[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Attribute Grammar (UUAG) Tutorial
ICFP 2012

Atze Dijkstra, Doaitse Swierstra, Arie Middelkoop, Jeroen
Fokker

Department of Information and Computing Sciences
Utrecht University

Sep 15, 2012

1. Attribute Grammars

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

TJutorial content

» Historical remarks
» Brief intuitive intro

» UU Attribute Grammar (UUAG) system concepts
» Case study: Html generation from minimal LaTeX like
language
» AG language features in use

» Using generated code in Haskell: parsing, calling the
semantics

» Where we use it, summary

» Case study, declaration and use of identifiers in
programming language

» Demonstrate more implementation machinery, lazy
scheduling & strict ordered evaluation

:SWW/) [Faculty of Science
K

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

1-2 £\

1.1 Historical remarks

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

y should | learn this?
One of my students once asked:

Why should | learn all this?

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

y should | learn this?
One of my students once asked:

Why should | learn all this? It is more than ten years
old!

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Why should | learn this?

One of my students once asked:

Why should | learn all this? It is more than ten years
old!

Well, let us take a look at some other development:

> in the beginning there were context free grammars
» and so we did a lot of research on parsing

» and discovered that LALR(1) was the way to go

» and since we all knew this, we stopped teaching it

» and then someone, not even knowing the concept of
grammars or parsing, thought is was a great idea to encode
all information in a language you did not have to parse:
XML!

Wy ” to great happiness of all processor, disk and netYy 1K o Science

AW
%U§ Umvfﬁéernﬂltlfgelttu rers Information and Computing Sciences]
14

torical Overview

» Context-free grammars have limited expressiveness. Things
we cannot express are:

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o F = E E 9DQAC¢

storical Overview

» Context-free grammars have limited expressiveness. Things
we cannot express are:

scope rules

typing systems

pretty printing

code generation

incremental language editors (Synthesizer Generator,

Reps/ Teitelbaum)

vV vy vy VvYYy

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Historical Overview

» Context-free grammars have limited expressiveness. Things
we cannot express are:

scope rules

typing systems

pretty printing

code generation

incremental language editors (Synthesizer Generator,

Reps/Teitelbaum)

> ..

vV vy VY VY

» and so one started to look for extensions

» context-sensitive grammars are not very useful, so the idea
came up to:

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-5

rameterise Non-Terminal Symbols

Combine context-sensitive grammars

> with strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ameterise Non-Terminal Symbols

Combine context-sensitive grammars

> with strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)
» with trees; affix grammars

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Parameterise Non-Terminal Symbols

Combine context-sensitive grammars

> with strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

» with trees; affix grammars

» with values from some other domain: attribute grammars
(Knuth)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-6

at has been achieved?

> a lot of research on the efficient evaluation, both in space
and time, and

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at has been achieved?

> a lot of research on the efficient evaluation, both in space
and time, and

» so we could write compilers with it that were almost as
efficiént as hand written compilers

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

What has been achieved?

» a lot of research on the efficient evaluation, both in space
and time, and

» so we could write compilers with it that were almost as
efficient as hand written compilers

» and so attribute grammars were not used by compiler
writers

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-7

What has been achieved?

v

a lot of research on the efficient evaluation, both in space
and time, and

» so we could write compilers with it that were almost as
efficient as hand written compilers

» and so attribute grammars were not used by compiler
writers

» and other people thought it was something for compiler

writers only
_’\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
1-7 K7

What has been achieved?

v

a lot of research on the efficient evaluation, both in space
and time, and

» so we could write compilers with it that were almost as
efficient as hand written compilers

» and so attribute grammars were not used by compiler
writers

» and other people thought it was something for compiler
writers only

» and had to do something very complicated with grammars

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
1-7 NS

What has been achieved?

v

a lot of research on the efficient evaluation, both in space
and time, and

» so we could write compilers with it that were almost as
efficient as hand written compilers

» and so attribute grammars were not used by compiler
writers

» and other people thought it was something for compiler
writers only

» and had to do something very complicated with grammars

» and so they are still largely ignored

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
1-7 NS

1.2 Current View on Attribute Grammars

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

We currently see attribute grammars as:

v

a way to do lazy functional programming in an imperative
setting

> an aspect oriented programming language

» a domain-specific language for writing catamorphisms
(folds)

> a preferable alternative for many uses of
monad-transformers

» an alternative way of building computations

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-9

ere do attribute grammar systems differ?

semantic functions

» self-supporting, with a special language for describing the

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ere do attribute grammar systems differ?

semantic functions

» self-supporting, with a special language for describing the

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Where do attribute grammar systems differ?

» self-supporting, with a special language for describing the
semantic functions

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

> special syntax and conventions for describing common
attribution patterns

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

» self-supporting, with a special language for describing the
semantic functions

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

> special syntax and conventions for describing common
attribution patterns

» restrictions on the allowed dependencies between
attributes, such as:

@W&) [Faculty of Science
= U = Universiteit Utrecht Information and Computing Sciences]

1-10 N

Where do attribute grammar systems differ?

» self-supporting, with a special language for describing the
semantic functions

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

> special syntax and conventions for describing common
attribution patterns

» restrictions on the allowed dependencies between
attributes, such as:

> can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

» self-supporting, with a special language for describing the
semantic functions

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

> special syntax and conventions for describing common
attribution patterns

» restrictions on the allowed dependencies between
attributes, such as:

> can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

» can be evaluated in n (alternating) passes

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

» self-supporting, with a special language for describing the
semantic functions

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

> special syntax and conventions for describing common
attribution patterns

» restrictions on the allowed dependencies between
attributes, such as:

> can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

» can be evaluated in n (alternating) passes

» for each non-terminal a fixed order in which attributes can
be evaluated can be found (ordered attribute grammars)

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

» self-supporting, with a special language for describing the
semantic functions

> or by leaning on some well-known host language
(Pascal/C/Haskell /ML/Java)

> special syntax and conventions for describing common
attribution patterns

» restrictions on the allowed dependencies between
attributes, such as:

> can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

» can be evaluated in n (alternating) passes

» for each non-terminal a fixed order in which attributes can
be evaluated can be found (ordered attribute grammars)

W > lazily evaluated, no restrictions except productiridigy of Science

i Universiteit Utrecht Information and Computing Sciences]

1-10 %M-“\

1.3 Intuitive intro

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

a FExp

Con Int
Add Exp Exp
Mul Ezp Exp

Universiteit Utrecht

e-oriented programming

[m]

[Faculty of Science
Information and Computing Sciences]

5 = =

DEE

e-oriented programming

a Exp calc :: Exp— Int

Con Int
Add Exp Exp
Mul Ezp Exp

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

e-oriented programming

a Exp fold calc:: Exp—Int
Con Int (Int —b)
Add Ezxp Exp || —(b—b—b)
Mul Exzp Exp || —(b—b—b)
—FExp —b
[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e-oriented programming

a Exp fold calc:: Exp—Int
& | calc = fold id (4) (*)

Con Int (Int —b)
Add Ezxp Exp || —(b—b—b)
Mul Exzp Exp || —(b—b—b)
—FExp —b

[Faculty of Science

& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e-oriented programming

a FExp fold

Con Int (Int —b)
Add Ezxp Exp || —(b—b—b)
Mul Exzp Exp || —(b—b—b)

—FExp —b

Universiteit Utrecht

calc:: Exp—Int

calc = fold

An —n)
(Ax y—x +y)
(Axy—xxy)

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Exp type Sem b

Con Int ((Int —b)
Add Exp Ezp , (b—=b—b)
Mul Exp Exp (b—b—)

)

fold :: Sem b—
Ezp—b

Universiteit Utrecht

e-oriented programming

calc:: Exp—Int

calc = fold

(An —n)
(Ax y—x +y)
(Axy—x*y)

[Faculty of Science
Information and Computing Sciences]

