
[Faculty of Science
Information and Computing Sciences]

Attribute Grammar (UUAG) Tutorial

ICFP 2012

Atze Dijkstra, Doaitse Swierstra, Arie Middelkoop, Jeroen
Fokker

Department of Information and Computing Sciences
Utrecht University

Sep 15, 2012

[Faculty of Science
Information and Computing Sciences]

1-1

1. Attribute Grammars

[Faculty of Science
Information and Computing Sciences]

1-2

Tutorial content

I Historical remarks

I Brief intuitive intro

I UU Attribute Grammar (UUAG) system concepts
I Case study: Html generation from minimal LaTeX like

language
I AG language features in use
I Using generated code in Haskell: parsing, calling the

semantics

I Where we use it, summary

I Case study, declaration and use of identifiers in
programming language

I Demonstrate more implementation machinery, lazy
scheduling & strict ordered evaluation

[Faculty of Science
Information and Computing Sciences]

1-3

1.1 Historical remarks

[Faculty of Science
Information and Computing Sciences]

1-4

Why should I learn this?

One of my students once asked:

Why should I learn all this?

It is more than ten years
old!

Well, let us take a look at some other development:

I in the beginning there were context free grammars

I and so we did a lot of research on parsing

I and discovered that LALR(1) was the way to go

I and since we all knew this, we stopped teaching it

I and then someone, not even knowing the concept of
grammars or parsing, thought is was a great idea to encode
all information in a language you did not have to parse:
XML!

I to great happiness of all processor, disk and network
manufacturers

[Faculty of Science
Information and Computing Sciences]

1-4

Why should I learn this?

One of my students once asked:

Why should I learn all this? It is more than ten years
old!

Well, let us take a look at some other development:

I in the beginning there were context free grammars

I and so we did a lot of research on parsing

I and discovered that LALR(1) was the way to go

I and since we all knew this, we stopped teaching it

I and then someone, not even knowing the concept of
grammars or parsing, thought is was a great idea to encode
all information in a language you did not have to parse:
XML!

I to great happiness of all processor, disk and network
manufacturers

[Faculty of Science
Information and Computing Sciences]

1-4

Why should I learn this?

One of my students once asked:

Why should I learn all this? It is more than ten years
old!

Well, let us take a look at some other development:

I in the beginning there were context free grammars

I and so we did a lot of research on parsing

I and discovered that LALR(1) was the way to go

I and since we all knew this, we stopped teaching it

I and then someone, not even knowing the concept of
grammars or parsing, thought is was a great idea to encode
all information in a language you did not have to parse:
XML!

I to great happiness of all processor, disk and network
manufacturers

[Faculty of Science
Information and Computing Sciences]

1-5

Historical Overview

I Context-free grammars have limited expressiveness. Things
we cannot express are:

I scope rules
I typing systems
I pretty printing
I code generation
I incremental language editors (Synthesizer Generator,

Reps/Teitelbaum)
I ...

I and so one started to look for extensions

I context-sensitive grammars are not very useful, so the idea
came up to:

[Faculty of Science
Information and Computing Sciences]

1-5

Historical Overview

I Context-free grammars have limited expressiveness. Things
we cannot express are:

I scope rules
I typing systems
I pretty printing
I code generation
I incremental language editors (Synthesizer Generator,

Reps/Teitelbaum)
I ...

I and so one started to look for extensions

I context-sensitive grammars are not very useful, so the idea
came up to:

[Faculty of Science
Information and Computing Sciences]

1-5

Historical Overview

I Context-free grammars have limited expressiveness. Things
we cannot express are:

I scope rules
I typing systems
I pretty printing
I code generation
I incremental language editors (Synthesizer Generator,

Reps/Teitelbaum)
I ...

I and so one started to look for extensions

I context-sensitive grammars are not very useful, so the idea
came up to:

[Faculty of Science
Information and Computing Sciences]

1-6

Parameterise Non-Terminal Symbols

Combine context-sensitive grammars

I with strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

I with trees; affix grammars

I with values from some other domain: attribute grammars
(Knuth)

[Faculty of Science
Information and Computing Sciences]

1-6

Parameterise Non-Terminal Symbols

Combine context-sensitive grammars

I with strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

I with trees; affix grammars

I with values from some other domain: attribute grammars
(Knuth)

[Faculty of Science
Information and Computing Sciences]

1-6

Parameterise Non-Terminal Symbols

Combine context-sensitive grammars

I with strings forming part of their name: 2-level grammars
used for the description of Algol 68 (1973)

I with trees; affix grammars

I with values from some other domain: attribute grammars
(Knuth)

[Faculty of Science
Information and Computing Sciences]

1-7

What has been achieved?

I a lot of research on the efficient evaluation, both in space
and time, and

I so we could write compilers with it that were almost as
efficiënt as hand written compilers

I and so attribute grammars were not used by compiler
writers

I and other people thought it was something for compiler
writers only

I and had to do something very complicated with grammars

I and so they are still largely ignored

[Faculty of Science
Information and Computing Sciences]

1-7

What has been achieved?

I a lot of research on the efficient evaluation, both in space
and time, and

I so we could write compilers with it that were almost as
efficiënt as hand written compilers

I and so attribute grammars were not used by compiler
writers

I and other people thought it was something for compiler
writers only

I and had to do something very complicated with grammars

I and so they are still largely ignored

[Faculty of Science
Information and Computing Sciences]

1-7

What has been achieved?

I a lot of research on the efficient evaluation, both in space
and time, and

I so we could write compilers with it that were almost as
efficiënt as hand written compilers

I and so attribute grammars were not used by compiler
writers

I and other people thought it was something for compiler
writers only

I and had to do something very complicated with grammars

I and so they are still largely ignored

[Faculty of Science
Information and Computing Sciences]

1-7

What has been achieved?

I a lot of research on the efficient evaluation, both in space
and time, and

I so we could write compilers with it that were almost as
efficiënt as hand written compilers

I and so attribute grammars were not used by compiler
writers

I and other people thought it was something for compiler
writers only

I and had to do something very complicated with grammars

I and so they are still largely ignored

[Faculty of Science
Information and Computing Sciences]

1-7

What has been achieved?

I a lot of research on the efficient evaluation, both in space
and time, and

I so we could write compilers with it that were almost as
efficiënt as hand written compilers

I and so attribute grammars were not used by compiler
writers

I and other people thought it was something for compiler
writers only

I and had to do something very complicated with grammars

I and so they are still largely ignored

[Faculty of Science
Information and Computing Sciences]

1-7

What has been achieved?

I a lot of research on the efficient evaluation, both in space
and time, and

I so we could write compilers with it that were almost as
efficiënt as hand written compilers

I and so attribute grammars were not used by compiler
writers

I and other people thought it was something for compiler
writers only

I and had to do something very complicated with grammars

I and so they are still largely ignored

[Faculty of Science
Information and Computing Sciences]

1-8

1.2 Current View on Attribute Grammars

[Faculty of Science
Information and Computing Sciences]

1-9

We currently see attribute grammars as:

I a way to do lazy functional programming in an imperative
setting

I an aspect oriented programming language

I a domain-specific language for writing catamorphisms
(folds)

I a preferable alternative for many uses of
monad-transformers

I an alternative way of building computations

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)
I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)
I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)
I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)
I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)
I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes

I for each non-terminal a fixed order in which attributes can
be evaluated can be found (ordered attribute grammars)

I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)

I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-10

Where do attribute grammar systems differ?

I self-supporting, with a special language for describing the
semantic functions

I or by leaning on some well-known host language
(Pascal/C/Haskell/ML/Java)

I special syntax and conventions for describing common
attribution patterns

I restrictions on the allowed dependencies between
attributes, such as:

I can be evaluated in a single pass from left to right over
the abstract syntax tree (the Java visitor pattern), so it can
be nicely combined with a recursive descent parser (more or
less equivalent to monadic evaluation)

I can be evaluated in n (alternating) passes
I for each non-terminal a fixed order in which attributes can

be evaluated can be found (ordered attribute grammars)
I lazily evaluated, no restrictions except productivity

[Faculty of Science
Information and Computing Sciences]

1-11

1.3 Intuitive intro

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

calc :: Exp→Int

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

fold

::
(Int →b)
→(b→b→b)
→(b→b→b)
→Exp →b

calc :: Exp→Int

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

fold

::
(Int →b)
→(b→b→b)
→(b→b→b)
→Exp →b

calc :: Exp→Int

calc = fold id (+) (∗)

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

fold

::
(Int →b)
→(b→b→b)
→(b→b→b)
→Exp →b

calc :: Exp→Int

calc = fold
(λn →n)
(λx y→x + y)
(λx y→x ∗ y)

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

type Sem b

=
((Int →b)
, (b→b→b)
, (b→b→b)
)

fold :: Sem b→
Exp→b

calc :: Exp→Int

calc = fold
(λn →n)
(λx y→x + y)
(λx y→x ∗ y)

