Project 2: Modelling and Proving in a Higher Order

Theorem Prover
Program Verification Course 12/13

1 Setup

In this assignment we will consider a simple program to verify. The emphasis is
in modelling the problem in HOL, and to subsequently prove some correctness
properties of the program.

Let N be some natural number. Consider the following set of processes:

Sysy = {PMIN (N-1)0} U {PMINi (i+1) |t < N-1}
where each PMIN p ¢ operate on a common array A of integers, and it does this:
PMIN p g = if A[g]<A[p] then A[p] := A[q] else skip

You can assume the array to be infinitely large so you don’t have to worry about
accessing the array outside its bound.

The Sys above runs non-stop. At every step of each execution, one of the pro-
cesses is selected, and executed. We leave the selection scheme unspecified.

We want to verify the following properties:

1. [DESCD] Every execution step of Sys, never increases the value of A[i], for
any ¢ < N.

2. [EQSTABLE] For every execution step of Sysy, if all values in A[0..N—1] are
the same before the step, they all remain the same after the step.

Note: what makes verification in a theorem prover different than model checking is
that we can in principle verify the above for any value of N and any value of A.

2 Base Task

The verify the above properties in HOL, you will have to ’express’ (to 'model’)
the problem in HOL first. The higher order feature of HOL means that it is very
expressive, allowing you to model many kinds of problems. Also, there will be plenty
of choices for expressing your models, e.g. you can use functions, sets, or lists. In
this exercise we will explore these choices.

Being able to express is one thing, being able to prove is another, and the latter
is usually more difficult. Although logicalluy The choices you made in expressing
your problems may matter alot for the ease of your verification.



2.1 Preparation

Prepare a script e.g. mysolution.smx for writing your models and proofs. If you are
a poor Windows user like myself, you may have to turn off HOL’s unicode support:

set_trace "Unicode" O;

Numeric terms are by default typed as num. Integers are also not loaded by HOL
by default, so to use it you need to load intLib. However, once integers are loaded,
the default type of for numerics changes to int.

Here is myown script preamble if you want to use it:

(x for Windows *)
set_trace "Unicode" 0;

load "numSimps" ; (* simplification-set for natural number arithmetic *)

open numSimps ; (x openning allow you to access stuffs in a loaded module
without having to use qualified notation like A.foo *)

load "intLib" ; (* library for integers *)

open intLib ;

load "stringLib" ; (% library for strings, if you need it *)

open stringLib ;

load "stringSimps" ; (* simplification sets for string, if you need it *)

open stringSimps H

load "pairTheory" ; (% definitions of FST and SND; see on-line doc. on pairTheory *)

open pairTheory H

load "pred_setLib" ; (% library for sets *)

open pred_setLib ;

load "pred_setSimps" ; (* simplification-set for sets *)

open pred_setSimps H

2.1.1 Relevant chapters from the HOL Description

Section 5.3, 5.5, 5.6 gives you some power tactics to do rewriting, goals solving, and
induction. Check out Section 5.5.2 about simpsets (simplification sets) and how to
combine them. Section 3.5.1 explains sets.

Some functions that may come handy (check out their documentation): REWRITE_TAC
and all its variations, EXISTS_TAC, by (in bossLib).

2.1.2 Scripting your proofs

I do not want to see proofs scripted as a series of commands, e.g.:

g ‘FST (MINpair (x,y)) <= SND (MINpair (x,y))° ;
e (RW_TAC std_ss [MINpair_DEF]) ;

e (COOPER_TAC) ;

val lemmal = it ;

Above is how you interactively trying to discover how to prove the goal. But
the proof should be scripted like this instead:

val lemma = prove(
--‘FST (MINpair (x,y)) <= SND (MINpair (x,y))‘--,
RW_TAC std_ss [MINpair_DEF]
THEN COOPER_TAC ) ;

2.2 Define PMIN

Define PMIN in HOL. It is a simple 'program’. But how do you represent/model it
in HOL?



2.3 Define Sys

Sysy is a set of processes. We can represent such a set as set in HOL, or as a
predicate (a function of type a — bool), or as a list. Write three models of Sys,
using each of those mentioned choices.

2.4 Formalizing the specifications

Give HOL formulas that formally express the specifications DESCD and EQSTABLE
in Section 1.

2.5 Verification

Now you can verify DESCD and EQSTABLE. Do this first for your set and predicate
models [max. 7pt].

I expect the list model to be more difficult to handle. I suggest you to first prove
the following lemma. If N > 0:

MEM P ListSys
=
((P=PMIN (N-1)0) Vv (k. P =PMIN k (k+1)))

where MEM x s checks the membership of z in the list s, and ListSys is your list
version of Sys.
Verification of the list model is worth max. 2pt.

3 To deliver

1. The source code containing your models and proofs.

2. A short report [max. 1 pt] explaining your models and the formalization of
the specifications.