DEE

(] [= =

ee-oriented programming

a Exp type Sem b calcsem :: Sem Int
= calcsem =
Con Int ((Int —b) (An —n
Add Ezp Exp , (b—=b—b) ,AXYy—X 4y
Mul Exp Exp , (b—b—b) JAX y—X %y
))

fold :: Sem b— calc :: Ezp—Int
Ezp—b calc = fold calcsem

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

ee-oriented programming

type Sem b

T(Int —b)
, (b—=b—b)
, (b—b—b)
)

fold :: Sem b—

Ezp—b

Universiteit Utrecht

calcsem :: Sem Int

calcsem =
(An —n
,AXY—X 4y
,AX Y= X %y

)

calc :: Exp—Int

calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

ee-oriented programming

type Sem b
((Int —b)
, (b—b —b)
, (b—b —b)
, (Name—b)
)
fold :: Sem b—
Ezp—b

Universiteit Utrecht

calcsem :: Sem Int

calcsem =
(An —n
,AXY—X 4y
,AX Y= X %y

)

calc :: Exp—Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

ree-oriented programming

type Sem b
((Int —b)
, (b—b —b)
, (b—b —b)
, (Name—b)
)
fold :: Sem b—
Ezp—b

Universiteit Utrecht

calcsem :: Sem Int

calcsem =

(An —n
,AXY—X 4y

,AX Y= X %y

,As —lookup s e

)

calc :: Exp—Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

ree-oriented programming

type Sem b
((Int —b)
, (b—b —b)
, (b—b —b)
, (Name—b)
)
fold :: Sem b—
Ezp—b

Universiteit Utrecht

calcsem :: Sem Int

calcsem =

(An —n

,AXY—X 4y

,AX Y= X %y

,As —Ae—lookup s e

)

calc :: Exp—Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

ree-oriented programming

type Sem b
((Int —b)
, (b—b —b)
, (b—b —b)
, (Name—b)
)
fold :: Sem b—
Ezp—b

Universiteit Utrecht

calcsem :: Sem (Env— Int)

calcsem =

(An —n

,AXY—X 4y

,AX Y= X %y

,As —Ae—lookup s e

)

calc :: Exp—Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

—
—

‘ Universiteit Utrecht

|

ree-oriented programming

type Sem b
((Int —b)
, (b—b —b)
, (b—b —b)
, (Name—b)
)
fold :: Sem b—
Ezp—b

calcsem :: Sem (Env— Int)

calcsem =

(An —Ae—n
,AXy—>Ae—Xxe+ye
,AXy—Ae—xexye
,As —Ae—lookup s e

)

calc :: Fxp—Int

calc = fold calcsem testenv

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

a Fxp

Con Int

Add Exp Exp
Mul Exp Exp
Var Name

e

‘ Universiteit Utrecht

ree-oriented programming

type Sem b
((Int —b)
, (b—b —b)
, (b—b —b)
, (Name—b)
)
fold :: Sem b—
Ezp—b

calcsem :: Sem (Env— Int)

calcsem =
(An —Ae—n
,AXy—>Ae—Xxe+ye

|, Axy—Ae—xexye |
,As —Ae—lookup s e

)

calc :: Exp—Int
calc = fold calcsem testenv

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

Tree-oriented programming

data Fxp type Sem b calcsem :: Sem (Env— Int)
i - Inherited Svnthesized
Con Int ((Int —b) || attribute —n >Ynthesize
| Add Ezp Exp , (b—b —b) ,AX y—Ae—x e ,ajttf'bUte
| Mul Ezp Exp , (b—b —b) ’,7\xy—>7\e—>xe*ye ‘
| Var Name , (Name—b) ,As —Ae—lookup s e
))
Fields fold :: Sem b— calc :: Exzp—Int
Exp—b calc = fold calcsem testenv

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-12

Tree-oriented programming

data Fxp type Sem b calcsem :: Sem (Env— Int)
i - Inherited Svnthesized
Con Int ((Int —b) || attribute —n >Ynthesize
| Add Ezp Exp , (b—b —b) ,AX y—Ae—x e ,ajttf'bUte
| Mul Ezp Exp , (b—b —b) ’,7\xy—>7\e—>xe*ye ‘
| Var Name , (Name—b) ,As —Ae—lookup s e
))
Fields fold :: Sem b— calc :: Exzp—Int
Exp—b calc = fold calcsem testenv

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-12

a Fxp

Con con : Int

Add lef : Exp rit: Exp
| Mul lef : Exp rit: Exp
| Var name: Name

Universiteit Utrecht

ree-oriented programming

calcsem :: Sem (Env— Int)

In.herited "
attribute — 7 Synthesized
attribute

,AXy—Ae—x e |
|, Axy—Ae—xexye |
,As —Ae—lookup s e

)

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

Tree-oriented programming

data Fzxp

Con con : Int
| Add lef : Exp rit: Ezp
| Mul lef : Exp rit: Exp
| Var name: Name

Named
fields

&

= b = Universiteit Utrecht

N

1-12

Named
attributes

calcsem :: Sem (Env— Int)

In.herited "
attribute — 1 Synthesized
attribute

,(AX y—Ae—xe | S
’ ,AXy—Ae—xexye ‘
,As —Ae—lookup s e

)

attr Fxp inh env : Env

syn val : Int

[Faculty of Science
Information and Computing Sciences]

Tree-oriented programming

data Lzp

Con con : Int
| Add lef : Exp rit: Exp
| Mul lef : Exp rit: Ezp
| Var name: Name

Named
fields
sem Exp
N/
§ U% Universiteit Utrecht

N

1-12

Named
attributes)

calcsem :: Sem (Env— Int)

In.herited ”
attribute —n Synthesized
attribute

,AXy—Ae—xe | S
‘ ,AX y—Ae—x exy e
,As —Ad-/Alookup s e

attr Fxp inh env : Env

syn val : Int

Qlef.val * Qrit.val

Mul Ths.val =
lef.env = Qlhs.env
rit.env = Qlhs.env

[Faculty of Science
Information and Computing Sciences]

1.4 Compiler construction with Attribute
Grammars

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Attribute Grammar consists of:

» An underlying context free grammar, describing the
structure of an Abstract Syntax Tree (AST)

» (Non)terminals + productions
> In Haskell: data types + constructors

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

An Attribute Grammar consists of:

» An underlying context free grammar, describing the
structure of an Abstract Syntax Tree (AST)
» (Non)terminals + productions
> In Haskell: data types + constructors

> A description of which nonterminals have which attributes:

> Inherited attributes, to pass info downwards
» Synthesized attributes, to pass info upwards

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-14

An Attribute Grammar consists of:

v

An underlying context free grammar, describing the
structure of an Abstract Syntax Tree (AST)

» (Non)terminals + productions

> In Haskell: data types + constructors

v

A description of which nonterminals have which attributes:

> Inherited attributes, to pass info downwards
» Synthesized attributes, to pass info upwards

v

For each production a description how to compute the:
> Inherited attributes of the nonterminals in the right hand
side
» The synthesized attributes of the nonterminal at the /eft
hand side

|J per production dataflow == global AST dataflow

v

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-14 NS

Case study: from LaTeX-like document to Html

\section{Intro}
\section{Section 1}
\paragraph
paragraph 1
\end
\paragraph
paragraph 2
\end \end
\section{Section 2}
\paragraph
paragraph 1
\end
\paragraph
paragraph 2
\end
\end \end
§ %[::’% Universiteit Utrecht

]

1-15

<h1>Intro</h1>
<h2>Section 1</h2>
<p>
Paragraph 1
</p>
<p>
Paragraph 2
</p>
<h2>Section 2</h2>
<p>
Paragraph 1
</p>
<p>
Paragraph 2
</p>

[Faculty of Science
Information and Computing Sciences]

Final output

Table Of Contents

1 Introduction

2 Design

3 Implementation

4 Results
4.1 Hardware and Software Configuration
4.2 Experimental Results

5 Related Work

6 Conclusion

1 Introduction

right

The implications of cacheable configurations have been far-reaching and pervasive. Such a claim is mostly an
unfortunate mission but has ample historical precedence. The basic tenet of this approach is the
understanding of digital-to-analog converters. The notion that researchers interact with stable
configurations is entirely significant. Thusly, the evaluation of the transistor and the improvement of digital-
to-analog converters are usually at odds with the emulation of e-business.