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp

type Sem b

=
((Int →b)
, (b→b→b)
, (b→b→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem Int

calcsem =
(λn →n
, λx y→x + y
, λx y→x ∗ y
)

calc :: Exp→Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b→b)
, (b→b→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem Int

calcsem =
(λn →n
, λx y→x + y
, λx y→x ∗ y
)

calc :: Exp→Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem Int

calcsem =
(λn →n
, λx y→x + y
, λx y→x ∗ y
)

calc :: Exp→Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem Int

calcsem =
(λn →n
, λx y→x + y
, λx y→x ∗ y
, λs →lookup s e
)

calc :: Exp→Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem Int

calcsem =
(λn →n
, λx y→x + y
, λx y→x ∗ y
, λs →λe→lookup s e
)

calc :: Exp→Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem (Env→Int)

calcsem =
(λn →n
, λx y→x + y
, λx y→x ∗ y
, λs →λe→lookup s e
)

calc :: Exp→Int
calc = fold calcsem

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

calc :: Exp→Int
calc = fold calcsem
calc :: Exp→Int
calc = fold calcsem testenv

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

calc :: Exp→Int
calc = fold calcsem testenv

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

calc :: Exp→Int
calc = fold calcsem testenv

Fields

Inherited
attribute Synthesized

attribute

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con Int
| Add Exp Exp
| Mul Exp Exp
| Var Name

type Sem b

=
((Int →b)
, (b→b →b)
, (b→b →b)
, (Name→b)
)

fold :: Sem b→
Exp→b

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

calc :: Exp→Int
calc = fold calcsem testenv

Fields

Inherited
attribute Synthesized

attribute

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con con : Int
| Add lef : Exp rit : Exp
| Mul lef : Exp rit : Exp
| Var name :Name

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

Fields

Inherited
attribute Synthesized

attribute

Named
fields

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con con : Int
| Add lef : Exp rit : Exp
| Mul lef : Exp rit : Exp
| Var name :Name

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

Fields

Inherited
attribute Synthesized

attribute

Named
fields

Named
attributes

attr Exp inh env : Env
syn val : Int

[Faculty of Science
Information and Computing Sciences]

1-12

Tree-oriented programming

data Exp

=
Con con : Int
| Add lef : Exp rit : Exp
| Mul lef : Exp rit : Exp
| Var name :Name

calcsem :: Sem (Env→Int)

calcsem =
(λn →λe→n
, λx y→λe→x e + y e
, λx y→λe→x e ∗ y e
, λs →λe→lookup s e
)

Fields

Inherited
attribute Synthesized

attribute

Named
fields

Named
attributes

attr Exp inh env : Env
syn val : Int

sem Exp | Mul lhs.val = @lef.val ∗@rit.val
lef.env = @lhs.env
rit.env = @lhs.env

[Faculty of Science
Information and Computing Sciences]

1-13

1.4 Compiler construction with Attribute
Grammars

[Faculty of Science
Information and Computing Sciences]

1-14

An Attribute Grammar consists of:

I An underlying context free grammar, describing the
structure of an Abstract Syntax Tree (AST)

I (Non)terminals + productions
I In Haskell: data types + constructors

I A description of which nonterminals have which attributes:

I Inherited attributes, to pass info downwards
I Synthesized attributes, to pass info upwards

I For each production a description how to compute the:
I Inherited attributes of the nonterminals in the right hand

side
I The synthesized attributes of the nonterminal at the left

hand side

I
⋃

per production dataflow = = global AST dataflow

[Faculty of Science
Information and Computing Sciences]

1-14

An Attribute Grammar consists of:

I An underlying context free grammar, describing the
structure of an Abstract Syntax Tree (AST)

I (Non)terminals + productions
I In Haskell: data types + constructors

I A description of which nonterminals have which attributes:

I Inherited attributes, to pass info downwards
I Synthesized attributes, to pass info upwards

I For each production a description how to compute the:
I Inherited attributes of the nonterminals in the right hand

side
I The synthesized attributes of the nonterminal at the left

hand side

I
⋃

per production dataflow = = global AST dataflow

[Faculty of Science
Information and Computing Sciences]

1-14

An Attribute Grammar consists of:

I An underlying context free grammar, describing the
structure of an Abstract Syntax Tree (AST)

I (Non)terminals + productions
I In Haskell: data types + constructors

I A description of which nonterminals have which attributes:

I Inherited attributes, to pass info downwards
I Synthesized attributes, to pass info upwards

I For each production a description how to compute the:
I Inherited attributes of the nonterminals in the right hand

side
I The synthesized attributes of the nonterminal at the left

hand side

I
⋃

per production dataflow = = global AST dataflow

[Faculty of Science
Information and Computing Sciences]

1-15

Case study: from LaTeX-like document to Html

\section{Intro} <h1>Intro</h1>

\section{Section 1} <h2>Section 1</h2>

\paragraph <p>

paragraph 1 Paragraph 1

\end </p>

\paragraph <p>

paragraph 2 Paragraph 2

\end \end </p>

\section{Section 2} <h2>Section 2</h2>

\paragraph <p>

paragraph 1 Paragraph 1

\end </p>

\paragraph <p>

paragraph 2 Paragraph 2

\end </p>

\end \end

[Faculty of Science
Information and Computing Sciences]

1-16

Final output

[Faculty of Science
Information and Computing Sciences]

1-17

Concrete and Abstract syntax

From Concrete syntax :

Docs ::= Doc ∗
Doc ::= "\section" "{" Text "}" Docs "\end"

| "\paragraph" Text "\end"

Via parsing to Abstract syntax in UUAGC notation:

data Doc | Section title : String body :Docs
| Paragraph text : String

data Docs | Cons hd :Doc tl :Docs
| Nil

I Docs and Doc are nonterminals

I Section and Paragraph label different productions

I title, body and string are names for children

[Faculty of Science
Information and Computing Sciences]

1-17

Concrete and Abstract syntax

From Concrete syntax :

Docs ::= Doc ∗
Doc ::= "\section" "{" Text "}" Docs "\end"

| "\paragraph" Text "\end"

Via parsing to Abstract syntax in UUAGC notation:

data Doc | Section title : String body :Docs
| Paragraph text : String

data Docs | Cons hd :Doc tl :Docs
| Nil

I Docs and Doc are nonterminals

I Section and Paragraph label different productions

I title, body and string are names for children

[Faculty of Science
Information and Computing Sciences]

1-18

Concrete and Abstract syntax

Additional toplevel wrapping:

data Root | Root body ::Docs

Allows toplevel initialization

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:

I the synthesized attributes provided by the children
I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:

I the synthesized attributes provided by the children
I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:

I the synthesized attributes provided by the children
I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:

I the synthesized attributes provided by the children
I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:
I the synthesized attributes provided by the children

I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:
I the synthesized attributes provided by the children
I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-19

Synthesized attributes

I Synthesized attribute html : synthesis of generated html

attr Doc Docs syn html :: String

I Doc has attribute html , we must describe how to compute
it for productions Section and Paragraph and for Cons
and Nil of Docs.

I Attribute definitions (rules) use Haskell, with embedded
references to attributes, of the form of
@<fieldname>.<attrname>:

I We can refer to:
I the synthesized attributes provided by the children
I values of child-terminals, i.e. fields

I We must define the synthesized attributes of the left hand
side non-terminal lhs for all productions

[Faculty of Science
Information and Computing Sciences]

1-20

Attribute definition for html

attr Doc syn html :: String
sem Doc
| Section lhs.html = ""++@title ++ "\n"

++@body.html

lhs

Section:Doc

html

title body html

Note: the pictures are described and computed via a language
implemented with UUAG!

[Faculty of Science
Information and Computing Sciences]

1-21

Attribute definition for html

attr Docs syn html :: String
sem Docs
| Cons lhs.html = @hd.html ++@tl.html

lhs

Cons:Docs

html

hd html tl html

[Faculty of Science
Information and Computing Sciences]

1-22

Summary: html

data Doc | Section title : String body :Docs
| Paragraph text : String

data Docs | Cons hd :Doc tl :Docs
| Nil

attr Doc Docs syn html :: String

sem Doc
| Section lhs.html = ""++@title ++ "\n"

++@body.html
| Paragraph lhs.html = "<p>"++@text ++ "</p>"

sem Docs
| Cons lhs.html = @hd.html ++@tl.html
| Nil lhs.html = ""

[Faculty of Science
Information and Computing Sciences]

1-23

Monad view

I Note that the html attribute can be seen as being
computed by a Writer monad.

I each node in the tree may contribute to the result

I results of children are combined

We will see that many monadic patterns come back as an
attribute grammar pattern.

