool)
]

� We make Ty an instance of Eq , so we can test two types
for syntactic equality.

[Faculty of Science
Information and Computing Sciences]

47

Evaluation §4.4

We implement the operational semantics by means of a
partial function from terms to values:

eval : Tm → Val

[Faculty of Science
Information and Computing Sciences]

48

Evaluation: constants §4.4

eval (Num n) = VNum n
eval False = VFalse
eval True = VTrue

[Faculty of Science
Information and Computing Sciences]

49

Evaluation: conditionals §4.4

eval (If t1 t2 t3) = case eval t1 of
VTrue → eval t2
VFalse → eval t3

� The evaluation function fails if first subterms of a condi-
tional does not not evaluate to a VTrue or VFalse.

[Faculty of Science
Information and Computing Sciences]

50

Evaluation: arithmetic operators §4.4

eval (Add t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in VNum (n1 + n2)

eval (Mul t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in VNum (n1 ∗ n2)

� The evaluation function fails if one of the subterms of an
arithmetic operator does not evaluate to a VNum-value.

[Faculty of Science
Information and Computing Sciences]

51

Evaluation: relational operators §4.4

eval (Lt t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in if n1 < n2 then VTrue else VFalse

eval (Eq t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in if n1 ≡ n2 then VTrue else VFalse

eval (Gt t1 t2) = let VNum n1 = eval t1
VNum n2 = eval t2

in if n1 > n2 then VTrue else VFalse

� The evaluation function fails if one of the subterms of a
comparison does not evaluate to a VNum-value.

[Faculty of Science
Information and Computing Sciences]

52

Evaluation: assessment §4.4

If the evaluation function encounters a stuck term, it fails
with a run-time error and hence, the interpreter
crashes—which may be a bit harsh on the user.

We could of course have the evaluation function run inside
the Feedback -monad, but while this perhaps suits an
interpreter, an arguably better option for a compiler may be
to employ a static semantics and produce from within an
implementation of a type system helpful type-error
messages for ill-typed programs.

Even for interpreters, this approach establishes, to some
extent, a separation of concerns in the implementation.

[Faculty of Science
Information and Computing Sciences]

53

Typing §4.4

We implement the static semantics by means of a typing
function that runs inside the Feedback -monad and that tries
to assign types to terms:

typeOf :: Tm → Feedback Ty

[Faculty of Science
Information and Computing Sciences]

54

Typing: constants §4.4

typeOf (Num n) = return Nat
typeOf False = return Bool
typeOf True = return Bool

[Faculty of Science
Information and Computing Sciences]

55

Typing: conditionals §4.4

typeOf (If t1 t2 t3) =
do τ1 ← typeOf t1

case τ1 of
Bool → do τ2 ← typeOf t2

τ3 ← typeOf t3
if τ2 ≡ τ3

then return τ2
else fail $ "arms of conditional "++

"have different types"

→ fail "guard of conditional is not a Boolean"

� The actual error messages may provide more detail.

[Faculty of Science
Information and Computing Sciences]

56

Typing: arithmetic operators §4.4

typeOf (Add t1 t2) =
do τ1 ← typeOf t1

τ2 ← typeOf t2
case (τ1, τ2) of
(Nat ,Nat)→ return Nat
→ fail $ "operands of addition are "++

"not both numbers"

typeOf (Mul t1 t2) =
do τ1 ← typeOf t1

τ2 ← typeOf t2
case (τ1, τ2) of
(Nat ,Nat)→ return Nat
→ fail $ "operands of multiplication are "++

"not both numbers"

[Faculty of Science
Information and Computing Sciences]

57

Typing: relational operators §4.4

typeOf (Lt t1 t2) =
do τ1 ← typeOf t1

τ2 ← typeOf t2
case (τ1, τ2) of
(Nat ,Nat)→ return Bool
→ fail "operands of comparison are not both numbers"

typeOf (Eq t1 t2) =
do τ1 ← typeOf t1

τ2 ← typeOf t2
case (τ1, τ2) of

(Nat ,Nat)→ return Bool
→ fail "operands of comparison are not both numbers"

typeOf (Gt t1 t2) =
do τ1 ← typeOf t1

τ2 ← typeOf t2
case (τ1, τ2) of

(Nat ,Nat)→ return Bool
→ fail "operands of comparison are not both numbers"