Cyberneticists often enable symbiotic archetypes in the place of peer-to-peer symmetries. Furthermore, the
disadvantage of this type of solution, however, is that superpages can be made adaptive, pervasive, and
metamorphic. It should be noted that LitigableFilly may be able to be developed to deploy empathic
communication. OQur objective here is to set the record straight. Therefore, our method improves the analysis
of 10 automata that would allow for further study into extreme programming, without centrolling
hierarchical databases.

LitigableFilly, our new approach for superpages, is the solution to all of these problems. To put this in
perspective, consider the fact that much-touted cryptoaraphers generally use context-free grammar to

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]

1-16 K&/

crete and Abstract syntax

From Concrete syntax:

Docs ::= Doc *
Doc ::= "\section" "{" Text "}" Docs "\end"
| "\paragraph" Text "\end"

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Concrete and Abstract syntax

From Concrete syntax:

Docs ::= Doc *
Doc ::= "\section" "{" Text "}" Docs "\end"
| "\paragraph" Text "\end"

Via parsing to Abstract syntax in UUAGC notation:

data Doc | Section title: String body : Docs
| Paragraph text : String

data Docs | Cons hd : Doc tl :Docs
| Nil

» Docs and Doc are nonterminals
» Section and Paragraph label different productions

Wi, > title, body and string are names for children (Facutty of science

< Universiteit Utrecht Information and Computing Sciences]

crete and Abstract syntax

Additional toplevel wrapping:

data Root | Root body :: Docs

Allows toplevel initialization

[Faculty of Science
Information and Computing Sciences]

(=] [l = =

& Universiteit Utrecht

DEE

thesized attributes

» Synthesized attribute html: synthesis of generated html

attr Doc Docs syn html :: String

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

: thesized attributes

» Synthesized attribute html: synthesis of generated html
attr Doc Docs syn html :: String

» Doc has attribute hitml, we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Synthesized attributes

» Synthesized attribute htmi: synthesis of generated html
attr Doc Docs syn html :: String

» Doc has attribute html, we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

> Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
1-19 N

Synthesized attributes

» Synthesized attribute htmi: synthesis of generated html
attr Doc Docs syn html :: String

» Doc has attribute html, we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

> Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

» We can refer to:

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-19 NS

Synthesized attributes

» Synthesized attribute htmi: synthesis of generated html
attr Doc Docs syn html :: String

» Doc has attribute html, we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

> Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

» We can refer to:

> the synthesized attributes provided by the children

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-19 NS

Synthesized attributes

» Synthesized attribute htmi: synthesis of generated html
attr Doc Docs syn html :: String

» Doc has attribute html, we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

> Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

» We can refer to:

> the synthesized attributes provided by the children
» values of child-terminals, i.e. fields

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-19 NS

Synthesized attributes

» Synthesized attribute htmi: synthesis of generated html
attr Doc Docs syn html :: String

» Doc has attribute html, we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

> Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:
» We can refer to:
> the synthesized attributes provided by the children
» values of child-terminals, i.e. fields
» We must define the synthesized attributes of the left hand
A side non-terminal lhs for all productions [Faculty of Science

N) é Universiteit Utrecht Information and Computing Sciences]

1-19 %{ﬂ»\

tribute definition for html

attr Doc syn html :: String
sem Doc
| Section 1hs.html = "" + Qtitle + "\n"
+H @body.html

lhs html

Section:Doc

title body html

Note: the pictures are described and computed via a language
'mp|emented Wlth UUAGI [Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

ribute definition for html

attr Docs syn html :: String
sem Docs
| Cons

lhs.html = @hd.html H Qtl.html

lhs html

o—H

Cons:Docs

hd

html

tl html

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

mary: html

data Doc | Section title: String body : Docs
| Paragraph text : String

data Docs | Cons hd : Doc tl :Docs
| Nil

attr Doc Docs syn html :: String

sem Doc
| Section lhs.html = "" H- Qtitle 4 "\n"
+ @body.html
| Paragraph 1hs.hitml = "<p>" 4 Qtext H "</p>"

sem Docs
| Cons lhs.html = @hd.html + Qtl.html
| Nil 1hs.html = ""
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Monad view

» Note that the html attribute can be seen as being
computed by a Writer monad.

» each node in the tree may contribute to the result

» results of children are combined

We will see that many monadic patterns come back as an
attribute grammar pattern.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-23 NS

Inherited attributes: correct level of html header
tags

Casus problem: correct level of html header tags

> [Inherited attribute level, holding the nesting level of the
headings:

attr Doc Docs inh level : Int

» We can refer to the inherited attributes defined on the
left-hand side

» We must define the inherited attributes of the children

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-24

ribute definition: level

sem Doc
| Section body.level = Qlhs.level + 1
lhs .html = mk_tag ("h" + show @lhs.level)
" @Qtitle
+ @body.html

level lhs html

o—1u

Section:Doc

._

title level bOdy html

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

xiliary Haskell code

Additional Haskell code goes inside curly braces:

{
mk_tag tag attrs elem
= "<" H tag H attrs H ">" H elem
_H_ll</ll_H_tag _H_n>ll

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ribute definition: level

sem Docs
| Cons hd.level = Qlhs.level
tl .level = Qlhs.level

level hd html level tl html

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ribute definition: level

sem Docs
| Cons hd.level = Qlhs.level
tl .level = Qlhs.level

level hd html level tl html

Do we really have to define these (boring) definitions ourselves?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Copy rules

1-28

Default rules in case no explicit rules are given, for attributes
with same name

» UUAG automatically provides default definitions

» Inherited attributes are passed on unmodified, we need not
define this:

sem Docs

| Cons hd.level = Qlhs.level
tl .level = @lhs.level

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

Copy rules

Default rules in case no explicit rules are given, for attributes
with same name

» UUAG automatically provides default definitions

» Inherited attributes are passed on unmodified, we need not
define this:

sem Docs

| Cons hd.level = Qlhs.level
tl .level = @lhs.level

» Copy rules for synthesized attributes need to deal with
multiple occurrences in children

» Take the attribute value of the rightmost child which has
an attribute with that name, or
, » Combine attribute values of children, or else
\‘Wf/} [Faculty of Science

;5\ V= Universitiic Uk value of inherited attribute withnthesamemname sciences]
1-28 NS

py rules: the USE rule

occurrences

Fold-like behavior for combining multiple child attribute

» Idea: specify combination behavior

| @lhs.a = foldr op unit [@k_1.a, @k 2.a,..,Qk._n.a]
> by

| attr...syn o use {op} {unit}:...

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Copy rules: the USE rule

» Instead of:

sem Docs
| Cons 1hs.html = @hd.html H Qtl.html
| Nil lhs.html=""

> we specify a use copy rule

| attr Docs syn himl use {1} {""}: String

But: is not really a fold over a list, just textual positioning of
operator between child attribute references

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-30

Monad view

» Note that the level attribute can be seen as being
computed by a Reader monad.
> the attribute is passed downwards automatically

» maybe updated for use a subtree

The link between the previously defined Writer structure and
the now introduced Reader structure is by name;

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

1-31 H

Monad view

» Note that the level attribute can be seen as being
computed by a Reader monad.

> the attribute is passed downwards automatically

» maybe updated for use a subtree

The link between the previously defined Writer structure and
the now introduced Reader structure is by name; the difference
corresponds roughly to that between using a lookup table and
an indexed list for locating a needed value.