[Faculty of Science
Information and Computing Sciences]

1-24

Inherited attributes: correct level of html header
tags

Casus problem: correct level of html header tags

I Inherited attribute level , holding the nesting level of the
headings:

attr Doc Docs inh level : Int

I We can refer to the inherited attributes defined on the
left-hand side

I We must define the inherited attributes of the children

[Faculty of Science
Information and Computing Sciences]

1-25

Attribute definition: level

sem Doc
| Section body.level = @lhs.level + 1

lhs .html = mk tag ("h"++ show @lhs.level)
"" @title

++@body.html

lhs

Section:Doc

level html

title bodylevel html

[Faculty of Science
Information and Computing Sciences]

1-26

Auxiliary Haskell code

Additional Haskell code goes inside curly braces:

{
mk tag tag attrs elem

= "<" ++ tag ++ attrs ++ ">"++ elem
++ "</"++ tag ++ ">"

}

[Faculty of Science
Information and Computing Sciences]

1-27

Attribute definition: level

sem Docs
| Cons hd.level = @lhs.level

tl .level = @lhs.level

lhs

Cons:Docs

level html

hdlevel html tllevel html

Do we really have to define these (boring) definitions ourselves?

[Faculty of Science
Information and Computing Sciences]

1-27

Attribute definition: level

sem Docs
| Cons hd.level = @lhs.level

tl .level = @lhs.level

lhs

Cons:Docs

level html

hdlevel html tllevel html

Do we really have to define these (boring) definitions ourselves?

[Faculty of Science
Information and Computing Sciences]

1-28

Copy rules

Default rules in case no explicit rules are given, for attributes
with same name

I UUAG automatically provides default definitions

I Inherited attributes are passed on unmodified, we need not
define this:

sem Docs
| Cons hd.level = @lhs.level

tl .level = @lhs.level

I Copy rules for synthesized attributes need to deal with
multiple occurrences in children

I Take the attribute value of the rightmost child which has
an attribute with that name, or

I Combine attribute values of children, or else
I Take value of inherited attribute with the same name

[Faculty of Science
Information and Computing Sciences]

1-28

Copy rules

Default rules in case no explicit rules are given, for attributes
with same name

I UUAG automatically provides default definitions

I Inherited attributes are passed on unmodified, we need not
define this:

sem Docs
| Cons hd.level = @lhs.level

tl .level = @lhs.level

I Copy rules for synthesized attributes need to deal with
multiple occurrences in children

I Take the attribute value of the rightmost child which has
an attribute with that name, or

I Combine attribute values of children, or else
I Take value of inherited attribute with the same name

[Faculty of Science
Information and Computing Sciences]

1-29

Copy rules: the USE rule

Fold-like behavior for combining multiple child attribute
occurrences

I Idea: specify combination behavior

@lhs.a = foldr op unit [@k 1.a,@k 2.a, . . ,@k n.a]

I by

attr . . . syn a use {op} {unit} : . . .

[Faculty of Science
Information and Computing Sciences]

1-30

Copy rules: the USE rule

I Instead of:

sem Docs
| Cons lhs.html = @hd.html ++@tl.html
| Nil lhs.html = ""

I we specify a use copy rule

attr Docs syn html use {++} {""} : String

But: is not really a fold over a list, just textual positioning of
operator between child attribute references

[Faculty of Science
Information and Computing Sciences]

1-31

Monad view

I Note that the level attribute can be seen as being
computed by a Reader monad.

I the attribute is passed downwards automatically

I maybe updated for use a subtree

The link between the previously defined Writer structure and
the now introduced Reader structure is by name;

the difference
corresponds roughly to that between using a lookup table and
an indexed list for locating a needed value.

[Faculty of Science
Information and Computing Sciences]

1-31

Monad view

I Note that the level attribute can be seen as being
computed by a Reader monad.

I the attribute is passed downwards automatically

I maybe updated for use a subtree

The link between the previously defined Writer structure and
the now introduced Reader structure is by name; the difference
corresponds roughly to that between using a lookup table and
an indexed list for locating a needed value.

[Faculty of Science
Information and Computing Sciences]

1-32

Threaded (chained) attributes

Casus problem:
section counting = section nesting + sections at same level

I Two inherited attributes:
I The context , header text of outer sections
I A counter, for keeping track of the number of current

sibling position.

attr Doc Docs inh context : String , count : Int
syn count : Int

I Doc may or may not increment count , hence need to pass
it on to next Doc

[Faculty of Science
Information and Computing Sciences]

1-33

Threaded (chained) attributes

count attribute

I State like behaviour

I Threaded attribute (or chained): inherited + synthesized

I Alternatively made explicit by syntactic sugar

attr Doc Docs chn count : Int

[Faculty of Science
Information and Computing Sciences]

1-34

Attribute definition: count

lhs

Cons:Docs

count level html count

hdcount level html count tlcount level html count

lhs

Section:Doc

count level html count

title bodycount level html count

[Faculty of Science
Information and Computing Sciences]

1-35

Monad view

I Note that the count attribute can be seen as being
maintained by a State monad.

I the value may be used or updated

I and otherwise silently carried on unmodified

We see that many monadic patterns come back as an attribute
grammar pattern.

[Faculty of Science
Information and Computing Sciences]

1-36

Attribute definition: count, context

sem Doc | Section
body.count = 1
lhs .count = @lhs.count + 1

loc .prefix = @lhs.context
++ (if null @lhs.context then "" else ".")
++ show @lhs.count

body.context = @loc.prefix

loc .html = mk tag ("h"++ show @lhs.level) ""
(@loc.prefix ++ " "++@title)

++ @body.html

I loc attribute: local to production, for sharing

I Where is the definition for lhs.html?

[Faculty of Science
Information and Computing Sciences]

1-36

Attribute definition: count, context

sem Doc | Section
body.count = 1
lhs .count = @lhs.count + 1

loc .prefix = @lhs.context
++ (if null @lhs.context then "" else ".")
++ show @lhs.count

body.context = @loc.prefix

loc .html = mk tag ("h"++ show @lhs.level) ""
(@loc.prefix ++ " "++@title)

++ @body.html

I loc attribute: local to production, for sharing

I Where is the definition for lhs.html?

[Faculty of Science
Information and Computing Sciences]

1-37

Copy rules for synthesized attributes, revisited

Copy rules, more precisely:
if a rule for an attribute k .a is missing, in this order:

I Use @loc.a (if available)

I Use @c.a for the rightmost child c to the left of k , which
has a synthesized attribute named a (if available)

I Use @lhs.a (if available)

I Complain

Copy rules take care of left-to-right threading!

[Faculty of Science
Information and Computing Sciences]

1-37

Copy rules for synthesized attributes, revisited

Copy rules, more precisely:
if a rule for an attribute k .a is missing, in this order:

I Use @loc.a (if available)

I Use @c.a for the rightmost child c to the left of k , which
has a synthesized attribute named a (if available)

I Use @lhs.a (if available)

I Complain

Copy rules take care of left-to-right threading!

[Faculty of Science
Information and Computing Sciences]

1-38

AG Extensibility: table of contents (TOC)

To an existing AG we may add

I Extra attributes (already seen)

I Extra productions

Casus problem: table of contents (TOC), to be placed as
specified by input text

I Gather the TOC lines: synthesized toclines

I Distribute the TOC to where it is used: inherited toc

data Doc
| Toc

attr Doc Docs inh toc : String
syn toclines use {++} {""} : String

[Faculty of Science
Information and Computing Sciences]

1-39

Attribute definition: toclines, toc

lhs

Cons:Docs

toc count level html count toclines

hdtoc count level html count toclines tltoc count level html count toclines

lhs

Section:Doc

toc count level html count toclines

title bodytoc count level html count toclines

[Faculty of Science
Information and Computing Sciences]

1-40

Attribute definition: toclines, toc

sem Doc
| Section

lhs.toclines
= (mk tag "li" "" $

mk tag ("a")
(" href=#"++@loc.prefix)
(@loc.prefix ++ " "

++@title))
++ mk tag "ul" ""@body.toclines

lhs.html = mk tag "a" (" name="++@loc.prefix) ""
++@loc.html

| Toc lhs.html = @lhs.toc

sem Root
| Root doc.toc = @doc.toclines

[Faculty of Science
Information and Computing Sciences]

1-41

Monad view

I Note that the toclines attribute can be seen as being
computed by something like an mdo.

I Part of the computed result is passed back into the
computation

I This works because we have lazy evaluation

I But in the case of monads we have to make this feedback
explicit.

We see that many monadic patterns come back as an attribute
grammar pattern.

