
[Faculty of Science
Information and Computing Sciences]

Compiler Construction

WWW: http://www.cs.uu.nl/wiki/Cco

Edition 2010/2011

[Faculty of Science
Information and Computing Sciences]

2

Agenda

Type inference

Untyped lambda-calculus

Simply typed lambda-calculus

System F

Hindley-Milner typing

Algorithm W

[Faculty of Science
Information and Computing Sciences]

3

8. Type inference

[Faculty of Science
Information and Computing Sciences]

4

8.1 Untyped lambda-calculus

[Faculty of Science
Information and Computing Sciences]

5

Lambda-calculus §8.1

I Church, Kleene (1930s).
I Formal system designed to investigate function

definition, function application, and recursion.
I Idealised, minimalistic functional programming

language.
I Only three language constructs: variables,

lambda-abstraction, function application. (Other
constructs can be encoded with these.)

[Faculty of Science
Information and Computing Sciences]

6

Syntax §8.1

x ∈ Var variables
t ∈ Tm terms

t ::= x | λx . t1 | t1 t2

[Faculty of Science
Information and Computing Sciences]

7

Alpha-equivalence and beta-substitution §8.1

λ is a binder : λx . t1 binds x in t1. Unbound variables are
called free.

Alpha-equivalence: terms that only differ in the names of
their bound variables are considered equal. For example:
λx . x and λy . y are alpha-equivalent.

Alpha-conversion: consistently renaming bound variables
while avoiding free variables from being captured. For
example: λf . λx . f x z can be alpha-converted into
λf . λy . f y z , but not into λf . λz . f z z .

Beta-substitution: capture-avoiding substitution of free
variables, performing alpha-conversion where necessary.
For example: [z 7→ y](λf . λx . f x z) = λf . λx . f x y and
[z 7→ x](λf . λy . f y x).

[Faculty of Science
Information and Computing Sciences]

8

Semantics §8.1

v ∈ Val values

v ::= λx . t

Big-step operational semantics:

t ⇓ v evaluation

λx . t1 ⇓ λx . t1
[e-lam]

t1 ⇓ λx . t11 t2 ⇓ v2 [x 7→ v2]t11 ⇓ v

t1 t2 ⇓ v
[e-app]

For example: (λx . λy . x) (λx . x) (λx . λy . y) ⇓ λx . x .

[Faculty of Science
Information and Computing Sciences]

9

Derived constructs §8.1

Additional language constructs—such as local definitions,
natural numbers, boolean constants, conditionals, arithmetic
and relational operators, and even recursion—can be
introduced as mere syntactic sugar.

For example:

let x = t1 in t2 ni =def (λx . t2) t1

In the sequel, we will just assume that some of these
additional constructs are in fact added to the core calculus,
so that we can use for example natural numbers in our
example.

[Faculty of Science
Information and Computing Sciences]

10

8.2 Simply typed lambda-calculus

[Faculty of Science
Information and Computing Sciences]

11

Simple types §8.2

To study typing for the lambda-calculus, we extend the
syntax of lambda-terms with mandatory type annotations for
lambda-abstractions.

For example:

λx : Nat . x

(λf : Bool → Nat . λx : Bool . f x) (λy : Bool . 42)

[Faculty of Science
Information and Computing Sciences]

12

Syntax §8.2

x ∈ Var variables
τ ∈ Ty types
t ∈ Tm terms

τ ::= τ1 → τ2

t ::= x | λx : τ . t1 | t1 t2

� To render the sets of types inhabited, we add type con-
stants such as Nat and Bool .

[Faculty of Science
Information and Computing Sciences]

13

Semantics §8.2

v ∈ Val values

v ::= λx : τ . t

Big-step operational semantics:

t ⇓ v evaluation

λx : τ . t1 ⇓ λx : τ . t1
[e-lam]

t1 ⇓ λx : τ . t11 t2 ⇓ v2 [x 7→ v2]t11 ⇓ v

t1 t2 ⇓ v
[e-app]

[Faculty of Science
Information and Computing Sciences]

14

Typing §8.2

Type environments map from variables to types:

Γ ∈ TyEnv type environments

Γ ::= [] | Γ1[x 7→ τ]

As always, we write Γ(x) = τ if the rightmost binding for x in
Γ maps x to τ .

The judgements of the typing relation read

Γ ` t : τ typing

[Faculty of Science
Information and Computing Sciences]

15

Type rules §8.2

Γ(x) = τ

Γ ` x : τ
[t-var]

Γ[x 7→ τ1] ` t1 : τ2

Γ ` λx : τ1. t1 : τ1 → τ2
[t-lam]

Γ ` t1 : τ2 → τ Γ ` t2 : τ2

Γ ` t1 t2 : τ
[t-app]

[Faculty of Science
Information and Computing Sciences]

16

Erasure §8.2

Writing btc for the untyped lambda-term obtained from
erasing all type annotations from the simply typed
lambda-term t , we have:

if t ⇓ v , then btc ⇓ bvc.
That is, types play no rôle at run-time.