5&\\“% [Faculty of Science
= % Universiteit Utrecht Information and Computing Sciences]
K

1-31 ?f'ﬂ»

Threaded (chained) attributes

Casus problem:
section counting = section nesting + sections at same level

» Two inherited attributes:

» The context, header text of outer sections
» A counter, for keeping track of the number of current
sibling position.

attr Doc Docs inh context : String, count : Int
syn count : Int

» Doc may or may not increment count, hence need to pass
it on to next Doc

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-32

eaded (chained) attributes

count attribute

» State like behaviour

» Threaded attribute (or chained): inherited + synthesized
> Alternatively made explicit by syntactic sugar

attr Doc Docs chn count : Int

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ribute definition: count

count Ievel lhs html count
/ S ‘\
count Ievel html count Ievel html

count level html count

I—I—C—I—I

Section:Doc

-

title count level body html| count
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Monad view

» Note that the count attribute can be seen as being
maintained by a State monad.

> the value may be used or updated

> and otherwise silently carried on unmodified

We see that many monadic patterns come back as an attribute
grammar pattern.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-35 NS

Attribute definition: count, context

sem Doc | Section
body.count =1

lhs .count = Qlhs.count + 1
loc .prefix = Qlhs.context
+- (if null Qlhs.context then "" else ". ")

+- show @lhs. count
body.context = Qloc.prefix
loc .html = mk_tag ("h" H show @lhs.level) ""
(Qloc.prefix H " " 4 Qtitle)
+H @Qbody.html

» loc attribute: local to production, for sharing

Eﬁ“@ L) [Facul.ty of S'cience
%ﬂ!“% Universiteit Utrecht Information and Computing Sciences]
1-36 KL

Attribute definition: count, context

sem Doc | Section

body.count =1

lhs .count = Qlhs.count + 1

loc .prefix = Qlhs.context
+- (if null Qlhs.context then "" else ". ")
+- show @lhs. count

body.context = Qloc.prefix

loc .html = mk_tag ("h" H show @lhs.level) ""

(Qloc.prefix H " " 4 Qtitle)

+H @Qbody.html

» loc attribute: local to production, for sharing
» Where is the definition for lhs.html?

Eﬁ“@ L) [Facul.ty of S'cience
%ﬁ“% Universiteit Utrecht Information and Computing Sciences]
1-36)

Copy rules for synthesized attributes, revisited

Copy rules, more precisely:
if a rule for an attribute k. is missing, in this order:

» Use @Qloc.a (if available)

» Use @Qc.qa for the rightmost child ¢ to the left of £, which
has a synthesized attribute named « (if available)

» Use @lhs.a (if available)

» Complain

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-37

Copy rules for synthesized attributes, revisited

Copy rules, more precisely:
if a rule for an attribute k.a is missing, in this order:

» Use @loc.a (if available)

» Use @Qc.qa for the rightmost child ¢ to the left of £, which
has a synthesized attribute named « (if available)

» Use @lhs.a (if available)

» Complain

Copy rules take care of left-to-right threading!

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-37

AG Extensibility: table of contents (TOC)

To an existing AG we may add

» Extra attributes (already seen)

» Extra productions

Casus problem: table of contents (TOC), to be placed as
specified by input text

> Gather the TOC lines: synthesized toclines
» Distribute the TOC to where it is used: inherited toc

data Doc
| Toc
attr Doc Docs inh toc : String
syn toclines use {+H} {""} : String
& ﬁ)ﬁ) [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
1-38

ribute definition: toclines, toc

toc count level html count toclines

I—I—I—Q—I—I—I

Cons:Docs

toc count |evel hd html count toclines toc count level tl html count tocline

toc count level lhs html count toclines

Section:Doc

-l

title toc count Jevel body html count toclines
[Faculty of Science
¢ Universiteit Utrecht Information and Computing Sciences]

Attribute definition: toclines, toc

sem Doc
| Section
lhs.toclines
= (mktag"1i" ""$
mk_tag ("a")
(" href=#" H Qloc.prefix)
(Qloc.prefix # " "
H @title))
+H mk_tag "ul" ""@body.toclines
lhs.html = mk_tag "a" (" name=" - Qloc.prefix) ""
+- @Qloc.html
| Toc lhs.html = Qlhs.toc

sem Root
| Root doc.toc = @Qdoc.toclines
N/ [Faculty of Science
§U% Universiteit Utrecht Information and Computing Sciences]
140 NN

Monad view

> Note that the toclines attribute can be seen as being
computed by something like an mdo.

» Part of the computed result is passed back into the
computation
» This works because we have lazy evaluation

» But in the case of monads we have to make this feedback
explicit.

We see that many monadic patterns come back as an attribute
grammar pattern.

:SWW/) [Faculty of Science
K

= o S q . .
§ Universiteit Utrecht Information and Computing Sciences]

1-41 £\

ribute initialisation

Setting up initial values at the Root of the AST

sem Root
| Root doc.toc = @doc.toclines
devel =1
.context = ""
.count =1
[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

| idiom

Typical, idiomatic AG programming

» Gather: collect, bottom up

» Children gather independently, combine in production,
possibly with use, e.g. html
» Children accumulate, threading, e.g. count

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

AG idiom

Typical, idiomatic AG programming

» Gather: collect, bottom up
» Children gather independently, combine in production,
possibly with use, e.g. html
» Children accumulate, threading, e.g. count
» Distribute: make info available, top down

» Globally constant info, e.g. toc
» Info dependent on AST depth/structure, e.g. level

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-43 NS

AG idiom

Typical, idiomatic AG programming

» Gather: collect, bottom up

» Children gather independently, combine in production,
possibly with use, e.g. html
» Children accumulate, threading, e.g. count

» Distribute: make info available, top down

» Globally constant info, e.g. toc
» Info dependent on AST depth/structure, e.g. level

» Multipass: multiple gather + distribute, e.g.

» first pass: context (distribute) + toclines (gather)
» second pass: toc (distribute)

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-43 NS

Backward flow of data

Casus problem: navigation links

» We want to be able to jump to the section to the left and
the right of the current section
» Two attributes for passing this information around

> left: ‘at the left side’ info
> right: ‘at the right side’ info

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-44

ribute definition: left

left lhs left left lhs left

—e—1u B—e 1u

Section:Doc

Cons:Docs

o= - —e—

left hd left left t] left title left body left

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ribute definition: right

right

lhs right
H—e 1B

Cons:Docs

right lhs right
Section:Doc
right hd right right ¢ right title right body
sem Docs | Cons
hd .right
tl

right

sem Doc | Section
@tl.right lhs .right = Qtitle
.right = Qlhs.right body.right = ""
lhs.right = @Qhd.right

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Monad view?

» Note that the 7ight attribute can be seen as being
computed by an reversed State computation

» This is not how most people see a State monad

» Formulation is counter-intuitive

We see that attribute grammar patterns go beyond what we
normally do with monads.

5&\\“’%}) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
1-47 NS

1.5 Glueing to Haskell

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

piling AG

Generate Haskell datatype for AST

% uuagc -dr --haskellsyntax HtmlHS.ag
% cat HtmlHS.hs

data Doc = Doc_Paragraph (String)
| Doc_Section (String) (Docs)
| Doc_Toc

data Docs = Docs_Cons (Doc) (Docs)
| Docs_Nil

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

piling AG

definitions

% cat HtmlHS.hs

Generate Haskell semantic functions + signatures for attribute
% uuagc -fs --haskellsyntax HtmlHS.ag

type T_Doc = Int— String— Int—

String— String— String—
type T_Docs =

(Int, String, String, String, String)

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Compiling AG

1-51

Semantics

sem_Doc_Section :: String—T_Docs—T_Doc
sem_Doc_Section title_ body_ =
A...—
(let _lhsOhtml :: String
_bodylhtml :: String

IhsOhtml = "" 4 title H "\n" H _bodylhtmi

(...,-bodylhtml,...) = body_. ..
in (..., _lhsOhtml,...)))