[Faculty of Science
Information and Computing Sciences]

1-42

Attribute initialisation

Setting up initial values at the Root of the AST

sem Root
| Root doc.toc = @doc.toclines

.level = 1

.context = ""

.count = 1

[Faculty of Science
Information and Computing Sciences]

1-43

AG idiom

Typical, idiomatic AG programming

I Gather: collect, bottom up
I Children gather independently, combine in production,

possibly with use, e.g. html
I Children accumulate, threading, e.g. count

I Distribute: make info available, top down
I Globally constant info, e.g. toc
I Info dependent on AST depth/structure, e.g. level

I Multipass: multiple gather + distribute, e.g.
I first pass: context (distribute) + toclines (gather)
I second pass: toc (distribute)

[Faculty of Science
Information and Computing Sciences]

1-43

AG idiom

Typical, idiomatic AG programming

I Gather: collect, bottom up
I Children gather independently, combine in production,

possibly with use, e.g. html
I Children accumulate, threading, e.g. count

I Distribute: make info available, top down
I Globally constant info, e.g. toc
I Info dependent on AST depth/structure, e.g. level

I Multipass: multiple gather + distribute, e.g.
I first pass: context (distribute) + toclines (gather)
I second pass: toc (distribute)

[Faculty of Science
Information and Computing Sciences]

1-43

AG idiom

Typical, idiomatic AG programming

I Gather: collect, bottom up
I Children gather independently, combine in production,

possibly with use, e.g. html
I Children accumulate, threading, e.g. count

I Distribute: make info available, top down
I Globally constant info, e.g. toc
I Info dependent on AST depth/structure, e.g. level

I Multipass: multiple gather + distribute, e.g.
I first pass: context (distribute) + toclines (gather)
I second pass: toc (distribute)

[Faculty of Science
Information and Computing Sciences]

1-44

Backward flow of data

Casus problem: navigation links

I We want to be able to jump to the section to the left and
the right of the current section

I Two attributes for passing this information around
I left : ‘at the left side’ info
I right : ‘at the right side’ info

[Faculty of Science
Information and Computing Sciences]

1-45

Attribute definition: left

lhs

Cons:Docs

left left

hdleft left tlleft left

lhs

Section:Doc

left left

title bodyleft left

[Faculty of Science
Information and Computing Sciences]

1-46

Attribute definition: right

lhs

Cons:Docs

right right

hdright right tlright right

lhs

Section:Doc

right right

title bodyright right

sem Docs | Cons sem Doc | Section
hd .right = @tl.right lhs .right = @title
tl .right = @lhs.right body.right = ""

lhs.right = @hd.right

[Faculty of Science
Information and Computing Sciences]

1-47

Monad view?

I Note that the right attribute can be seen as being
computed by an reversed State computation

I This is not how most people see a State monad

I Formulation is counter-intuitive

We see that attribute grammar patterns go beyond what we
normally do with monads.

[Faculty of Science
Information and Computing Sciences]

1-48

1.5 Glueing to Haskell

[Faculty of Science
Information and Computing Sciences]

1-49

Compiling AG

Generate Haskell datatype for AST

% uuagc -dr --haskellsyntax HtmlHS.ag

% cat HtmlHS.hs

data Doc = Doc Paragraph (String)
| Doc Section (String) (Docs)
| Doc Toc

data Docs = Docs Cons (Doc) (Docs)
| Docs Nil

[Faculty of Science
Information and Computing Sciences]

1-50

Compiling AG

Generate Haskell semantic functions + signatures for attribute
definitions

% uuagc -fs --haskellsyntax HtmlHS.ag

% cat HtmlHS.hs

type T Doc = Int→String→Int→
String→String→String→
(Int ,String ,String ,String ,String)

type T Docs = . . .

[Faculty of Science
Information and Computing Sciences]

1-51

Compiling AG

Semantics

sem Doc Section :: String→T Docs→T Doc
sem Doc Section title body =

(λ . . .→
(let lhsOhtml :: String

bodyIhtml :: String
. . .
lhsOhtml = ""++ title ++ "\n"++ bodyIhtml
. . .
(. . . , bodyIhtml, . . .) = body . . .

in (. . . , lhsOhtml, . . .)))

... but actually somewhat more involved

[Faculty of Science
Information and Computing Sciences]

1-52

Compiling AG

Full ‘disclosure’:

sem Doc Section :: String→T Docs→T Doc
sem Doc Section title body =

(λ lhsIcount lhsIleft lhsIlevel lhsIprefix lhsIright lhsItoc→
(let level = 1 + lhsIlevel

lhsOcount = 1 + lhsIcount
bodyOcount = 1
prefix = lhsIcount : lhsIprefix
context = . . .
name = . . .
tocline = aHref context name
lhsOgathToc = . . .
bodyOleft = ""

lhsOleft = context
bodyOright = ""

lhsOright = context
lhsOhtml = . . .
bodyOlevel = level
bodyOprefix = prefix
bodyOtoc = lhsItoc
(bodyIcount, bodyIgathToc, bodyIhtml, bodyIleft, bodyIright) =

body bodyOcount bodyOleft bodyOlevel
bodyOprefix bodyOright bodyOtoc

in (lhsOcount, lhsOgathToc, lhsOhtml, lhsOleft, lhsOright)))

[Faculty of Science
Information and Computing Sciences]

1-53

Connecting the pieces: from concrete syntax to
semantics

Using one of the Utrecht parser combinator libraries:

pDocs :: Parser Token Docs
pDocs = pList pDoc

pDoc :: Parser Token Doc
pDoc

= Doc Section 〈$
pKey "begin" 〈∗〉 pString 〈∗〉 pDocs 〈∗ pKey "end"

〈|〉 Doc Paragraph 〈$
pKey "paragraph" 〈∗〉 pString 〈∗ pKey "end"

〈|〉 Doc Toc 〈$
pKey "toc"

Construct AST, then (later) call the semantics over it

[Faculty of Science
Information and Computing Sciences]

1-54

Connecting the pieces: from concrete syntax to
semantics

Or fuse, directly calling semantics from parser

pDoc :: Parser Token T Doc
pDoc

= sem Doc Section 〈$
. . .

I Useful if intermediate structure is not reused

I But (Haskell compilation) error messages become less
understandable

[Faculty of Science
Information and Computing Sciences]

1-55

Connecting the pieces: extracting attribute values

Top level AST for interfacing with the Haskell world:

data Root | Root body ::Docs

Wrapping around AG embedded in Haskell

wrapper Root

attr Root syn html :: String

Additional parsing

pRoot :: Parser Token Root
pRoot = Root Root 〈$〉 pDocs

[Faculty of Science
Information and Computing Sciences]

1-56

Connecting the pieces: extracting attribute values

wrapper generates records for passing attribute values
between Haskell and AG world

transform :: Root→String
transform r

= html Syn Root syn
where inh = Inh Root { }

syn = wrap Root (sem Root r) inh

Can we do without Root and wrapper?

[Faculty of Science
Information and Computing Sciences]

1-57

Connecting the pieces: compiler driver

Compiler pipeline

compile :: String→String→IO ()
compile source dest

= do input ← readFile source
let toks = runScanner source input
root ← parseIOMessage show pRoot
let output = transform root
writeFile dest output

[Faculty of Science
Information and Computing Sciences]

1-58

1.6 Use of AG in Utrecht Haskell Compiler

[Faculty of Science
Information and Computing Sciences]

1-59

Use of UUAG in practice

I For the AG tree pictures in these slides
I For UHC

I Transformations in UHC pipeline

HS EH Core Grin

Silly

C exe

interpreter

I As part of UHC infrastructure

.cag .chs

.hs

.exe

.lib

.ag.ag.ag

.hs.hs.hs
.hs.hs.hs

.lib.lib.lib

.exe.exe

uuagc

ghc

shuffle

ghc

[Faculty of Science
Information and Computing Sciences]

1-60

Recap

I Attribute grammars are your best friend if you want to
implement a language

I Attributes may even depend on themselves if you are
building on a lazy language

I Even thinking in terms of attribute grammars may help you

I http://www.cs.uu.nl/wiki/HUT/WebHome

I Used extensively in the Utrecht Haskell Compiler (UHC)

I http://www.cs.uu.nl/wiki/UHC

[Faculty of Science
Information and Computing Sciences]

1-61

1.7 Case Study: Block language

[Faculty of Science
Information and Computing Sciences]

1-62

Block: declaring and using identifiers

Example

[use x;use y; -- outer block
decl x; -- decl after use allowed
[decl y; -- shadow in inner block
use y;use w; -- use this and outer level
decl w;
use x;use z
];
decl y;
decl z;
use z
]

Either error messages or ‘code’ generation

[Faculty of Science
Information and Computing Sciences]

1-63

Block: declaring and using identifiers

Example ‘code’ generation

Enter 1 3 -- enter level 1, alloc for 3 idents

Ref (1,0) -- x

Ref (1,1) -- y

Enter 2 2

Ref (2,0) -- inner y

Ref (2,1)

Ref (1,0) -- outer x

Ref (1,2)

Leave 2 -- leave block

Ref (1,2)

Leave 1

Refer to identifier by (level, displacement)

[Faculty of Science
Information and Computing Sciences]

1-64

Block: declaring and using identifiers

Example with missing & double declaration

[use x;use y;decl x;
[decl y;
use y;
use w -- !!
];
decl y;
decl x -- !!
]

[Faculty of Science
Information and Computing Sciences]

1-65

Block: declaring and using identifiers

Example error output, combining pretty printed source text with
error messages:

Errors:

-- w not declared

-- x already declared

in:

[use x

; use y

; decl x

; [decl y

; use y

; use w -- w not declared

]

; decl y

; decl x -- x already declared

]

[Faculty of Science
Information and Computing Sciences]

1-66

Block: declaring and using identifiers

Issues

I Use before declaration requires ‘multipass’

