
Verifying a distributed leader election algorithm

using the Spin Model Checker

João Paulo Pizani Flor
j.p.pizaniflor@students.uu.nl

Tuesday 26th February, 2013

1 Introduction

This technical report describes the solution adopted to one of the programming
assignments of the master course ”Program Verification” at Utrecht University,
taught in the 3rd period of the academic year 2012/2013. The assignment involved
the modelling of a distributed algorithm achieving leader election and the formal
verification of said algorithm using model checking techniques.

More specifically, the ”Chang and Roberts” decentralized leader election algo-
rithm was modeled, with the following characteristics:

• N processes are connected in a directed ring topology

• Each process has exactly one incoming and one outgoing channel

Two correctness properties over the model were then verified:

1. The algorithm always terminates

2. When the algorithm is finished, all processes agree on who is the new leader

These properties were expressed using Linear-time Temporal Logic (LTL) for-
mulas, which were negated and translated to never claims verified by the SPIN
model checker.

2 The Promela model

In order to verify the correctness properties proposed, a model of the algorithm
was written in the Process Metalanguage (Promela). The developed model has
a compile-time constant (NPROC) defining the number of processes in the ring.
As model checking techniques can only handle finite state spaces, we cannot do
universal quantification over the number of processes, and only rings up to a certain
size were verified. More details about verification results are in section 4

Besides the variables modelling the algorthm itself, the Promela file that de-
scribes the algorithm (verkiezingen.pml) also contains 3 so called shadow variables:

byte t e rm ina t ing proc s = 0 ;
byte proc l a imed l eade r = 0 ;
byte d i sag r e ement l eade r = 0 ;

The first variable (terminating procs) is increased whenever a process reaches
the default end state (last line of its body). Therefore, the value of this variable
serves as a count of how many of the instantiated processes actually terminated.

The two following variables (proclaimed leader and disagreement leader)
are used to establish the property that all processes agree on the leader.
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• The winner of the election, when first noticing his victory, writes his id to the
global shadow variable proclaimed leader.

• Whenever a process assigns its local lid (leader) variable to an id, it also
updates the shadow disagreement leader to denote whether there are any
differences between its idea of a leader and the global proclaimed leader.

The Promela code for the init section follows, which contains an array serving
as a “source” of unique ids to the processes being created, as well as the loop itself
which runs the processes.

in i t {
byte i = 0 ;
byte i d s [ 2 0 ] ;

atomic {
i d s [ 0 ] = 32 ; i d s [ 1 ] = 45 ; i d s [ 2 ] = 12 ; i d s [ 3 ] = 21 ;
i d s [ 4 ] = 10 ; i d s [ 5 ] = 11 ; i d s [ 6 ] = 99 ; i d s [ 7 ] = 87 ;
i d s [ 8 ] = 41 ; i d s [ 9 ] = 37 ; i d s [ 1 0 ] = 31 ; i d s [ 1 1 ] = 56 ;
i d s [ 1 2 ] = 78 ; i d s [ 1 3 ] = 26 ; i d s [ 1 4 ] = 17 ; i d s [ 1 5 ] = 23 ;
i d s [ 1 6 ] = 42 ; i d s [ 1 7 ] = 22 ; i d s [ 1 8 ] = 55 ; i d s [ 1 9 ] = 75 ;

}

atomic {
do
: : i < NPROC −> run P( c [ i ] , c [ ( i +1) % NPROC] , i d s [ i ] ) ; i ++;
: : else −> break ;
od ;

}
}

The following code block shows the declarations of the channels used for inter-
process communication, as well as the message type.

#define NPROC 15

mtype = { ELECTION, NEW LEADER } ;
chan c [NPROC] = [ 1 ] of { mtype , byte } ;

The fact that two kinds of messages can be sent across the channels is justified
by existance of two phases in the election algorithm:

Election The processes cooperate to choose one of them as the new leader

Acknowledgement All processes recognize the new leader

In the election phase, messages with the tag ELECTION are exchanges. And
in the second phase of the algorithm, only messages with the tag NEW LEADER are
passed around. The following code block is the proctype declaration of the member
processes.
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proctype P(chan i ; chan o ; byte id ) {
mtype t ;
byte buf ;
byte l i d ;
printf ( ”my pid i s : %d\n” , id ) ;

o ! ELECTION, id ;
do
: : {

i ? t , buf ;
i f
: : ( t == ELECTION) −> i f

: : ( buf > id ) −> printf ( ”(%d>%d)\n” , buf , id ) ;
o ! ELECTION, buf ;