. but actually somewhat more involved

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

Compiling AG

Full ‘disclosure’:

sem_Doc_Section :: String—T_-Docs— T_Doc
sem_Doc_Section title- body. =
(Ahslcount _lhslleft _Ihsllevel _lhslprefix _Ihslright _Ihsltoc—
(let _level = 1 + _lhsllevel
_IhsOcount = 1 + _lhslcount
_bodyOcount = 1
_prefix = _lhslcount : _Ihslprefix
-context = coo
-hame = ...
_tocline = aHref _context _name
_lhsOgathToc = ...
_bodyOleft D
_lhsOleft — _context
-bodyOright = ""
-lhsOright = _context
_lhsOhtml = oo
-bodyOlevel = _level
-bodyOprefix = _prefix
-bodyOtoc = _lhsltoc
(-bodylcount, _bodylgathToc, _bodylhtml, _bodylleft, _bodylright) =
body- _bodyOcount _bodyOleft _bodyOlevel
_bodyOprefix _bodyOright _bodyOtoc
in (_lhsOcount, _lhsOgathToc, _lhsOhtml, _lhsOleft, _IhsOright)))

A
W

[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

N3
[ai

R
L

Connecting the pieces: from concrete syntax to

1-53

semantics

Using one of the Utrecht parser combinator libraries:

pDocs :: Parser Token Docs
pDocs = pList pDoc
pDoc :: Parser Token Doc
pDoc
— Doc_Section ($
pKey "begin" () pString (¢ pDocs ¢ pKey "end"
() Doc_Paragraph ($
pKey "paragraph" (9 pString ¢ pKey "end"
{)) Doc_Toc 3
pKey "toc"

Construct AST, then (later) call the semantics over it

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Connecting the pieces: from concrete syntax to
semantics

Or fuse, directly calling semantics from parser

pDoc :: Parser Token T_Doc
pDoc
= sem_Doc_Section ($

» Useful if intermediate structure is not reused

» But (Haskell compilation) error messages become less
understandable

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

1-54

Connecting the pieces: extracting attribute values
Top level AST for interfacing with the Haskell world:
| data Root | Root body :: Docs

Wrapping around AG embedded in Haskell

wrapper Root

attr Root syn html :: String

Additional parsing

pRoot :: Parser Token Root
pRoot = Root_Root ($) pDocs

%&‘W% L) [Facul.ty of S'cience
%‘l $ Universiteit Utrecht Information and Computing Sciences]
1-55 AN

Connecting the pieces: extracting attribute values

wrapper generates records for passing attribute values
between Haskell and AG world

transform :: Root— String
transform r
= html_Syn_Root syn
where inh = Inh_Root { }
syn = wrap_Root (sem_Root r) inh

Can we do without Root and wrapper?

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-56

Connecting the pieces: compiler driver

1-57

Compiler pipeline

compile :: String— String—10 ()
compile source dest

= do input + readFile source
let toks = runScanner source input
root <+ parselOMessage show pRoot

let output = transform root
writeFile dest output

é&“’% 5 . . [Facul.ty of S'cience
%‘l $ Universiteit Utrecht Information and Computing Sciences]
TN

1.6 Use of AG in Utrecht Haskell Compiler

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

of UUAG in practice

» For UHC

» For the AG tree pictures in these slides

» Transformations in UHC pipeline

> As part of UHC infrastructure

shuffle

uuage

ghc

ghc

.chs|

.hs

Universiteit Utrecht

(=] F

[Faculty of Science
Information and Computing Sciences]

E 9DQAC¢

Recap

» Attribute grammars are your best friend if you want to
implement a language

> Attributes may even depend on themselves if you are
building on a lazy language

» Even thinking in terms of attribute grammars may help you
» http://www.cs.uu.nl/wiki/HUT/WebHome

» Used extensively in the Utrecht Haskell Compiler (UHC)
» http://www.cs.uu.nl/wiki/UHC

5&\\“% [Faculty of Science
; N) % Universiteit Utrecht Information and Computing Sciences]
K

1-60 KN

1.7 Case Study: Block language

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ck: declaring and

Example

[use x; use y;
decl x;
[decl y;
use y; use w;
decl w;
use x; use z
I
decl y;
decl z;
use z

]

Universiteit Utrecht

using identifiers

-- outer block

decl after use allowed
shadow in inner block
use this and outer level

Either error messages or ‘code’ generation

[Faculty of Science
Information and Computing Sciences]

o = = = E DA

Block: declaring and using identifiers

Example ‘code’ generation

Enter 1 3 -- enter level 1, alloc for 3 idents
Ref (1,0) == 5

Ref (1,1) --y

Enter 2 2

Ref (2,0) -- inner y

Ref (2,1)

Ref (1,0) -- outer x

Ref (1,2)

Leave 2 -- leave block
Ref (1,2)

Leave 1

Refer to identifier by (level, displacement)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-63

ck: declaring and using identifiers

Example with missing & double declaration
[use x; use y; decl x;

[decl y;

use y;

use w -1l

I

decl y;

decl x

1
]

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Block: declaring and using identifiers

Example error output, combining pretty printed source text with
error messages:

Errors:
-—- w not declared
-- x already declared
in:
[use x
; use y
; decl x
; [decly
; use y
; use w —— w not declared
]
; decl y
; decl x —- x already declared

]

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-65

ck: declaring and using identifiers

Issues

» Use before declaration requires ‘multipass’

> Local multipass is natural for each nesting of a block

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ck: declaring and using identifiers

AST

data Root | Root prog :: Stat
type Stats = [Stat]

data Stat
| Decl name :: { String }
| Use name :: { String }
| Block stats :: Stats

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Block: declaring and using identifiers

Auxiliary datastructures

type Ref = (Int, Int) -- (level, displacement)

type Env = [[String]] -- stack of idents

type Errs = [String] -~ errors

initEnv = [[]] -- empty env

enter =([]) -- enter new block

addn (h:t) = (h#[n]):t --add decl

level e = lengthe — 1

Ikup :: String— Env— Maybe Ref

lkup _ [] = Nothing

lkup n e@(h : t) = maybe (Ikup n t) (Adis— Just (level e, dis))
(elemIndex n h)

Position in Env encodes level 4 displacement
&) [Faculty of Science
é Universiteit Utrecht Information and Computing Sciences]

&
KN

1-68

ock: declaring and using identifiers

Dealing with declarations: multipass

decls env lhs decls lhs
Block:Stat Root:Root

e e

decls €nv stats decls decls €nv Prog decls

» Gather declarations in decls :: Env, then

» Distribute declaration info in env :: Env

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Block: declaring and using identifiers

Multipass declaration gather & distribute

attr Stat Stats chn decls :: Env
inh env :: Env
sem Stat
| Block stats.decls = enter Qlhs.env
.env = Qstats.decls
lhs .decls = Qlhs.decls
sem Root
| Root prog.decls = initEnv
.env = Qprog.decls

The rest is rather straightforward

Eﬁ“@ L) [Facul.ty of S'cience
%ﬂ!“% Universiteit Utrecht Information and Computing Sciences]
1-70 KL

ck: declaring and using identifiers

Declaration

sem Stat

| Decl 1hs.decls = add @name @lhs.decls

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Block: declaring and using identifiers

Checking for errors

attr Stat Stats Root syn errs use {H} {[]} :: Errs

sem Stat
| Use (loc.ref,loc.errs) =
case lkup @name @Qlhs.env of
Nothing—((—1,—1),[@name H " not declared"])
Just ref —(ref, [])
| Decl loc.errs =
case lkup @name @lhs.decls of
Just (lev, _) | lev == level @lhs.decls
—[@name 4 " already declared"]

—
@W&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]
1-72 K\

Block: lazy multipass behavior

1-73

Default AG code generation to Haskell

type T_Stat = Env— Env—(Env, Errs)
type T_Stats = T _Stat

sem_Stat_Block :: T_Stats—T_Stat
sem_Stat_Block stats_ =
(A_Ihsldecls _Ihslenv—
(let (_statsldecls, _statslerrs) = -- cyclic!
stats_ _lhslenv _statsldecls
in (_lhsldecls, _statslerrs)))