I Local multipass is natural for each nesting of a block

[Faculty of Science
Information and Computing Sciences]

1-67

Block: declaring and using identifiers

AST

data Root | Root prog :: Stat

type Stats = [Stat]

data Stat
| Decl name :: {String }
| Use name :: {String }
| Block stats :: Stats

[Faculty of Science
Information and Computing Sciences]

1-68

Block: declaring and using identifiers

Auxiliary datastructures

type Ref = (Int , Int) -- (level, displacement)
type Env = [[String]] -- stack of idents
type Errs = [String] -- errors

initEnv = [[]] -- empty env
enter = ([]:) -- enter new block
add n (h : t) = (h ++ [n]) : t -- add decl
level e = length e− 1

lkup :: String→Env→Maybe Ref
lkup [] = Nothing
lkup n e@(h : t) = maybe (lkup n t) (λdis→Just (level e, dis))

(elemIndex n h)

Position in Env encodes level + displacement

[Faculty of Science
Information and Computing Sciences]

1-69

Block: declaring and using identifiers

Dealing with declarations: multipass

lhs

Block:Stat

decls env decls

statsdecls env decls

lhs

Root:Root

progdecls env decls

I Gather declarations in decls :: Env , then

I Distribute declaration info in env :: Env

[Faculty of Science
Information and Computing Sciences]

1-70

Block: declaring and using identifiers

Multipass declaration gather & distribute

attr Stat Stats chn decls :: Env
inh env :: Env

sem Stat
| Block stats.decls = enter @lhs.env

.env = @stats.decls
lhs .decls = @lhs.decls

sem Root
| Root prog .decls = initEnv

.env = @prog.decls

The rest is rather straightforward

[Faculty of Science
Information and Computing Sciences]

1-71

Block: declaring and using identifiers

Declaration

sem Stat
| Decl lhs.decls = add @name @lhs.decls

[Faculty of Science
Information and Computing Sciences]

1-72

Block: declaring and using identifiers

Checking for errors

attr Stat Stats Root syn errs use {++} {[]} :: Errs
sem Stat
| Use (loc.ref, loc.errs) =

case lkup @name @lhs.env of
Nothing→((−1,−1), [@name ++ " not declared"])
Just ref→(ref, [])

| Decl loc.errs =
case lkup @name @lhs.decls of

Just (lev,) | lev = = level @lhs.decls
→[@name ++ " already declared"]
→[]

[Faculty of Science
Information and Computing Sciences]

1-73

Block: lazy multipass behavior

Default AG code generation to Haskell

type T Stat = Env→Env→(Env ,Errs)
type T Stats = T Stat

sem Stat Block :: T Stats→T Stat
sem Stat Block stats =

(λ lhsIdecls lhsIenv→
(let (statsIdecls, statsIerrs) = -- cyclic!

stats lhsIenv statsIdecls
in (lhsIdecls, statsIerrs)))

Multipass behavior hidden inside lazy scheduling

[Faculty of Science
Information and Computing Sciences]

1-74

Block: strict multipass behavior

uuagc -O orders (and strictifies) attribute evaluation

type T Stat = Env→(Env ,T Stat 1) -- pass1 returns pass2
type T Stat 1 = Env→(Errs) -- pass2

sem Stat Block :: T Stats→T Stat
sem Stat Block stats =

(λ lhsIdecls→
let sem Stat Block 1 :: T Stat 1

sem Stat Block 1 =
(λ lhsIenv→

(case stats (enter lhsIenv) of -- nested multipass
{(statsIdecls, stats 1)→ -- not cyclic!

stats 1 statsIdecls}))
in (lhsIdecls, sem Stat Block 1))

[Faculty of Science
Information and Computing Sciences]

1-75

Block: declaring and using identifiers

Auxiliary datastructures for code generation

data Instr
= Enter Int Int -- enter new block; level and nr of idents allocated
| Leave Int -- exit block; with level
| Ref Ref -- refer to (level,disp)

type Code = [Instr]

Env utilities

top :: Env→[String]
top = head

[Faculty of Science
Information and Computing Sciences]

1-76

Block: declaring and using identifiers

AG for code generation

attr Stat Stats Root syn code use {++} {[]} :: Code
sem Stat
| Use lhs.code = [Ref @ref]
| Block loc.level = level @stats.decls

.alloc = length $ top @stats.decls
lhs.code = [Enter @level @alloc] ++

@stats.code ++
[Leave @level]

[Faculty of Science
Information and Computing Sciences]

1-77

Including error messages in pretty printed output

I In the example we have shown the list of error messages,
and then the pretty printed output.

I Note that changing this to include the error messages in
the pretty printing is trivial

I Since some error messages show up the first traversal of
the block and some in the second this becomes a
nightmare when having to program this explicitly!

[Faculty of Science
Information and Computing Sciences]

2-1

2. Parsing

[Faculty of Science
Information and Computing Sciences]

2-2

2.1 What are parser combinators

[Faculty of Science
Information and Computing Sciences]

2-3

What are parser combinators

I a collection basic parsing functions that recognise a piece
of input

I a collection of combinators that build new parsers out of
existing ones

Hackage provides a myriad of parser combinator libraries. here
we will concentrate on the uu− parsinglib and show some of its
strong points.

[Faculty of Science
Information and Computing Sciences]

2-3

What are parser combinators

I a collection basic parsing functions that recognise a piece
of input

I a collection of combinators that build new parsers out of
existing ones

Hackage provides a myriad of parser combinator libraries. here
we will concentrate on the uu− parsinglib and show some of its
strong points.

[Faculty of Science
Information and Computing Sciences]

2-4

2.2 Elementary Combinators

[Faculty of Science
Information and Computing Sciences]

2-5

Elementary Parsers

I Most libraries at least provide an Applicative interface
taking care of sequencing and an Alternative interface
taking care a composing alternatives.

I The actual implementation of the basic parsers is quite
intricate, but is of no concern to the user

[Faculty of Science
Information and Computing Sciences]

2-6

Types of the Elementary Combinators

Types

〈|〉 :: Parser s a →Parser s a→Parser s a

〈∗〉 :: Parser s (b→a)→Parser s b→Parser s a
pSym :: s →Parser s s
pSucceed, pure :: a →Parser s a
pFail, empty :: Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Information and Computing Sciences]

2-6

Types of the Elementary Combinators

Types

〈|〉 :: Parser s a →Parser s a→Parser s a
〈∗〉 :: Parser s (b→a)→Parser s b→Parser s a

pSym :: s →Parser s s
pSucceed, pure :: a →Parser s a
pFail, empty :: Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Information and Computing Sciences]

2-6

Types of the Elementary Combinators

Types

〈|〉 :: Parser s a →Parser s a→Parser s a
〈∗〉 :: Parser s (b→a)→Parser s b→Parser s a

pSym :: s →Parser s s

pSucceed, pure :: a →Parser s a
pFail, empty :: Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Information and Computing Sciences]

2-6

Types of the Elementary Combinators

Types

〈|〉 :: Parser s a →Parser s a→Parser s a
〈∗〉 :: Parser s (b→a)→Parser s b→Parser s a

pSym :: s →Parser s s
pSucceed, pure :: a →Parser s a

pFail, empty :: Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Information and Computing Sciences]

2-6

Types of the Elementary Combinators

Types

〈|〉 :: Parser s a →Parser s a→Parser s a
〈∗〉 :: Parser s (b→a)→Parser s b→Parser s a

pSym :: s →Parser s s
pSucceed, pure :: a →Parser s a
pFail, empty :: Parser s a

Try to remember these types. Knowing the types is half the
work when programming in Haskell.

[Faculty of Science
Information and Computing Sciences]

2-7

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

¿pAB = ((pSucceed (,) 〈∗〉 pSym ’A’) 〈∗〉 pSym ’B’)

We recognize a character ’B’:

pSym ’B’

Preceded by the recognition of a character ’A’

pSym ’A’ pSym ’B’

We now insert a dummy parser that returns the function (,):

pSucceed (,) pSym ’A’ pSym ’B’

Combine the result using sequential composition of parsers:

pAB = pSucceed (,) 〈∗〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-7

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

¿pAB = ((pSucceed (,) 〈∗〉 pSym ’A’) 〈∗〉 pSym ’B’)

We recognize a character ’B’:

pSym ’B’

Preceded by the recognition of a character ’A’

pSym ’A’ pSym ’B’

We now insert a dummy parser that returns the function (,):

pSucceed (,) pSym ’A’ pSym ’B’

Combine the result using sequential composition of parsers:

pAB = pSucceed (,) 〈∗〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-7

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

¿pAB = ((pSucceed (,) 〈∗〉 pSym ’A’) 〈∗〉 pSym ’B’)

We recognize a character ’B’:

pSym ’B’

Preceded by the recognition of a character ’A’

pSym ’A’ pSym ’B’

We now insert a dummy parser that returns the function (,):

pSucceed (,) pSym ’A’ pSym ’B’

Combine the result using sequential composition of parsers:

pAB = pSucceed (,) 〈∗〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-7

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

¿pAB = ((pSucceed (,) 〈∗〉 pSym ’A’) 〈∗〉 pSym ’B’)

We recognize a character ’B’:

pSym ’B’

Preceded by the recognition of a character ’A’

pSym ’A’ pSym ’B’

We now insert a dummy parser that returns the function (,):

pSucceed (,) pSym ’A’ pSym ’B’

Combine the result using sequential composition of parsers:

pAB = pSucceed (,) 〈∗〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-7

Computing a Result

The question which arises now is how do we get something
useful out of such parsers?

