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1 Introduction
This report describes the solution to one of the programming assignments (project nr. 3) of
the master course "Program Verification" at Utrecht University, taught in the 3rd period of
the academic year 2012/2013. The assignment involved the implementation of a weakest
pre-condition calculus for a simple imperative-like programming language. The weakest
pre-condition thus calculated was to be used to verify a Hoare triple in a theorem prover.

By calculating the weakest pre-condition for a program (given a certain post-condition),
we reduce the problem of verifying the validity of a Hoare triple to the problem of verifying
whether the user-supplied pre-condition implies the calculated weakest pre-condition.

Furthermore, the implication pre ⇒ wp is valid if and only if the formula ¬(pre ⇒
wp) is unsatisfiable. Therefore, if the backend theorem prover answers "unsat", then the
implication is valid (which means the Hoare triple is valid), otherwise not.

2 Some design choices
During the conception and implementation of the calculus, some design decisions had to
be taken, which impacted the way in which the software works. These are some of the most
important design decisions:

Theorem prover The theorem prover we decided to use is Z3, from Microsoft Research.
It is in active development, has a simple input format (SMT-Lib) and good documen-
tation.

Theorem prover bindings At first, we tried to use the SBV Haskell package as a bind-
ing to the Z3 theorem prover. It seemed attractive as it was actively maintained and
offered a “high-level” interface to the theorem proving backends. However, the trans-
lation of our datatypes to the types used by SBV proved to be too troublesome, and
we ended up writing the formulas to standard output in the SMT-Lib2 format, used
by Z3 and several other provers.

Arrays as functions After consulting the SMT-Lib reference (input language used in Z3),
we found out that there is a “native” way to represent arrays. Even so, we decided
to represent arrays as functions. This made easier the “initialization” from the pre-
condition: if we used a “native” SMT-Lib array, we would have to fill it with values
from the precondition, but by using functions, we can simply interpret the equalities
normally.
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Booleans as Integers We decided to make all arrays in the target SMT-Lib model have
Integer indices and Integer values, for simplicity purposes. Therefore, boolean values
in the stack, parameters and local variables are encoded as Integers, with false being
0 and any positive value being considered true.

3 The Weakest Pre-condition Calculus
In this section, we will go in depth over the implementation of the weakest pre-condition
calculus developed. We will do this tour of the rules in a top-down fashion, beginning with
the root rules, which define how to calculate the weakest pre-condition of a program as a
whole, and of each kind of statement, recursively.

1 wp :: L0Program -> Sp0Formula -> Sp0Formula
2 wp (L0Program _ _ _ body) q = wp_ body q
3

4 wp_ :: L0Statement -> Sp0Formula -> Sp0Formula
5 wp_ (Inst i) q = wp_inst i q
6 wp_ (Stmts ss) q = wp_stmts ss q
7 wp_ (IfThenElse t e) q = theni :&: elsei
8 where
9 topZero = E $ S (X 0) :=: A (I 0)

10 theni = topZero :=>: wp_ (Stmts [Inst L0Pop, t]) q
11 elsei = Not topZero :=>: wp_ (Stmts [Inst L0Pop, e]) q
12

13 wp_stmts :: [L0Statement] -> Sp0Formula -> Sp0Formula
14 wp_stmts [] q = q
15 wp_stmts (x:xs) q = wp_ x (wp_stmts xs q)

By the definition of the first function (wp), we can see that the weakest pre-condition
(hereafter denoted as WP) of a program is simply the WP of its body (a statement). Then
we have the definition of the WP for each case of statement. The list-of-statements case
is calculated by a simple recursive fold over the list, as seen in the lecture notes. In the
if-then-else case, the condition is whether the value on top of the stack is equal to zero;
also, we take care to calculate the WP of the “then” and “else” branches with an additional
pop instruction (which doesn’t appear in the source code but happens in runtime).

Now we can take a look at function wp_inst, which calculates the WP for a single
instruction, given the post-condition.

1 wp_inst :: L0Instruction -> Sp0Formula -> Sp0Formula
2 wp_inst (SetLocal k v) = transformFormula (rewrSetLocal k v)
3 wp_inst (LoadLocal k) = transformFormula (rewrLoadLocal k)
4 wp_inst (StoreLocal k) = transformFormula (rewrStoreLocal k)
5 wp_inst (LoadParam k) = transformFormula (rewrLoadParam k)
6 wp_inst (StoreParam k) = transformFormula (rewrStoreParam k)
7 wp_inst (PushLiteral v) = transformFormula (rewrPushLit v)
8 wp_inst L0Pop = transformFormula rewrPop_
9 wp_inst L0Return = transformFormula rewrReturn

10 wp_inst binOp@_ = transformFormula (rewrOp binOp)

This function simply applies transformFormula to the given post-condition formula,
passing as a parameter a rewrite rule. A rewrite rule is simply a function of type Sp0Formula
→ Sp0Formula (with Sp0Formula being the logic formula datatype. The transformFormula
function is a recursive traversal scheme over the Sp0Formula datatype, which will apply
the supplied rewrite rule only in the leaves of the tree.