Multipass behavior hidden inside lazy scheduling

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Block: strict multipass behavior

1-74

uuagc -0 orders (and strictifies) attribute evaluation

type T_Stat = Env—(Env, T_Stat_1) -- passl returns pass2
type T_Stat_1 = Env—(Errs) -- pass2

sem_Stat_Block :: T_Stats— T_Stat
sem_Stat_Block stats_ =
(A_Ihsldecls—
let sem_Stat_Block_1 :: T_Stat_1
sem_Stat_Block_1 =

(A_lhslenv—
(case stats_ (enter _lhslenv) of -- nested multipass
{(_statsldecls, stats_1)— -~ not cyclic!

stats_1 _statsldecls}))

in (_lhsldecls, sem_Stat_Block_1))

[Faculty of Science

§ Universiteit Utrecht Information and Computing Sciences]

ock: declaring and using identifiers

Auxiliary datastructures for code generation

data Instr
= Enter Int Int -- enter new block; level and nr of idents alloc
| Leave Int -~ exit block; with level
| Ref Ref -- refer to (level,disp)

type Code = [Instr]
Env utilities

top :: Env—[String]
top = head

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

Block: declaring and using identifiers

AG for code generation

attr Stat Stats Root syn code use {#} {[]} :: Code
sem Stat
| Use lhs.code = [Ref @ref]
| Block loc.level = level Gstats.decls
.alloc = length $ top @stats.decls
lhs.code = [Enter Clevel @alloc]
@stats.code H
[Leave @level]
N/ aculty of Science
gﬂ% Universiteit Utrecht Information and Co[rflputlitr):g gzences]

1-76 N

Including error messages in pretty printed output

> In the example we have shown the list of error messages,
and then the pretty printed output.

» Note that changing this to include the error messages in
the pretty printing is trivial

> Since some error messages show up the first traversal of
the block and some in the second this becomes a
nightmare when having to program this explicitly!

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
1-77 N

Universiteit Utrecht

2. Parsing

[Faculty of Science
Information and Computing Sciences]

2.1 What are parser combinators

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

at are parser combinators

» a collection basic parsing functions that recognise a piece
of input

» a collection of combinators that build new parsers out of
existing ones

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

What are parser combinators

» a collection basic parsing functions that recognise a piece
of input

> a collection of combinators that build new parsers out of
existing ones

Hackage provides a myriad of parser combinator libraries. here
we will concentrate on the uu — parsinglib and show some of its
strong points.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-3

2.2 Elementary Combinators

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Elementary Parsers

» Most libraries at least provide an Applicative interface
taking care of sequencing and an Alternative interface
taking care a composing alternatives.

» The actual implementation of the basic parsers is quite
intricate, but is of no concern to the user

N/ Faculty of Science
NN

7; :‘ Universiteit Utrecht Information and Computing Sciences]
2.5 TN

__'- es of the Elementary Combinators

Types

) .- Parser s —Parser s a—Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

- - es of the Elementary Combinators

Types

- Parsers a —Parser s a—Parser s a
.- Parser s (b—a)—Parser s b—Parser s a

==
=

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

- - es of the Elementary Combinators

Types
) .- Parser s —Parser s a—Parser s a
&) .- Parser s (b—a)—Parser s b—Parser s a
pSym s —Parser s s

==

— Try to remember these types. Knowing the types is half the

e e |

E work when programming in Haskell.
[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Types of the Elementary Combinators

Types
) .- Parser s —Parser s a—Parser s a
&) :: Parser s (b—a)—Parser s b—Parser s a
pSym S —Parserss
pSucceed, pure :: @ —Parsers a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

*&\ ﬁ/) [Faculty of Science
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

2-6

Types of the Elementary Combinators

Types
) .- Parser s —Parser s a—Parser s a
&) :: Parser s (b—a)—Parser s b—Parser s a
pSym s —Parser s s
pSucceed, pure :: @ —Parsers a
pFail, empty :: Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

*&\ ﬁ/) [Faculty of Science
% é Universiteit Utrecht Information and Computing Sciences]

2-6

puting a Result

The question which arises now is how do we get something
useful out of such parsers?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o F = E E 9DQAC¢

puting a Result

The question which arises now is how do we get something
useful out of such parsers?

We recognize a character ’B’:

pSym ’B’

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

We recognize a character ’B’:
| pSym ’B’
Preceded by the recognition of a character ’A°

| pSym ’A° pSym ’B’

&\\‘Wﬁ)) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
I\

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

We recognize a character ’B’:

| pSym ’B’
Preceded by the recognition of a character ’A°

| pSym A’ pSym ’B’

We now insert a dummy parser that returns the function (,):

| pSucceed (,) pSym ’A’ pSym ’B’

5&\\“’%}) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
27 K/

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

We recognize a character ’B’:

| pSym ’B’
Preceded by the recognition of a character ’A°

| pSym A’ pSym ’B’

We now insert a dummy parser that returns the function (,):
| pSucceed (,) pSym ’A’ pSym ’B’
Combine the result using sequential composition of parsers:

pAB = pSucceed (,) (¢ pSym ’A’) pSym ’B’

5&\\“% [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
I\

Capturing the essence of Applicative

Suppose we want to deal with possibly failing notations and
stay as closely as possible to the original notation; how to we

deal with functions applications like e es.

» both the function part e; and the argument part e can fail
to compute something

> we model this with a Maybe

» so we want to "apply” a Maybe (b—a) to a Maybe b,
and produce a Maybe a

func ‘applyTo arg = case func of
Just b2a— case arg of
Just b — Just (b2a b)
Nothing— Nothing

Nothing— Nothing
[Faculty of Science

NI
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

2-8

turing the essence of Applicative (Cont)

We capture this pattern as follows:

class Applicative p where
(@) =p(b—=a)—=pb—=pa
pure :a —pa
(®) = (b—a) —pb—pa
f @) p=puref&p

instance Applicative Maybe where
Just £ &) Just v = Just (f v)
_ G _ = Nothing

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

pturing the essence of Applicative (Cont)

If we now write:
| f&) a1 ®a2as

we have " overloaded” the original implicit function
applications in f a1 a_2 a_3.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(] [= =

DEE

Capturing the essence of Applicative (Cont)

If we now write:
| f&) a1 ®a2a3

we have " overloaded” the original implicit function
applications in f a1 a_2 a_3.

Conclusion:

Instead applying a value of type b—a to a value of type b to
result in a value of type a the operator &) applies a p-value
labelled with type b—a to a p-value labelled with type b to
result in a p-value labelled with type a.

Eﬁ“@ L) [Facul.ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]
2-10 TN

ce

The essential difference is that when using the class Applicative
we abstain from the possibility to refer to the f-value in the
second binding of the do-construct.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Advice

The essential difference is that when using the class Applicative
we abstain from the possibility to refer to the f-value in the
second binding of the do-construct.

Applicative is to be preferred over Monad, since it allows
optimisations; the second part is independent of the first part
and can thus be evaluated " more statically”, or even analysed
independent of the run of the program!

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
211 NS

The companion class for Applicative is Alternative:

class Alternative m where
({h)::m a—ma—ma
empty :: m a
instance Alternative Maybe where
Just | () — = Just |
_ hr=r
empty = Nothing

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Alternative

2-12

The companion class for Applicative is Alternative:

class Alternative m where
(h):=ma—ma—sma
empty :: m a
instance Alternative Maybe where
Just | () — = Just |

_ =
empty = Nothing

Attention: For the instance Alternative (Parser s) the value
empty is not the parser which recognises the empty string, but
the parser that always fails!