¿pAB = ((pSucceed (,) 〈∗〉 pSym ’A’) 〈∗〉 pSym ’B’)

We recognize a character ’B’:

pSym ’B’

Preceded by the recognition of a character ’A’

pSym ’A’ pSym ’B’

We now insert a dummy parser that returns the function (,):

pSucceed (,) pSym ’A’ pSym ’B’

Combine the result using sequential composition of parsers:

pAB = pSucceed (,) 〈∗〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-8

Capturing the essence of Applicative

Suppose we want to deal with possibly failing notations and
stay as closely as possible to the original notation; how to we
deal with functions applications like e1 e2.

I both the function part e1 and the argument part e2 can fail
to compute something

I we model this with a Maybe

I so we want to ”apply” a Maybe (b→a) to a Maybe b,
and produce a Maybe a

func ‘applyTo‘ arg = case func of
Just b2a→case arg of

Just b →Just (b2a b)
Nothing→Nothing

Nothing→Nothing

[Faculty of Science
Information and Computing Sciences]

2-9

Capturing the essence of Applicative (Cont)

We capture this pattern as follows:

class Applicative p where
(〈∗〉) :: p (b→a)→p b→p a
pure :: a →p a
(〈$〉) :: (b→a) →p b→p a
f 〈$〉 p = pure f 〈∗〉 p
. . .

instance Applicative Maybe where
Just f 〈∗〉 Just v = Just (f v)

〈∗〉 = Nothing

[Faculty of Science
Information and Computing Sciences]

2-10

Capturing the essence of Applicative (Cont)

If we now write:

f 〈∗〉 a1 〈∗〉 a 2 〈∗〉 a 3

we have ”overloaded” the original implicit function
applications in f a1 a 2 a 3.

Conclusion:
Instead applying a value of type b→a to a value of type b to
result in a value of type a the operator 〈∗〉 applies a p-value
labelled with type b→a to a p-value labelled with type b to
result in a p-value labelled with type a.

[Faculty of Science
Information and Computing Sciences]

2-10

Capturing the essence of Applicative (Cont)

If we now write:

f 〈∗〉 a1 〈∗〉 a 2 〈∗〉 a 3

we have ”overloaded” the original implicit function
applications in f a1 a 2 a 3.
Conclusion:
Instead applying a value of type b→a to a value of type b to
result in a value of type a the operator 〈∗〉 applies a p-value
labelled with type b→a to a p-value labelled with type b to
result in a p-value labelled with type a.

[Faculty of Science
Information and Computing Sciences]

2-11

Advice

The essential difference is that when using the class Applicative
we abstain from the possibility to refer to the f-value in the
second binding of the do-construct.

Applicative is to be preferred over Monad , since it allows
optimisations; the second part is independent of the first part
and can thus be evaluated ”more statically”, or even analysed
independent of the run of the program!

[Faculty of Science
Information and Computing Sciences]

2-11

Advice

The essential difference is that when using the class Applicative
we abstain from the possibility to refer to the f-value in the
second binding of the do-construct.
Applicative is to be preferred over Monad , since it allows
optimisations; the second part is independent of the first part
and can thus be evaluated ”more statically”, or even analysed
independent of the run of the program!

[Faculty of Science
Information and Computing Sciences]

2-12

Alternative

The companion class for Applicative is Alternative:

class Alternative m where
(〈|〉) ::m a→m a→m a
empty :: m a

instance Alternative Maybe where
Just l 〈|〉 = Just l

〈|〉 r = r
empty = Nothing

Attention: For the instance Alternative (Parser s) the value
empty is not the parser which recognises the empty string, but
the parser that always fails!

[Faculty of Science
Information and Computing Sciences]

2-12

Alternative

The companion class for Applicative is Alternative:

class Alternative m where
(〈|〉) ::m a→m a→m a
empty :: m a

instance Alternative Maybe where
Just l 〈|〉 = Just l

〈|〉 r = r
empty = Nothing

Attention: For the instance Alternative (Parser s) the value
empty is not the parser which recognises the empty string, but
the parser that always fails!

[Faculty of Science
Information and Computing Sciences]

2-13

———————————————————————

[Faculty of Science
Information and Computing Sciences]

2-13

2.3 Developing an Embedded Domain Specific
Language

[Faculty of Science
Information and Computing Sciences]

2-14

Useful functions I

Because the pattern:

pSucceed f 〈∗〉 p

occurs so often

we define

〈$〉

f 〈$〉 p = pSucceed f 〈∗〉 p

so we can write the previous function as:

pAB = (,) 〈$〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-14

Useful functions I

Because the pattern:

pSucceed f 〈∗〉 p

occurs so often we define

〈$〉

f 〈$〉 p = pSucceed f 〈∗〉 p

so we can write the previous function as:

pAB = (,) 〈$〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-14

Useful functions I

Because the pattern:

pSucceed f 〈∗〉 p

occurs so often we define

〈$〉

f 〈$〉 p = pSucceed f 〈∗〉 p

so we can write the previous function as:

pAB = (,) 〈$〉 pSym ’A’ 〈∗〉 pSym ’B’

[Faculty of Science
Information and Computing Sciences]

2-15

Useful functions II
Often we are not interested in parts of what we have recognized:

semIfStat cond ifpart thenpart = . . .
pIfStat = (λ c t e → semIfStat c t e)

〈$〉 pIfToken 〈∗〉 pExpr
〈∗〉 pThenToken 〈∗〉 pExpr
〈∗〉 pElseToken 〈∗〉 pExpr
〈∗〉 pFiToken

We define

p 〈∗ q = (λx → x) 〈$〉 p 〈∗〉 q
p ∗〉 q = (λ y→ y) 〈$〉 p 〈∗〉 q
f 〈$ q = pSucceed f 〈∗ q

So we can now write:

pIfStat = semIfStat 〈$ pIfToken 〈∗〉 pExpr
〈∗ pThenToken 〈∗〉 pExpr
〈∗ pElseToken 〈∗〉 pExpr
〈∗ pFiToken

Functions like semIfStat are generated by the uuagc compiler.

[Faculty of Science
Information and Computing Sciences]

2-15

Useful functions II
Often we are not interested in parts of what we have recognized:

semIfStat cond ifpart thenpart = . . .
pIfStat = (λ c t e → semIfStat c t e)

〈$〉 pIfToken 〈∗〉 pExpr
〈∗〉 pThenToken 〈∗〉 pExpr
〈∗〉 pElseToken 〈∗〉 pExpr
〈∗〉 pFiToken

We define

p 〈∗ q = (λx → x) 〈$〉 p 〈∗〉 q
p ∗〉 q = (λ y→ y) 〈$〉 p 〈∗〉 q
f 〈$ q = pSucceed f 〈∗ q

So we can now write:

pIfStat = semIfStat 〈$ pIfToken 〈∗〉 pExpr
〈∗ pThenToken 〈∗〉 pExpr
〈∗ pElseToken 〈∗〉 pExpr
〈∗ pFiToken

Functions like semIfStat are generated by the uuagc compiler.

[Faculty of Science
Information and Computing Sciences]

2-15

Useful functions II

We define

p 〈∗ q = (λx → x) 〈$〉 p 〈∗〉 q
p ∗〉 q = (λ y→ y) 〈$〉 p 〈∗〉 q
f 〈$ q = pSucceed f 〈∗ q

So we can now write:

pIfStat = semIfStat 〈$ pIfToken 〈∗〉 pExpr
〈∗ pThenToken 〈∗〉 pExpr
〈∗ pElseToken 〈∗〉 pExpr
〈∗ pFiToken

Functions like semIfStat are generated by the uuagc compiler.

[Faculty of Science
Information and Computing Sciences]

2-15

Useful functions II

We define

p 〈∗ q = (λx → x) 〈$〉 p 〈∗〉 q
p ∗〉 q = (λ y→ y) 〈$〉 p 〈∗〉 q
f 〈$ q = pSucceed f 〈∗ q

So we can now write:

pIfStat = semIfStat 〈$ pIfToken 〈∗〉 pExpr
〈∗ pThenToken 〈∗〉 pExpr
〈∗ pElseToken 〈∗〉 pExpr
〈∗ pFiToken

Functions like semIfStat are generated by the uuagc compiler.

[Faculty of Science
Information and Computing Sciences]

2-16

EBNF extensions

infixl 2 opt
opt :: Parser s a→a→Parser s a
p ‘opt‘ v = p 〈|〉 pSucceed v

pList :: Parser s a→Parser s [a]
pList p = (:) 〈$〉 p 〈∗〉 pList p ‘opt‘ []

In the library we have special greedy versions which choose the
longer alternative.