: : ( buf < id ) −> printf ( ”(%d<%d)\n” , buf , id ) ;
: : else −> {

l i d = id ;
p roc l a imed l eade r = id ; // shadow var
o ! NEW LEADER, l i d ;

}
f i ;

: : ( t == NEW LEADER) −> i f
: : ( buf == id ) −> {

printf ( ” e l e c t i o n ended , winner i s %d\n” , id ) ;
break ;

}
: : else −> {

l i d = buf ;
// shadow var
d i sag r e ement l eade r = d i sag r e ement l eade r + ( proc l a imed l eade r − l i d ) ;
printf ( ”ACK l e a d e r i s %d\n” , l i d ) ;
o ! NEW LEADER, l i d ; break ;

}
f i ;

f i ;
}

od ;
e inde : t e rm ina t ing proc s++; // shadow var , t h i s p roc e s s te rminates
}

As visible above, each process has two variables of type byte related to the
election algorithm: one (buf) where it stores the contents received over the incoming
channel, and the other (lid) which stores the id of the process believed to be the
leader.

2.1 Non-deterministic election

There is also a non-deterministic version of the election algorithm, which model
is in the file verkiezingen nd.pml. This model works through a change in the
second phase of the election process (acknowledgment). Whenever a process gets
a NEW LEADER message, it has a (non-deterministic) choice between accepting that
proposed leader or attempting a coup d’état, that is, telling his neighbour that HE
is the leader, instead of the “legitimate” one. This possibility of coups can only last
for a limited number of rounds (limited by MAXCOUPS).
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This non-deterministic version has also been verified, and both LTL formulas
were checked valid with SPIN.

3 Correctness properties

As already mentioned, the assignment asked for the verification of two correctness
properties over the described model:

1. The algorithm always terminates

2. When the algorithm is finished, all processes agree on who is the new leader

The verification was realized by first expressing each of the desired properties as
a formula in Linear-time Temporal Logic (LTL). The first formula, which expresses
the fact that all processes terminate, is as follows:

� � (t = N)

That is, it is always the case that eventually a state will be reached in which
t = N , where t is the terminating procs shadow variable and N is NPROC.

The second formula expresses the fact that when the algorithm finishes, all
processes agree on who is the new leader:

� (t = N =⇒ d = 0)

That is, it is always the case that when the number of terminating process
matches the total of all processes, the “accumulated” disagreement will be zero,
where t is terminating procs, N is NPROC and d is disagreement leader.

Even though this task has not been finished, we believe that it would be possible
to express the second property (agreement) without the use of LTL, only using
a monitor process with an assertion. The first property, however, could not be
expressed without the use of LTL.

4 Results

In this section the verification results are shown. Three scenarios were considered for
verification, regarding the number of processes in the ring: we tested the algorithm
with 5, 10 and 15 processes.

In the case of 15 processes, the number of states to be explored was already to big
for the verification to run on my machine (4GB of RAM), therefore the verification
was not completed, but achieved a depth of around 800.

Here are the verification results for the case with 5 processes:

# VERIFYING TERMINATION

(Spin Version 6.2.3 -- 24 October 2012)

+ Partial Order Reduction

Full statespace search for:

never claim + (termination)

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 128 byte, depth reached 204, errors: 0

2095 states, stored
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2415 states, matched

4510 transitions (= stored+matched)

51 atomic steps

hash conflicts: 3 (resolved)

Stats on memory usage (in Megabytes):

0.280 equivalent memory usage for states (stored*(State-vector + overhead))

0.480 actual memory usage for states

64.000 memory used for hash table (-w24)

0.343 memory used for DFS stack (-m10000)

64.734 total actual memory usage

pan: elapsed time 0.01 seconds

# VERIFYING AGREEMENT

(Spin Version 6.2.3 -- 24 October 2012)

+ Partial Order Reduction

Full statespace search for:

never claim + (agreement)

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 128 byte, depth reached 204, errors: 0

1049 states, stored

460 states, matched

1509 transitions (= stored+matched)

17 atomic steps

hash conflicts: 0 (resolved)

Stats on memory usage (in Megabytes):

0.140 equivalent memory usage for states (stored*(State-vector + overhead))

0.383 actual memory usage for states

64.000 memory used for hash table (-w24)

0.343 memory used for DFS stack (-m10000)

64.636 total actual memory usage

pan: elapsed time 0 seconds

Now, for the case where there are 10 processes in the ring, the number of states
goes from one thousand to around one million.