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
5 =

DEE

2.3 Developing an Embedded Domain Specific
Language

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

ful functions |
Because the pattern:
pSucceed f &) p

occurs so often

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o F = E E 9DQAC¢

ful functions |
Because the pattern:
pSucceed f &) p

occurs so often we define
$)

| f ($) p = pSucceed f (9 p

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

ful functions |
Because the pattern:
pSucceed f &) p

occurs so often we define
$)

| f ($) p = pSucceed f (9 p

so we can write the previous function as:
| PAB = () (8 pSym *A* { pSym B’

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Useful functions II
Often we are not interested in parts of what we have recognized:

semlfStat cond ifpart thenpart = . ..

plfStat = (A_c_t_e_ — semlfStat cte)
(%) plfToken (9 pExpr

¢ pThenToken ¢ pExpr

¢ pElseToken ¢ pExpr

¢ pFiToken

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

2-15 A

Useful functions |l

2-15

Often we are not interested in parts of what we have recognized:

semlfStat cond ifpart thenpart = . ..

plfStat = (A_c_t_e_ — semlfStat cte)
(%) plfToken (9 pExpr

¢ pThenToken ¢ pExpr

¢ pElseToken ¢ pExpr

¢ pFiToken
We define

Pra=M_—=x)@pKa
pHa=QRA-y—y)BpHa
f ($q = pSucceed f ¢« q

[Faculty of Science

W
U § Universiteit Utrecht Information and Computing Sciences]

Useful functions |l

2-15

We define

Pra=M_=x)@pKa
pHa=QA-y—=y)®pHq
f ($ 9 = pSucceed f ¢ q

So we can now write:

plfStat = seml|fStat ($ plfToken &) pExpr
¢ pThenToken (9 pExpr
¢ pElseToken) pExpr
¢ pFiToken

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Useful functions |l

2-15

%

We define

plea—(x_—x) @
pHa=@A_y—y)®
f ($ 9 = pSucceed f ¢ q

P®q
RO

&

So we can now write:

plfStat = seml|fStat ($ plfToken &) pExpr
¢ pThenToken (9 pExpr
¢ pElseToken) pExpr
¢ pFiToken

W%Functions like semlfStat are generated by the uuagc er’CmPJJ‘EQ'em

Universiteit Utrecht Information and Computing Sciences]

NI
N§

NF extensions

infixl 2 opt
opt .. Parser s a—a—Parser s a
p ‘opt v = p (|) pSucceed v

In the library we have special greedy versions which choose the
longer alternative.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

- F extensions

infixl 2 opt
opt .. Parser s a—a—Parser s a
p ‘opt v = p (|) pSucceed v

| pList :: Parser s a—Parser s [a]
pList p = (:) (8 p &) pList p ‘opt []

E In the library we have special greedy versions which choose the
longer alternative.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

(=] [l = =

DEE

Exercise

Write a function that recognises a sequence of balanced
parentheses, (i.e. (),(()), () () (),..., and computes the
maximal nesting depth (here 1,2,2,.... The grammar
describing this language is:

| s—(s)s|.

pP = (max.(+1)) (§ pSym *> C’ ¢ pP ¢ pSym *)’
& pP
Lopté
0

‘S\ ﬁ/) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]
N
TN

2-17

t Factorisation

It is not a good idea to have parsers that have alternatives
starting with the same (sequence of) elements:
p= f®akrl

() g (3 aer2

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Left Factorisation

It is not a good idea to have parsers that have alternatives
starting with the same (sequence of) elements:

p= f®awn
() g &) afr2

So we define:

p (% q :: Parser s b—Parser s (b—a)—Parser s

)
p (9 q=(Apvav —qvpv) $) p) q
p (?7) q :: Parser s a—Parser s (a—a)—Parser s a

p (%) q=p ¢ (qoptid)

*&\ ﬁ/) . . . [Facul_ty of S'ciem:e

E &) § Universiteit Utrecht Information and Computing Sciences]

TN
218

Left Factorisation

It is not a good idea to have parsers that have alternatives
starting with the same (sequence of) elements:

p= f®awn
() g &) afr2

So we define:

p & q :: Parser s b—Parser s (b—a)—Parser s a

)
p (9 q=(Apvav —qvpv) $) p) q
p (?7) q :: Parser s a—Parser s (a—a)—Parser s a

p (%) q=p ¢ (qoptid)

So we can replace the above code by:

p=a ¢ (flip £ (3) rl () flipg () r2) _
ﬂnRersltenyUtreci y X Information and CcErZa;:tlitr{gogcsiZ::ecs?

218 AAL If manv of such situations arise one mav' resort to the use of 3

Left-recursion

» many grammars are left recursive

> parser combinator libraries usually cannot handle left
recursion

» using combinators from the library which capture common
patterns left-recursion can usually be avoided

5&\\“’%}) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]

219 %{ﬂ!§

erands chained by operators

pChainr :: Parser s (¢—c—c)—Parser s c—Parser s ¢
pChainr sep p = p ?7) (flip (3) sep ¢ pChainr sep p)

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Operands chained by operators

pChainr :: Parser s (¢—c—c)—Parser s c—Parser s ¢
pChainr sep p = p (??) (flip ($) sep & pChainr sep p)

pChainl :: Parser s (¢—c—c¢)—Parser s c—Parser s ¢
pChainl op x = (f ($) x ¢ pList (flip ($) op & x))
where
fx[]=x
f x (func: rest) = f (func x) rest

&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]

2:20 K&/

Example: A complete pocket calculator

It is straightforward to construct a parser for expressions with
several operator priorities:

operators = [[(’+”,(+)), ("=, (=))];
[C*2, G [C 25 O)]]
same_prio ops = msum [op (3 pSym ¢ | (¢, 0p) < ops]
expr = foldr pChainl (pNatural () pParens expr)
(map same_prio operators)

which we can call:

--> run expr "15-3%5+275"

Result: 32
_’\\\‘Wf/} [Faculty of Science
% é Universiteit Utrecht Information and Computing Sciences]
221 K7

t Factorisation |l

type:

We want to recognise expressions with as result a value of the
data Ezpr = Lambda

Id Expr
| App Expr Expr
| TypedExpr TypeDescr Ezpr

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

Left Factorisation Il
We want to recognise expressions with as result a value of the
type:
data Ezpr = Lambda Id Ezpr
| App Expr Expr
| TypedExpr TypeDescr Ezpr

pFactor = Lambda ($ pSym ’\\’ () pldent
¢ pSym ’ .7 (9 pExpr
()

pParens *> (> *)’ pExpr

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-22

Left Factorisation Il
We want to recognise expressions with as result a value of the
type:

data Ezpr = Lambda Id Ezpr
| App Expr Expr
| TypedExpr TypeDescr Ezpr

pFactor = Lambda ($ pSym ’\\’ () pldent
¢ pSym ’ .7 (9 pExpr
()

pParens *> (> *)’ pExpr

pExpr = pChainl (pSucceed App) pFactor
(% (TypedExpr
($ pTok "::"

_*\‘Wﬁ’ [Faculty of Science
%ﬂ§ Universiteit Utrecht <*> pTypeDescr) Information and Computing Sciences]
222 AN

2.4 Monadic Parsers

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Chomsky Hierarchy

The Chomsky hierarchy:

» Regular
» Context-free
» Context-sensitive

> Recursively enumerable

It is well known that context free grammars have limited
expressibility.