[Faculty of Science
Information and Computing Sciences]

2-16

EBNF extensions

infixl 2 opt
opt :: Parser s a→a→Parser s a
p ‘opt‘ v = p 〈|〉 pSucceed v

pList :: Parser s a→Parser s [a]
pList p = (:) 〈$〉 p 〈∗〉 pList p ‘opt‘ []

In the library we have special greedy versions which choose the
longer alternative.

[Faculty of Science
Information and Computing Sciences]

2-17

Exercise

Write a function that recognises a sequence of balanced
parentheses, (i.e. (), (()), (() ()) (), . . . , and computes the
maximal nesting depth (here 1, 2, 2, The grammar
describing this language is:

S→(S) S | .

pP = (max.(+1)) 〈$ pSym ’(’ 〈∗〉 pP 〈∗ pSym ’)’

〈∗〉 pP
‘opt‘
0

[Faculty of Science
Information and Computing Sciences]

2-18

Left Factorisation
It is not a good idea to have parsers that have alternatives
starting with the same (sequence of) elements:

p = f 〈$〉 q 〈∗〉 r1
〈|〉 g 〈$〉 q 〈∗〉 r2

So we define:

p 〈∗∗〉 q :: Parser s b→Parser s (b→a)→Parser s a
p 〈∗∗〉 q = (λpv qv→ qv pv) 〈$〉 p 〈∗〉 q
p 〈??〉 q :: Parser s a→Parser s (a→a)→Parser s a
p 〈??〉 q = p 〈∗∗〉 (q ‘opt‘ id)

So we can replace the above code by:

p = q 〈∗∗〉 (flip f 〈$〉 r1 〈|〉 flip g 〈$〉 r2)
flip f x y = f y x

If many of such situations arise one may resort to the use of a
parser generator.

[Faculty of Science
Information and Computing Sciences]

2-18

Left Factorisation
It is not a good idea to have parsers that have alternatives
starting with the same (sequence of) elements:

p = f 〈$〉 q 〈∗〉 r1
〈|〉 g 〈$〉 q 〈∗〉 r2

So we define:

p 〈∗∗〉 q :: Parser s b→Parser s (b→a)→Parser s a
p 〈∗∗〉 q = (λpv qv→ qv pv) 〈$〉 p 〈∗〉 q
p 〈??〉 q :: Parser s a→Parser s (a→a)→Parser s a
p 〈??〉 q = p 〈∗∗〉 (q ‘opt‘ id)

So we can replace the above code by:

p = q 〈∗∗〉 (flip f 〈$〉 r1 〈|〉 flip g 〈$〉 r2)
flip f x y = f y x

If many of such situations arise one may resort to the use of a
parser generator.

[Faculty of Science
Information and Computing Sciences]

2-18

Left Factorisation
It is not a good idea to have parsers that have alternatives
starting with the same (sequence of) elements:

p = f 〈$〉 q 〈∗〉 r1
〈|〉 g 〈$〉 q 〈∗〉 r2

So we define:

p 〈∗∗〉 q :: Parser s b→Parser s (b→a)→Parser s a
p 〈∗∗〉 q = (λpv qv→ qv pv) 〈$〉 p 〈∗〉 q
p 〈??〉 q :: Parser s a→Parser s (a→a)→Parser s a
p 〈??〉 q = p 〈∗∗〉 (q ‘opt‘ id)

So we can replace the above code by:

p = q 〈∗∗〉 (flip f 〈$〉 r1 〈|〉 flip g 〈$〉 r2)
flip f x y = f y x

If many of such situations arise one may resort to the use of a
parser generator.

[Faculty of Science
Information and Computing Sciences]

2-19

Left-recursion

I many grammars are left recursive

I parser combinator libraries usually cannot handle left
recursion

I using combinators from the library which capture common
patterns left-recursion can usually be avoided

[Faculty of Science
Information and Computing Sciences]

2-20

Operands chained by operators

pChainr :: Parser s (c→c→c)→Parser s c→Parser s c
pChainr sep p = p 〈??〉 (flip 〈$〉 sep 〈∗〉 pChainr sep p)

pChainl :: Parser s (c→c→c)→Parser s c→Parser s c
pChainl op x = (f 〈$〉 x 〈∗〉 pList (flip 〈$〉 op 〈∗〉 x))

where
f x [] = x
f x (func : rest) = f (func x) rest

[Faculty of Science
Information and Computing Sciences]

2-20

Operands chained by operators

pChainr :: Parser s (c→c→c)→Parser s c→Parser s c
pChainr sep p = p 〈??〉 (flip 〈$〉 sep 〈∗〉 pChainr sep p)

pChainl :: Parser s (c→c→c)→Parser s c→Parser s c
pChainl op x = (f 〈$〉 x 〈∗〉 pList (flip 〈$〉 op 〈∗〉 x))

where
f x [] = x
f x (func : rest) = f (func x) rest

[Faculty of Science
Information and Computing Sciences]

2-21

Example: A complete pocket calculator

It is straightforward to construct a parser for expressions with
several operator priorities:

operators = [[(’+’, (+)), (’-’, (−))],
[(’*’, (∗))], [(’^’, ())]]

same prio ops = msum [op 〈$ pSym c | (c, op)← ops]
expr = foldr pChainl (pNatural 〈|〉 pParens expr)

(map same prio operators)

which we can call:

--> run expr "15-3*5+2^5"

Result: 32

[Faculty of Science
Information and Computing Sciences]

2-22

Left Factorisation II
We want to recognise expressions with as result a value of the
type:

data Expr = Lambda Id Expr
| App Expr Expr
| TypedExpr TypeDescr Expr

pFactor = Lambda 〈$ pSym ’\\’ 〈∗〉 pIdent
〈∗ pSym ’.’ 〈∗〉 pExpr

〈|〉
pParens ’(’ ’)’ pExpr

pExpr = pChainl (pSucceed App) pFactor
〈??〉 (TypedExpr

〈$ pTok "::"

〈∗〉 pTypeDescr)

[Faculty of Science
Information and Computing Sciences]

2-22

Left Factorisation II
We want to recognise expressions with as result a value of the
type:

data Expr = Lambda Id Expr
| App Expr Expr
| TypedExpr TypeDescr Expr

pFactor = Lambda 〈$ pSym ’\\’ 〈∗〉 pIdent
〈∗ pSym ’.’ 〈∗〉 pExpr

〈|〉
pParens ’(’ ’)’ pExpr

pExpr = pChainl (pSucceed App) pFactor
〈??〉 (TypedExpr

〈$ pTok "::"

〈∗〉 pTypeDescr)

[Faculty of Science
Information and Computing Sciences]

2-22

Left Factorisation II
We want to recognise expressions with as result a value of the
type:

data Expr = Lambda Id Expr
| App Expr Expr
| TypedExpr TypeDescr Expr

pFactor = Lambda 〈$ pSym ’\\’ 〈∗〉 pIdent
〈∗ pSym ’.’ 〈∗〉 pExpr

〈|〉
pParens ’(’ ’)’ pExpr

pExpr = pChainl (pSucceed App) pFactor
〈??〉 (TypedExpr

〈$ pTok "::"

〈∗〉 pTypeDescr)

[Faculty of Science
Information and Computing Sciences]

2-23

2.4 Monadic Parsers

[Faculty of Science
Information and Computing Sciences]

2-24

The Chomsky Hierarchy

The Chomsky hierarchy:

I Regular

I Context-free

I Context-sensitive

I Recursively enumerable

It is well known that context free grammars have limited
expressibility.

[Faculty of Science
Information and Computing Sciences]

2-25

Recognising Context Sensitive Grammars

times :: Int→Parser s a→Parser s [a]
0 ‘times‘ p = pSucceed []
n ‘times‘ p = (:) 〈$〉 p 〈∗〉 (n − 1) ‘times‘ p

abc n = n 〈$ (n ‘times‘ a)
〈∗ (n ‘times‘ b)
〈∗ (n ‘times‘ c)

ABC = foldr (〈|〉) pFail [abc n | n ← 0 . .]

We admit that this is not very efficient, but left factorisation is
not so easy since the corresponding context free grammar is
infinite.

[Faculty of Science
Information and Computing Sciences]

2-25

Recognising Context Sensitive Grammars

times :: Int→Parser s a→Parser s [a]
0 ‘times‘ p = pSucceed []
n ‘times‘ p = (:) 〈$〉 p 〈∗〉 (n − 1) ‘times‘ p
abc n = n 〈$ (n ‘times‘ a)

〈∗ (n ‘times‘ b)
〈∗ (n ‘times‘ c)

ABC = foldr (〈|〉) pFail [abc n | n ← 0 . .]

We admit that this is not very efficient, but left factorisation is
not so easy since the corresponding context free grammar is
infinite.