[Faculty of Science
Information and Computing Sciences]

17

8.3 System F

[Faculty of Science
Information and Computing Sciences]

18

Polymorphism §8.3

Next, we add polymorphism to our language.

The system obtained is known as System F (Girard, 1972)
or the second-order polymorphic lambda-calculus
(Reynolds, 1974).

The main innovation with respect to the simply typed
lambda-calculus is that, in addition to values, functions can
also take types as arguments:

Λα. λx : α. x

(Λα.Λβ. λx : α. λy : β. x) [Nat] [Bool] 2 false

[Faculty of Science
Information and Computing Sciences]

19

Syntax §8.3

α ∈ TyVar type variables
x ∈ Var term variables
τ ∈ Ty types
t ∈ Tm terms

τ ::= α | τ1 → τ2 | ∀α. τ1

t ::= x | λx : τ . t1 | t1 t2 | Λα. t1 | t1 [τ]

[Faculty of Science
Information and Computing Sciences]

20

Semantics §8.3

v ∈ Val values

v ::= λx : τ . t | Λα. t

Big-step operational semantics:

t ⇓ v evaluation

[Faculty of Science
Information and Computing Sciences]

21

Evaluation rules §8.3

λx : τ . t1 ⇓ λx : τ . t1
[e-lam]

t1 ⇓ λx : τ . t11 t2 ⇓ v2 [x 7→ v2]t11 ⇓ v

t1 t2 ⇓ v
[e-app]

Λα. t1 ⇓ Λα. t1
[e-tylam]

t1 ⇓ Λα. t11 [α 7→ τ]t11 ⇓ v

t1 [τ] ⇓ v
[e-tyapp]

� Λ is a binder for type variables.
[Faculty of Science

Information and Computing Sciences]

22

Type rules §8.3

Γ(x) = τ

Γ ` x : τ
[t-var]

Γ[x 7→ τ1] ` t1 : τ2

Γ ` λx : τ1. t1 : τ1 → τ2
[t-lam]

Γ ` t1 : τ2 → τ Γ ` t2 : τ2

Γ ` t1 t2 : τ
[t-app]

Γ ` t1 : τ1

Γ ` Λα. t1 : ∀α. τ1
[t-tylam]

Γ ` t1 : ∀α. τ1

Γ ` t1 [τ0] : [α 7→ τ0]τ1
[t-tyapp]

[Faculty of Science
Information and Computing Sciences]

23

Erasure §8.3

Exercise: investigate erasure for System F.

[Faculty of Science
Information and Computing Sciences]

24

Higher-rank polymorphism §8.3

Note: functions can take polymorphic functions as
arguments.

For example:

λf : ∀α. α→ Nat . f [Nat] 2 + f [Bool] false

This function takes a “normal” polymorphic function (i.e, of rank 1)
as argument and so it has itself a rank-2 type. Its type reads
(∀α. α→ Nat)→ Nat . In general, if a function takes a function
with a rank-n type as argument, it has itself a rank-(n+ 1) type.

[Faculty of Science
Information and Computing Sciences]

25

8.4 Hindley-Milner typing

[Faculty of Science
Information and Computing Sciences]

26

Type inference §8.4

For both the simply typed lambda-calculus and System F,
implementing a type checker is straightforward. (Exercise: . . .)

Although programming languages based on System F are
very powerful, writing type annotation on every function
parameter is very tedious—especially if types become more
involved due to polymorphism.

So, the question is: can we derive an algorithm that takes an
erased System-F term as argument and that infers all
missing type annotations? That way, we can have the full
power for System F, without the burden of having to write
possibly complex or otherwise tiresome type annotations.

The anwer is no, type inference for System F is undecidable
(Wells, 1994).

[Faculty of Science
Information and Computing Sciences]

27

The Hindley-Milner system §8.4

The Hindley-Milner (Hindley, 1969; Milner, 1978) type
system is a compromise between the full power of System F
and the desire to leave out type annotations.

Hindley-Milner typing comes with two crucial restrictions:

1. All types are of at most rank 1, i.e., functions cannot
take polymorphic functions as arguments.

2. Functions can only have a polymorphic type if they are
directly bound in a local definition (let-polymorphism).

The resulting type system is at the heart of languages like
Haskell and ML and allows that for each well-typed term a
so-called principal (i.e., most polymorphic) type can be
inferred.

[Faculty of Science
Information and Computing Sciences]

28

Syntax §8.4

x ∈ Var term variables
t ∈ Tm terms

t ::= x | λx . t1 | t1 t2 | let x = t1 in t2 ni

� Local definitions play a crucial rôle in typing now and so,
rather than syntactic sugar, they form a true language
construct now.