[Faculty of Science
Information and Computing Sciences]

=] F = E E 9DQAC¢

Universiteit Utrecht

ognising Context Sensitive Grammars
times

:: Int—Parser s a—Parser s [a]
0 ‘times‘ p = pSucceed ||

n ‘times'p = (:) §) p & (n — 1) ‘times‘ p

Universiteit Utrecht

[m]

[Faculty of Science
Information and Computing Sciences]
(=

DEE

ognising Context Sensitive Grammars

times :: Int—Parser s a—Parser s [a]
0 ‘times‘ p = pSucceed ||
n ‘times'p = (:) §) p & (n — 1) ‘times‘ p

abcn =n ($ (n ‘times a)
¢ (n ‘times* b)
& (n ‘times* ¢)

[Faculty of Science

Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

e ognising Context Sensitive Grammars

times :: Int—Parser s a—Parser s [a]
0 ‘times‘ p = pSucceed ||
n ‘times'p = (:) §) p & (n — 1) ‘times‘ p

abc n =n ($ (n ‘times a)
¢ (n ‘times* b)
& (n ‘times* ¢)
ABC = foldr (()) pFail [abc n | n < 0..]
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Recognising Context Sensitive Grammars

times :: Int—Parser s a—Parser s [a]
0 ‘times' p = pSucceed]
n ‘times‘ p = () @ p & (n—1) times'p

abcn n ($ (n ‘times‘ a)
& (n ‘times* b)
¢ (n ‘times* ¢)
ABC = foldr ({|)) pFail [abcn | n < 0..]

We admit that this is not very efficient, but left factorisation is
not so easy since the corresponding context free grammar is
infinite.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

2-25

Monadic Approach

Wouldn't it be nice if we could start by just recognising a
sequence of a's, and then use the result to enforce the right
number of b's and ¢'s?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Monadic Approach

Wouldn't it be nice if we could start by just recognising a
sequence of a's, and then use the result to enforce the right
number of b's and ¢'s?

instance Monad (Parser s) where
p(>=)q= ...
returnv. = ...
[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

The Monadic Approach

2-26

Wouldn't it be nice if we could start by just recognising a
sequence of a's, and then use the result to enforce the right
number of b's and ¢'s?

instance Monad (Parser s) where
p(>=)q=...
returnv — ...
as :: Parser Char Int
as = length ($ pList (pSym ’a’)
bcn =n (3 (n ‘times' b) & (n ‘times* ¢)
& ﬁ,) [Faculty of Science
%ﬂ$ Universiteit Utrecht Information and Computing Sciences]

The Monadic Approach

2-26

Wouldn't it be nice if we could start by just recognising a
sequence of a's, and then use the result to enforce the right
number of b's and ¢'s?

instance Monad (Parser s) where
p(>=)q=...
returnv = ...
as :: Parser Char Int
as = length ($ pList (pSym ’a’)
bc n =n ($ (n ‘times‘ b) & (n ‘times ¢)
ABC =don + as
bcn
;Xg niversiei trech infemation and Computg Seimed]

2.5 Problems

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Problems with Erroneous Input

> If your input does not conform to the language recognized
by the parser all you may get as a result is: [].

> It may take quite a while before you get this negative
result, since the backtracking may try all other alternatives
at all positions.

» There is no indication of where things went wrong.

5&\\“’%}) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
228 HIN

Problems with Erroneous Input

> If your input does not conform to the language recognized
by the parser all you may get as a result is: [].

> It may take quite a while before you get this negative
result, since the backtracking may try all other alternatives
at all positions.

» There is no indication of where things went wrong.

These problem have been cured in both Parsec and the
UUParsing-library. The latter does this:

» without much overhead
» without need for help from the programmer

» without stopping, so many errors can be found in a single

run
5&\\“’%}) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
N
2-28)

Problems with Space Consumption

The naive “List of successes” implementations which are often
used have further drawbacks:

» The complete input has to be parsed before any result is
returned

» The complete input is present in memory as long as no
parse has been found

» Efficiency may depend critically on the ordering of the
alternatives, and thus on how the grammar was written

For all of these problems we have found solutions in the
uu-parsinglib package.

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
2-29 N

Error correction at work

The parser pA recognises a single letter >a’, etc.:

-=> run pa "b"

Result: "a"

Correcting steps:
Deleted ’b’ at... expecting ’a’
Inserted ’a’ at... expecting ’a’

-=> run ((++) <$> pa <*> pa) "bbab"
Result: "aa"
Correcting steps:

Deleted ’b’ at ... expecting ’a’
Deleted ’b’ at ... expecting ’a’
Deleted ’b’ at ... expecting ’a’
Inserted ’a’ at ... expecting ’a’

‘S\\‘Wﬂ [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

230 KN

Error correction at work for Monads

Error correction also works in the presence of monadic
constructs:

-=> run (do 1 <- pCount pa; pExact 1 pb) "aaacabbbbb"
Result: [Ilbll,Ilbll,llbll,llbll]
Correcting steps:

Deleted ’c’ at ... expecting one of [’b’, ’a’]

The token ’b’ was not consumed by the parsing process.

5&\\“’7/} [Faculty of Science

= o S q . .
= % Universiteit Utrecht Information and Computing Sciences]

231 KN

Refining error messages

We can replace the expected elements in an error message by a

custom error message:

--> run (pa <|> pb <?> "justamessage") "c"

Result: "b"

Correcting steps:
Deleted ’c’ at
Inserted ’b’ at

expecting justamessage
expecting ’b’

N
$ Y % Universiteit Utrecht
K

232 ?f'ﬂ!-“

[Faculty of Science
Information and Computing Sciences]

Running ambiguous parsers

2-33

We can have ambiguous parsers, provided we indicate so:

run (amb (pEither parseIntString pIntList))
"(123;456;789)"
Result: [Left ["123","456","789"],Right [123,456,789]]

5&\\“% [Faculty of Science
% N) % Universiteit Utrecht Information and Computing Sciences]
N

Disambiguation

2-34

Internally the parser uses a cost model. Disambiguation can be
acheived by inserting small costs at less preferable alternatives:

ident :: Parser String
ident = ((:) (§) pSym (’a’,’z’)
¢ pMunch (Ax—’a’ < x Ax < ’2z’) ‘micro‘ 1) ¢ sps
idents = pListl ident
pKey keyw = pToken keyw ‘micro‘ 0 ¢« spaces
spaces :: Parser String
spaces = pMunch (==)
preferres_second_alt =
pList ident
< || > (Ac t e—["IfThenElse"| H ¢ H t He)
($ pKey "if" (9 pList_ng ident
¢ pKey "then" &) pList_ng ident

KN

& pKey "else" (9 pList_ng ident Tl o7 B

Universiteit Utrecht Information and Computing Sciences]

Result

If the input starts with an "if" the second alternative is chosen:

-—>run preferres_second_alt "if a then if else c"
Result: ["IfThenElse","a","if","c"]

-->run preferres_second_alt "ifx a then if else c"
Result : [llifxll llall llthenll Ilif“ s llelsell , IICII]

@Wﬁ' [Faculty of Science

AW
; N) % Universiteit Utrecht Information and Computing Sciences]

235 KN

Some healthiness checks are performed

The library performs a mild form of abstract interpretation
which captures some errors which may otherwise be very hard
to find:

--> run (pList spaces) ""

Result: *** Exception: The combinator pList
requires that it’s argument cannot recognise
the empty string

; N) % Universiteit Utrecht Information and Computing Sciences]

@Wff') [Faculty of Science
236 NS

Dealing with errors

During the parsing process we may ask for the error messages
which were generated since the last time they were asked for.
The following parses a BibTeX file and ignores the items which
contain errors:

pBibTexFile = pList (process ($) pBibTeXltem ¢ getErrors)
process item [| = Left (processltem item)

process _ | = Right |
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
237 K7

Using the library

The library has many tuning facilities, but:

> tuning is normally not needed

» insertion costs of elements can be changed (increase!! for
unwanted alternatives)

» you can add your own basic parsers; see the module
Basiclnstances for examples

5&\\“’%}) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]
2-38 N

covered

> permuting parsers
> merging parsers

> managing internal state

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = E E 9DQAC¢

Questions?

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]

	Attribute Grammars
	Historical remarks
	Current View on Attribute Grammars
	Intuitive intro
	Compiler construction with Attribute Grammars
	Glueing to Haskell
	Use of AG in Utrecht Haskell Compiler
	Case Study: Block language

	Parsing
	What are parser combinators
	Elementary Combinators
	Developing an Embedded Domain Specific Language
	Monadic Parsers
	Problems