We have exactly one rewrite rule per instruction in the language, along with some helper
functions used to define them. After some thought, we could express the rewrite rules in a
reasonably concise way. Let’s first take a look at the helper functions:

1 rewrStackSize :: (SSize -> SSize) -> Sp0Formula -> Sp0Formula
2 rewrStackSize g = rewrForm_ isT (update g)
3 where
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4 update g (T (I n)) = T (I (g n))
5 update _ _ = error "rewrStackSize: should never match this pattern"
6

7 rewrStackIdx :: (Idx -> Idx) -> (Idx -> Bool) -> Sp0Formula -> Sp0Formula
8 rewrStackIdx g guard = rewrExpr isS guard (update g)
9 where

10 update g (S (X k)) = S (X (g k))
11 update _ _ = error "rewrStackIdx: should never match this pattern"
12

13 rewrPush :: Sp0Formula -> Sp0Formula
14 rewrPush = rewrStackSize (subtract 1) . rewrStackIdx (subtract 1) (> 0)
15

16 rewrPop :: (Idx -> Bool) -> Sp0Formula -> Sp0Formula
17 rewrPop guard = rewrStackSize (+ 1) . rewrStackIdx (+ 1) guard

As you can see, the rewrite rules for pushing and popping to/from the stack adjust
both the size of the stack and the indices of references to the stack. When pushing, we
want to ONLY decrement the references in which indices are greater than zero, and also
when popping we provide an extra parameter (used in later definitions) which “guards” the
update.

Now we have the actual rewrite rules that correspond one-to-one to the “assembly”
instructions in the language:

1 rewrSetLocal :: Idx -> L0Value -> Sp0Formula -> Sp0Formula
2 rewrSetLocal k v = rewrExprIdx isL k (const $ lang0ToSpec0Value v)

Here, we rewrite expressions by replacing all references to local variable k with the
provided literal.

1 rewrLoadLocal :: Idx -> Sp0Formula -> Sp0Formula
2 rewrLoadLocal k = rewrPush . rewrExprIdx isS 0 (const $ L (X k))
3

4 rewrLoadParam :: Idx -> Sp0Formula -> Sp0Formula
5 rewrLoadParam k = rewrPush . rewrExprIdx isS 0 (const $ P (X k))
6

7 rewrPushLit :: L0Value -> Sp0Formula -> Sp0Formula
8 rewrPushLit v = rewrPush . rewrExprIdx isS 0 (const $ lang0ToSpec0Value v)

In the instructions which also “push” something onto the stack, we first replace refer-
ences to the top of the stack with the appropriate substitute, and only then we perform the
push rewrite. The order of the rewrites is important.

1 rewrPop_ :: Sp0Formula -> Sp0Formula
2 rewrPop_ = rewrPop (const True)
3

4 rewrStoreLocal :: Idx -> Sp0Formula -> Sp0Formula
5 rewrStoreLocal k = rewrExprIdx isL k (const $ S (X 0)) . rewrPop_
6

7 rewrStoreParam :: Idx -> Sp0Formula -> Sp0Formula
8 rewrStoreParam k = rewrExprIdx isP k (const $ S (X 0)) . rewrPop_
9

10 rewrReturn :: Sp0Formula -> Sp0Formula
11 rewrReturn = rewrExpr_ isR (const $ S (X 0))

In the other hand, for the instructions which perform a pop as side-effect, we first do
the pop rewrite, then introduce a reference to the top of the stack. Again, the order of
application of the rewriting rules is important.

1 rewrOp :: L0Instruction -> Sp0Formula -> Sp0Formula
2 rewrOp op = rewrExprIdx isS 0 (const $ op_ (S $ X 0) (S $ X 1)) . rewrPop (> 0)
3 where op_ = case op of
4 L0Add -> (:+:)
5 L0Sub -> (:-:)
6 ...
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Finally, in the general rewriting rule for all binary stack operators, we replace references
to the top of the stack with the operator applied to the TWO topmost elements of the stack.
This replacement is only done after a guarded pop rewrite, which ensures that references
to the top of the stack remain intact.

4 Running the examples
In the Haskell Cabal package provided in this distribution (called “lang0-wpverify”), an
executable is defined which, when run, will produce SMT-Lib2 code in the standard output,
suitable to be directly fed into the Z3 theorem prover for verification. The executable is
itself called “lang0-wpverify”, and can be executed together with Z3 like follows (assuming
you compiled the package using the standard Cabal procedure):

./dist/build/lang0-wpverify/lang0-wpverify | z3 -smt2 -in

If the string “unsat” is printed, then it means that verification succeeded, i.e., the Hoare
triple provided is valid. Otherwise, the execution of the program, given the pre-conditions,
does NOT lead to the post-conditions according to the WP calculus implemented.

The source code for this executable is located under the path src/UU/HoareLogic/Tests/Z3Tests.hs,
inside the lang0-wpverify package directory. New examples of Hoare triples can be
added to this file by copy-pasting and modifying the one already present there.
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