[Faculty of Science
Information and Computing Sciences]

2-25

Recognising Context Sensitive Grammars

times :: Int→Parser s a→Parser s [a]
0 ‘times‘ p = pSucceed []
n ‘times‘ p = (:) 〈$〉 p 〈∗〉 (n − 1) ‘times‘ p
abc n = n 〈$ (n ‘times‘ a)

〈∗ (n ‘times‘ b)
〈∗ (n ‘times‘ c)

ABC = foldr (〈|〉) pFail [abc n | n ← 0 . .]

We admit that this is not very efficient, but left factorisation is
not so easy since the corresponding context free grammar is
infinite.

[Faculty of Science
Information and Computing Sciences]

2-25

Recognising Context Sensitive Grammars

times :: Int→Parser s a→Parser s [a]
0 ‘times‘ p = pSucceed []
n ‘times‘ p = (:) 〈$〉 p 〈∗〉 (n − 1) ‘times‘ p
abc n = n 〈$ (n ‘times‘ a)

〈∗ (n ‘times‘ b)
〈∗ (n ‘times‘ c)

ABC = foldr (〈|〉) pFail [abc n | n ← 0 . .]

We admit that this is not very efficient, but left factorisation is
not so easy since the corresponding context free grammar is
infinite.

[Faculty of Science
Information and Computing Sciences]

2-26

The Monadic Approach

Wouldn’t it be nice if we could start by just recognising a
sequence of a’s, and then use the result to enforce the right
number of b’s and c’s?

instance Monad (Parser s) where
p (>>=) q = . . .
return v = . . .

as :: Parser Char Int
as = length 〈$ pList (pSym ’a’)
bc n = n 〈$ (n ‘times‘ b) 〈∗ (n ‘times‘ c)
ABC = do n ← as

bc n

[Faculty of Science
Information and Computing Sciences]

2-26

The Monadic Approach

Wouldn’t it be nice if we could start by just recognising a
sequence of a’s, and then use the result to enforce the right
number of b’s and c’s?

instance Monad (Parser s) where
p (>>=) q = . . .
return v = . . .

as :: Parser Char Int
as = length 〈$ pList (pSym ’a’)
bc n = n 〈$ (n ‘times‘ b) 〈∗ (n ‘times‘ c)
ABC = do n ← as

bc n

[Faculty of Science
Information and Computing Sciences]

2-26

The Monadic Approach

Wouldn’t it be nice if we could start by just recognising a
sequence of a’s, and then use the result to enforce the right
number of b’s and c’s?

instance Monad (Parser s) where
p (>>=) q = . . .
return v = . . .

as :: Parser Char Int
as = length 〈$ pList (pSym ’a’)
bc n = n 〈$ (n ‘times‘ b) 〈∗ (n ‘times‘ c)

ABC = do n ← as
bc n

[Faculty of Science
Information and Computing Sciences]

2-26

The Monadic Approach

Wouldn’t it be nice if we could start by just recognising a
sequence of a’s, and then use the result to enforce the right
number of b’s and c’s?

instance Monad (Parser s) where
p (>>=) q = . . .
return v = . . .

as :: Parser Char Int
as = length 〈$ pList (pSym ’a’)
bc n = n 〈$ (n ‘times‘ b) 〈∗ (n ‘times‘ c)
ABC = do n ← as

bc n

[Faculty of Science
Information and Computing Sciences]

2-27

2.5 Problems

[Faculty of Science
Information and Computing Sciences]

2-28

Problems with Erroneous Input

I If your input does not conform to the language recognized
by the parser all you may get as a result is: [].

I It may take quite a while before you get this negative
result, since the backtracking may try all other alternatives
at all positions.

I There is no indication of where things went wrong.

These problem have been cured in both Parsec and the
UUParsing-library. The latter does this:

I without much overhead

I without need for help from the programmer

I without stopping, so many errors can be found in a single
run

[Faculty of Science
Information and Computing Sciences]

2-28

Problems with Erroneous Input

I If your input does not conform to the language recognized
by the parser all you may get as a result is: [].

I It may take quite a while before you get this negative
result, since the backtracking may try all other alternatives
at all positions.

I There is no indication of where things went wrong.

These problem have been cured in both Parsec and the
UUParsing-library. The latter does this:

I without much overhead

I without need for help from the programmer

I without stopping, so many errors can be found in a single
run

[Faculty of Science
Information and Computing Sciences]

2-29

Problems with Space Consumption

The näıve “List of successes” implementations which are often
used have further drawbacks:

I The complete input has to be parsed before any result is
returned

I The complete input is present in memory as long as no
parse has been found

I Efficiency may depend critically on the ordering of the
alternatives, and thus on how the grammar was written

For all of these problems we have found solutions in the
uu-parsinglib package.

[Faculty of Science
Information and Computing Sciences]

2-30

Error correction at work

The parser pA recognises a single letter ’a’, etc.:

--> run pa "b"

Result: "a"

Correcting steps:

Deleted ’b’ at... expecting ’a’

Inserted ’a’ at... expecting ’a’

--> run ((++) <$> pa <*> pa) "bbab"

Result: "aa"

Correcting steps:

Deleted ’b’ at ... expecting ’a’

Deleted ’b’ at ... expecting ’a’

Deleted ’b’ at ... expecting ’a’

Inserted ’a’ at ... expecting ’a’

[Faculty of Science
Information and Computing Sciences]

2-31

Error correction at work for Monads

Error correction also works in the presence of monadic
constructs:

--> run (do l <- pCount pa; pExact l pb) "aaacabbbbb"

Result: ["b","b","b","b"]

Correcting steps:

Deleted ’c’ at ... expecting one of [’b’, ’a’]

The token ’b’ was not consumed by the parsing process.

[Faculty of Science
Information and Computing Sciences]

2-32

Refining error messages

We can replace the expected elements in an error message by a
custom error message:

--> run (pa <|> pb <?> "justamessage") "c"

Result: "b"

Correcting steps:

Deleted ’c’ at ... expecting justamessage

Inserted ’b’ at ... expecting ’b’

[Faculty of Science
Information and Computing Sciences]

2-33

Running ambiguous parsers

We can have ambiguous parsers, provided we indicate so:

run (amb (pEither parseIntString pIntList))

"(123;456;789)"

Result: [Left ["123","456","789"],Right [123,456,789]]

[Faculty of Science
Information and Computing Sciences]

2-34

Disambiguation

Internally the parser uses a cost model. Disambiguation can be
acheived by inserting small costs at less preferable alternatives:

ident :: Parser String
ident = ((:) 〈$〉 pSym (’a’, ’z’)

〈∗〉 pMunch (λx→’a’ 6 x ∧ x 6 ’z’) ‘micro‘ 1) 〈∗ spaces
idents = pList1 ident
pKey keyw = pToken keyw ‘micro‘ 0 〈∗ spaces
spaces :: Parser String
spaces = pMunch (= = ’ ’)
preferres second alt =

pList ident
< || > (λc t e→["IfThenElse"] ++ c ++ t ++ e)
〈$ pKey "if" 〈∗〉 pList ng ident
〈∗ pKey "then" 〈∗〉 pList ng ident
〈∗ pKey "else" 〈∗〉 pList ng ident

[Faculty of Science
Information and Computing Sciences]

2-35

Result

If the input starts with an "if" the second alternative is chosen:

-->run preferres_second_alt "if a then if else c"

Result: ["IfThenElse","a","if","c"]

-->run preferres_second_alt "ifx a then if else c"

Result: ["ifx","a","then","if", "else","c"]

[Faculty of Science
Information and Computing Sciences]

2-36

Some healthiness checks are performed

The library performs a mild form of abstract interpretation
which captures some errors which may otherwise be very hard
to find:

--> run (pList spaces) ""

Result: *** Exception: The combinator pList

requires that it’s argument cannot recognise

the empty string

[Faculty of Science
Information and Computing Sciences]

2-37

Dealing with errors

During the parsing process we may ask for the error messages
which were generated since the last time they were asked for.
The following parses a BibTeX file and ignores the items which
contain errors:

pBibTexFile = pList (process 〈$〉 pBibTeXItem 〈∗〉 getErrors)
process item [] = Left (processItem item)
process l = Right l

[Faculty of Science
Information and Computing Sciences]

2-38

Using the library

The library has many tuning facilities, but:

I tuning is normally not needed

I insertion costs of elements can be changed (increase!! for
unwanted alternatives)

I you can add your own basic parsers; see the module
BasicInstances for examples

[Faculty of Science
Information and Computing Sciences]

2-39

Not covered

I permuting parsers

I merging parsers

I managing internal state

[Faculty of Science
Information and Computing Sciences]

2-40

Questions

Questions?

	Attribute Grammars
	Historical remarks
	Current View on Attribute Grammars
	Intuitive intro
	Compiler construction with Attribute Grammars
	Glueing to Haskell
	Use of AG in Utrecht Haskell Compiler
	Case Study: Block language

	Parsing
	What are parser combinators
	Elementary Combinators
	Developing an Embedded Domain Specific Language
	Monadic Parsers
	Problems

