
Modelling and verifying a simple distributed system
in HOL

João Paulo Pizani Flor
Department of Information and Computing Sciences,

Utrecht University - The Netherlands
e-mail: j.p.pizaniflor@students.uu.nl

April 14th, 2013

1 Introduction
This report describes the solution to one of the practical assignments (project nr. 2) of the
master course "Program Verification" at Utrecht University, taught in the 3rd period of the
academic year 2012/2013.

The goal of this assignment was to provide some experience in using an Automated
Theorem Proving tool (in this case, http://hol.sourceforge.net) for the modelling and formal
verification of software. More specifically, we were asked to model a simple distributed al-
gorithm in HOL logic (using three possible representations) and then prove some properties
over this model.

2 Modelling the algorithm itself
The system we were asked to model consisted of a set of processes Sysn:

Sysn = {PMIN(n− 1, 0)} ∪ {PMIN(i, i+ 1) | i < n− 1}

All processes belonging to this set operate on a shared (global) array on integers, with the
following behaviour:

PMIN(m,n) = if A[n] < A[m] then A[m] = A[n] else skip

The two last remarks in the specification were that the global array A could be assumed to
be infinite (no concerns with boundary conditions) and that at each execution step of the
system, one process would be selected and run, be nothing could be assumed about which
process would be selected at which point (selection order left unspecified).

Our first step towards embedding this system in HOL was deciding how to represent
the array A. We chose to represent it as a function a : N → Z, where acessing the
array at an index i corresponds to the value a(i). Considering this model, an array update
is a transformation between the function models, such that the “updated” element is a
specialized behaviour in a case distinction by index.

This led to our model of a process PMIN (in HOL term syntax):

PMIN (p : num) (q : num) (ar : num -> int) =
let changed = (\i. if i = p then ar q else ar i)
in if (ar q) < (ar p) then changed else ar

1



Notice how the output array is the same as the input in the case that the if test fails,
and the changed array maps to the same values as the original for all indices except p.

Having PMIN modelled, the next logical step was to model the set of processes Sysn.
This modelling was done in three ways, which results in three varieties (semantically equiv-
alent) of the specifications that we later discuss. The first and most intuitive modelling is by
using HOL’s built-in set datatype. After loading the pred_setLib library, we gain access
to definitions of set theory such as membership testing (IN) and set extension by inserting
a single element into a set (INSERT), along with additional syntax in the term parser for
dealing with set-builder notation. All these goodies allow us to have a concise definition of
Sysn, as follows:

SYS_SET (n : num) = (PMIN (n-1) 0) INSERT {PMIN i (i+1) | i < (n-1)}

The second way to model a set is using a boolean-valued function – that is, a function
of type (α → Bool), called a “characteristic function” – which, given an element returns
true in case the element belongs to the set. In fact, the HOL built-in set type already uses
characteristic functions, so our SYS_FUN model looks very similar to the SYS_SET model
already presented.

SYS_FUN (n : num) = \p.
(p = PMIN (n-1) 0) ∨ (∃i. i < (n-1) ∧ p = PMIN i (i+1))

That is, given a natural number n, the SYS_FUN definition yields a boolean-valued char-
acteristic function that returns true when the input equals PMIN (n-1) 0 or PMIN i (i+1)
for any i < (n− 1).

Lastly, we have the definition using the list built-in type from HOL. In this definition,
we map the range of indices from n down to 0 to the corresponding processes. For this, we
need the auxiliary recursive definition of DOWNTOZERO.

DOWNTOZERO 0 = [0]
/\ DOWNTOZERO (SUC n) = (SUC n) :: DOWNTOZERO n

SYS_LIST (n : num) =
PMIN (n-1) 0 :: MAP (\i. PMIN i (i+1)) (DOWNTOZERO (n-2))

3 Formalizing the specifications to be verified
Given the “basic” definitions above, now we give HOL definitions formalizing the speci-
fications to be verified. First of all, there will be three categories of HOL definitions, one
category for each of the approaches we considered (set, function, list). Also, the specifica-
tions will be expressed using two auxiliary predicates, SAME and DESCD:

SAME (n : num) a = ∀i j. (i < n ∧ j < n) ⇒ (a i = a j)

The unary predicate SAME n tests whether, for a given array, all its elements have the same
value. The definition literally states that, for every pair of inidices i and j inside the range
of the array up to n, a[i] = a[j].

NONINCR (n : num) a b = ∀i. (i < n) ⇒ (a i) ≥ (b i)

The binary predicate NONINCR n tests whether a relation holds between two arrays, namely
that for every index in the range up to n, a[i] ≤ b[i].

2



3.1 Specifications using the set model
When using the set model, the specifications correspond to the following HOL definitions:

SYS_EXEC_SET n a_in a_out = ∃p. (p ∈ (SYS_SET n)) ∧ (p a_in = a_out)

The definition SYS_EXEC_xxx n establishes a binary relation between two arrays, and
the meaning of this relation is that the second array is the result of one execution step of
the algorithm, considering the first array as input.

Furthermore, the definitions of the properties themselves are:

EQSTABLE_SET = ∀n a b. (SAME n a) ∧ (SYS_EXEC_SET n a b) ⇒ SAME n b

DESCD_SET = ∀n a b. SYS_EXEC_SET n a b ⇒ NONINCR n a b

3.2 Specifications using the function model
When using the function model, the specifications correspond to the following HOL defi-
nitions:

SYS_EXEC_FUN n a_in a_out = ∃p. ((SYS_FUN n) p) ∧ (p a_in = a_out)

EQSTABLE_FUN = ∀n a b. (SAME n a) ∧ (SYS_EXEC_FUN n a b) ⇒ SAME n b

DESCD_FUN = ∀n a b. SYS_EXEC_FUN n a b ⇒ NONINCR n a b

3.3 Specifications using the list model
When using the list model, the specifications correspond to the following HOL definitions:

SYS_EXEC_LIST n a_in a_out = ∃p. (MEM p (SYS_LIST n)) ∧ (p a_in = a_out)

EQSTABLE_LIST = ∀n a b. (SAME n a) ∧ (SYS_EXEC_LIST n a b) ⇒ SAME n b

DESCD_LIST = ∀n a b. SYS_EXEC_LIST n a b ⇒ NONINCR n a b

3


	Introduction
	Modelling the algorithm itself
	Formalizing the specifications to be verified
	Specifications using the set model
	Specifications using the function model
	Specifications using the list model