[Faculty of Science
Information and Computing Sciences]

29

Semantics §8.4

v ∈ Val values

v ::= λx . t

Big-step operational semantics:

t ⇓ v evaluation

[Faculty of Science
Information and Computing Sciences]

30

Evaluation rules §8.4

λx . t1 ⇓ λx . t1
[e-lam]

t1 ⇓ λx . t11 t2 ⇓ v2 [x 7→ v2]t11 ⇓ v

t1 t2 ⇓ v
[e-app]

t1 ⇓ v1 [x 7→ v1]t2 ⇓ v

let x = t1 in t2 ni ⇓ v
[e-let]

[Faculty of Science
Information and Computing Sciences]

31

Typing §8.4

Implementing the rank-1 restriction, the type language is
stratified into two levels: types and type schemes.

α ∈ TyVar type variables
τ ∈ Ty types
σ ∈ TyScheme type schemes

τ ::= α | τ1 → τ2

σ ::= τ | ∀α. σ1

Type environments map from variables to type schemes:

Γ ∈ TyEnv type environments

Γ ::= [] | Γ1[x 7→ σ]

[Faculty of Science
Information and Computing Sciences]

32

Free type variables §8.4

∀ is a binder for type variables: α is bound in ∀α. σ1.

We write ftv(σ) for the set of type variables that appear free
in σ.

Similarly, we write ftv(Γ) for the set of type variables that
appear free in the codomain of Γ.

[Faculty of Science
Information and Computing Sciences]

33

Typing judgements §8.4

The judgements of the typing relation take the form

Γ ` t : σ typing

The typing relation is defined by a natural deduction system
comprised from six rules: one for each of the four term
constructors and two for dealing with polymorphism.

[Faculty of Science
Information and Computing Sciences]

34

Typing rules §8.4

Γ(x) = σ

Γ ` x : σ
[t-var]

Γ[x 7→ τ1] ` t1 : τ2

Γ ` λx . t1 : τ1 → τ2
[t-lam]

Γ ` t1 : τ2 → τ Γ ` t2 : τ2

Γ ` t1 t2 : τ
[t-app]

Γ ` t1 : σ1 Γ[x 7→ σ1] ` t2 : τ

Γ ` let x = t1 in t2 ni : τ
[t-let]

[Faculty of Science
Information and Computing Sciences]

35

Typing rules (cont’d) §8.4

Γ ` t : σ1 α /∈ ftv(Γ)

Γ ` t : ∀α. σ1
[t-gen]

Γ ` t : ∀α. σ1

Γ ` t : [α 7→ τ0]σ1
[t-inst]

� The premise α /∈ ftv{Γ} in [t-gen] is needed because
we do not have any binders for type variables in our term
language.
(Exercise: show that without this premise we can derive
λx . x : ∀α.∀β. α→ β.)

[Faculty of Science
Information and Computing Sciences]

36

8.5 Algorithm W

[Faculty of Science
Information and Computing Sciences]

37

Algorithm W §8.5

Algorithm W (Damas and Milner, 1982) establishes a
procedure for obtaining a principal type, for each well-typed
term in the Hindley-Milner system.

Intuitively, a principal type is the most polymorphic type that
can be assigned to a given term.

[Faculty of Science
Information and Computing Sciences]

38

Challenges §8.5

I We have to somehow “guess”, for every
lambda-abstraction, what the type of its formal
parameter is.

I The rules [t-gen] and [t-inst] can be applied to terms of
any form. We have to decide when to apply them.

[Faculty of Science
Information and Computing Sciences]

39

Strategy §8.5

I Algorithm W proceeds by initially “guessing” a fresh type
variable for every parameter type and by incrementally
refining theses guesses as more information on the use
of parameters becomes available.

I Algorithm W uses a syntax-directed variation of the
Hindley-Milner type rules in which generalisation only
occurs at let-bindings and instantiation only occurs at
the use-sites of variables.

� Syntax-directed: for every term, at most one rule ap-
plies.

[Faculty of Science
Information and Computing Sciences]

40

Generalisation and instantiation §8.5

The syntax-directed type rules are defined in terms of
metaoperations gen· and inst :

gen· : TyEnv→ Ty→ TyScheme
genΓ(τ) =

let {α1, . . , αn} = ftv(τ)\ftv(Γ)
in ∀α1. · · · ∀αn. τ

inst : TyScheme→ Ty
inst(∀α1. · · · ∀αn. τ1)

= let α′1, · · · , α′n be fresh
in [α1 7→ α′1] · · · [αn 7→ α′n]τ1

[Faculty of Science
Information and Computing Sciences]

41

Syntax-directed type rules §8.5

Γ(x) = σ0

Γ ` x : inst(σ0)
[t-var]

Γ[x 7→ τ1] ` t1 : τ2

Γ ` λx . t1 : τ1 → τ2
[t-lam]

Γ ` t1 : τ2 → τ Γ ` t2 : τ2

Γ ` t1 t2 : τ
[t-app]

Γ ` t1 : τ1 Γ[x 7→ genΓ(τ1)] ` t2 : τ

Γ ` let x = t1 in t2 ni : τ
[t-let]

� All judgements have the form Γ ` t : τ (rather than Γ `
t : σ).