# VERIFYING TERMINATION

(Spin Version 6.2.3 -- 24 October 2012)

+ Partial Order Reduction

Full statespace search for:

never claim + (termination)

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 212 byte, depth reached 527, errors: 0

1111711 states, stored
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1619546 states, matched

2731257 transitions (= stored+matched)

96 atomic steps

hash conflicts: 35590 (resolved)

Stats on memory usage (in Megabytes):

237.487 equivalent memory usage for states (stored*(State-vector + overhead))

191.500 actual memory usage for states (compression: 80.64%)

state-vector as stored = 169 byte + 12 byte overhead

64.000 memory used for hash table (-w24)

0.343 memory used for DFS stack (-m10000)

255.457 total actual memory usage

pan: elapsed time 4.77 seconds

pan: rate 233063.1 states/second

# VERIFYING AGREEMENT

(Spin Version 6.2.3 -- 24 October 2012)

+ Partial Order Reduction

Full statespace search for:

never claim + (agreement)

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 212 byte, depth reached 527, errors: 0

555857 states, stored

354571 states, matched

910428 transitions (= stored+matched)

32 atomic steps

hash conflicts: 3508 (resolved)

Stats on memory usage (in Megabytes):

118.744 equivalent memory usage for states (stored*(State-vector + overhead))

95.941 actual memory usage for states (compression: 80.80%)

state-vector as stored = 169 byte + 12 byte overhead

64.000 memory used for hash table (-w24)

0.343 memory used for DFS stack (-m10000)

160.047 total actual memory usage

pan: elapsed time 1.6 seconds

pan: rate 347410.62 states/second

And finally the largest test case, where we had 15 processes in the ring. In this
case, as already mentioned, the verification could not be done exhaustively become
of memory limitations of the computer in which the verification was run. The depth
we could reach was about 800 and the number of states we managed to verify was
approximately 25 million.

# VERIFYING TERMINATION

Warning: Search not completed

+ Partial Order Reduction

+ Compression
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Full statespace search for:

never claim + (termination)

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 296 byte, depth reached 829, errors: 0

25352927 states, stored

16224078 states, matched

41577005 transitions (= stored+matched)

47 atomic steps

hash conflicts: 10589918 (resolved)

Stats on memory usage (in Megabytes):

7543.672 equivalent memory usage for states (stored*(State-vector + overhead))

1373.926 actual memory usage for states (compression: 18.21%)

state-vector as stored = 41 byte + 16 byte overhead

64.000 memory used for hash table (-w24)

0.343 memory used for DFS stack (-m10000)

1437.781 total actual memory usage

nr of templates: [ 0:globals 1:chans 2:procs ]

collapse counts: [ 0:199249 2:3 3:390 4:2 ]

pan: elapsed time 172 seconds

pan: rate 147615.3 states/second

# VERIFYING AGREEMENT

(Spin Version 6.2.3 -- 24 October 2012)

Warning: Search not completed

+ Partial Order Reduction

+ Compression

Full statespace search for:

never claim + (agreement)

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 296 byte, depth reached 834, errors: 0

30224192 states, stored

19264186 states, matched

49488378 transitions (= stored+matched)

47 atomic steps

hash conflicts: 15757143 (resolved)

Stats on memory usage (in Megabytes):

8993.099 equivalent memory usage for states (stored*(State-vector + overhead))

1636.211 actual memory usage for states (compression: 18.19%)

state-vector as stored = 41 byte + 16 byte overhead

64.000 memory used for hash table (-w24)

0.343 memory used for DFS stack (-m10000)

1699.988 total actual memory usage

7



nr of templates: [ 0:globals 1:chans 2:procs ]

collapse counts: [ 0:222974 2:3 3:390 5:1 ]

pan: elapsed time 203 seconds

pan: rate 148961.03 states/second
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