[Faculty of Science
Information and Computing Sciences]

42

Type substitutions §8.5

Algorithm W makes use of type substitutions:

θ ∈ TySubst type substitutions

θ ::= id | [α 7→ τ] | θ1 ◦ θ2

[Faculty of Science
Information and Computing Sciences]

43

Applying type substitutions §8.5

Applying a type substitution to a type scheme:

idσ = σ

[α 7→ τ0]α = τ0

[α 7→ τ0]α0 = α0 if α 6≡ α0

[α 7→ τ0](τ1 → τ2) = [α 7→ τ0]τ1 → [α 7→ τ0]τ2

[α 7→ τ0](∀α. σ1) = ∀α. σ
[α 7→ τ0](∀α0. σ1) = ∀α0. [α 7→ τ0]σ1 if α 6≡ α0

(θ1 ◦ θ2)σ = θ1θ2σ

Applying a type substitution to a type environment:

θ[] = []
θ(Γ1[x 7→ σ]) = θΓ1[x 7→ θσ]

[Faculty of Science
Information and Computing Sciences]

44

Unification §8.5

Algorithm W makes use of Robinson’s unification algorithm
(1965).

U : Ty ×Ty ⇀ TySubst

U provides a partial function that, for any two types τ1 and
τ2, constructs a most general unifier, i.e., a type substitution
θ, such that θτ1 = θτ2 and, for all θ′ with θ′τ1 = θ′τ2 there is a
θ′′ with θ′ ≈ θ′′ ◦ θ. (Where θ1 ≈ θ2 iff, θ1σ = θ2σ for all σ.)

If τ1 and τ2 are not unifiable, U fails.

For example:

U(α→ Bool → α , Nat → β → γ)
= [γ 7→ Nat] ◦ [β 7→ Bool] ◦ [α 7→ Nat]

[Faculty of Science
Information and Computing Sciences]

45

Unification (cont’d) §8.5

U(α, α) = id
U(α1, τ2) = [α1 7→ τ2] if α1 /∈ ftv(τ2)
U(τ1, α2) = [α2 7→ τ1] if α2 /∈ ftv(τ1)
U(τ11 → τ12, τ21 → τ22) = let θ1 = U(τ11, τ21)

θ2 = U(θ1τ12, θ1τ22)
in θ2 ◦ θ1

U(τ1, τ2) = fail in all other cases

� The side conditions α1 /∈ ftv(τ2) and α2 /∈ ftv(τ2) are
known as the “occurs check” and prevent the construc-
tion of infinite types.

[Faculty of Science
Information and Computing Sciences]

46

Algorithm W §8.5

W : TyEnv ×Tm⇀ Ty ×TySubst

Algorithm W takes a type environment Γ and a term t , and
produces, if t is well-typed in Γ, a type τ and a type
substitution θ, such that θΓ ` t : genθΓ(τ). Moreover,
genθΓ(τ) is then a principal type for t in θΓ.

If t is ill-typed in Γ, Algorithm W fails.

[Faculty of Science
Information and Computing Sciences]

47

Algorithm W: variables §8.5

W(Γ , x) =
if x ∈ dom(Γ)
then (inst (Γ(x)) , id)
if fail

[Faculty of Science
Information and Computing Sciences]

48

Algorithm W: lambda-abstractions §8.5

W(Γ , λx . t1) =
let α1 be fresh

(τ2 , θ1) =W(Γ[x 7→ α1] , t1)
in (θ1α1 → τ2, θ1)

[Faculty of Science
Information and Computing Sciences]

49

Algorithm W: applications §8.5

W(Γ , t1 t2) =
let α be fresh

(τ1 , θ1) =W(Γ , t1)
(τ2 , θ2) =W(θ1Γ , t2)
θ3 = U(θ2 τ1 , τ2 → α)

in (θ3α , θ3 ◦ θ2 ◦ θ1)

[Faculty of Science
Information and Computing Sciences]

50

Algorithm W: local definitions §8.5

W(Γ , let x = t1 in t2 ni) =
let (τ1 , θ1) =W(Γ , t1)

(τ , θ2) =W(θ1Γ[x 7→ genθ1Γ(τ1)] , t2)
in (τ , θ2 ◦ θ1)

