
Exam Program Verification 2007/2008

UNNIK-211, 01-07-2008, 09:00-12:00

Lecturer: Wishnu Prasetya

July 18, 2008

1. [2.5 pt] Consider this Kripke structure K:

0 : {x>0} 1 : {x>0} 2 : {x>0, x=y}

The set of states of this automaton is {0, 1, 2}, with 0 as the initial state. The set Prop of
atomic observations is {x>0, x=y}. The labeling of every set with these observations are
as given in the above picture.

We are going to do LTL model checking to verify whether the above ’program’ satisfies the
property: true U (x=y).

(a) Draw a Buchi automaton B representing ¬(true U (x=y)).

Answer: well, since true U q = 3q, the above is equivalent to 2¬(x=y). A Buchi
automaton accepting it is:

s0

x=y 6∈

For latter reference we name the only state above a.

(b) Give the formal definition of the Buchi automaton you draw in (a). That is, describe
it in terms of a tuple (Σ, Q, ρ, I, F); what are your Σ in this case, your Q, your ρ and
so on.

Answer:

i. Σ = {∅, {x>0}, {x=y}, {x>0, x=y}} (set of labels)

ii. Q = {a} (the set of states)

iii. ρ (the transition relation) is such that

ρ (a, L) = {0} , if x=y 6∈ L

for all other cases there is no transition; so ρ (a, K) = ∅.

iv. F = {a} (the set of accepting states)

(c) Construct the automaton K ∩ B.

Answer:

(0, a) (1, a) (2, a)
{x>0}

{x>0}

{x>0}

1

where all states are accepting.

Question: Explain why we need this automaton for model checking your property.

Answer: Because it allows us to search for an (infinite) run accepted by the above
K ∩ B automaton (as a Buchi). Such a run corresponds to an execution that can be
generated by K, and is accepted by B; thus our counter example witnessing that the
property represented by the negation of that of B is not valid.

(d) So, according to your K ∩ B, does your original program K satisfy the property
true U (x=y) ?

If yes, explain why. If no, give your counter example in terms of a path in K ∩ B.

Answer: No. The counter example would be the infinite run (0, a), (1, a), (1, a)... (keep
cycling in (1, a)). This run is an accepting run in K ∩ B.

(e) SPIN uses a nested DFS algorithm to find a counter example. Explain why a single
DFS is not sufficient.

Answer: the top level DFS is needed to cover all accepting states of K ∩ B; at each
accepting state, a new DFS is started to check where it is cyclic. If it is, then we find
an accepting run.

2. [2.5 pt] Consider this Kripke structure K:

0 : {home} 1 : {page1}

2 : {page2, help}

3 : {page3, help}

The set of states of this automaton is {0, 1, 2, 3}, with 0 as the initial state. The set Prop

of atomic observations is:

{home, page1, page2, page3, help}

The labeling of every set with these observations are as given in the above picture.

(a) We want to express that when home is true, there exists a path leading to a state where
page3 is true. How to express this in CTL?

Answer: home → EFpage3

(b) Can we express the same thing in LTL? If yes, give the formula. If no, motivate why
not.

Answer: no we can’t. An LTL property must hold over all executions (which in LTL
are sequences). So in LTL K |= ϕ means that σ |= ϕ hold for all sequence σ of execution
that can be generated by K, starting from its initial state.

So in LTL we can’t express a property that only holds for some execution.

(Though, K 6|= ¬3page3 does mean that there exists therefore an execution satisfying
3page3; though 6|= is strictly speaking not an LTL, but it is something at the meta
level with respect to LTL)

(c) We will do CTL model checking to check if the automaton K above satisfies the property
A[true U help]. The model checking algorithm proceeds by iteratively labeling the
states of K with formulas. Fill in the following tabel to reflect the first 4 iterations of
your model checking procedure:

Answer: the entries in red in the table below.

2

Iteration State
0 1 2 3

0 {home} {page1} {page2, help} {page3, help}
1 {home} {page1} {page2, help, A[true U help]} {page3, help, A[true U help]}
2 {home} {page1, A[true U help]} as above as above
3 {home} {page1, A[true U help]} as above as above

(d) When should we terminate the iterations in the above model checking procedure?

Answer: after the labelling does not change anymore. So in the above example after
the 4th iteration.

(e) Does K satisfy A[true U help], according to your model checking? Explain.

Answer: no. In CTL K |= ϕ iff phi holds on K’s initial state. After the labelling
above, the initial state 0 is not labelled by the formula (A[true U help]), implying it
does not hold there.

3. [2.5 pt] Consider the two CSP processes given below. The alphabet of both is {a, b}.

P1 = (b → STOP) 2 (a → a → P1)

P2 = (b → STOP) u (a → a → P2)

(a) Describe the kind of traces that can be generated by P1 and P2. So, how are these
processes ralated to each other in terms of trace-based refinement?

Answer:

Both P1 and P2 generate traces with even number of a’s, followed by a single b, or any
prefix thereof. So, this set of traces:

{a2kb | k≥0} ∪ {ak | k≥0}

Since the generate the same set of traces, then they are equivalent in terms of trace-
based refinement (though not necessarily so in terms of the more powerful failure-based
refinement).

(b) Give all failures of P1 respectively P2 whose traces are of length 2 or less.

Answer: for P1:

trace length failures

0 (〈〉, ∅)
1 (〈a〉, ∅), (〈a〉, {b}), (〈b〉, ∅), (〈b〉, {a}), (〈b〉, {b}), (〈b〉, {a, b})
2 (〈〉, ∅)

For P2:

trace length failures

0 (〈〉, ∅), (〈〉, {a}), (〈〉, {b})
1 (〈a〉, ∅), (〈a〉, {b}), (〈b〉, ∅), (〈b〉, {a}), (〈b〉, {b}), (〈b〉, {a, b})
2 (〈〉, ∅), (〈〉, {a}), (〈〉, {b})

(c) Does P1 v P2 hold under the failures semantic? How about P2 v P1 ?

Answer: P1 v P2 does not hold, because as you can see in the table above there are
some failures of P2, e.g. (〈a〉, {b}) which are not included in P1.

However, the reverse P2 v P1 does hold.

(d) Draw the automata M1 and M2 representing P1 and respectively P2. Label each state
of these automata with its refusals.

Answer: left is M1 and right is M2.

3

0 : {∅} 1 : {∅, {b}}

2 : {all}

a

b

a

0 : {∅, {a}, {b}} 1 : {∅, {b}}

2 : {all}

a

b

a

(e) Construct the automaton M1 ∩ M2, and explain how we can check P1 v P2 using
M1 ∩ M2. So, does P1 v P2 hold according to your refinement checking procedure?

Answer: the intersection automaton M1 ∩ M2 is shown below. We do not label the
states with refusals, and such labelling has no purpose in the context of what we want
to use M1 ∩ M2 for (which is to check P1 v P2).

The states of M1 ∩ M2 have the form (i, j) with i corresponds to the state of M1, and
j that of M2.

Without the refusal labelling, it is not surprising that we obtain exactly the same
automaton as M1 and M1; we have ealier concluded that their traces are the same.

(0, 0) (1, 1)

(2, 2)

a

b

a

To check refinement, we have to check for every state (i, j), in the above automaton
that:

i. initials(i) (the set first actions possible after state i in M1) subsumes initials(j)
(the set first actions possible after state i in M1).
This is to check trace inclusion.

ii. refusals(i) (the set refusals in state i in M1) subsumes refusals(j).
This is to check refusal inclusion.

We have to check this for every state in M1 ∩M2; we can e.g. traverse the its states in
depth-first order.

As we do so, when checking the state (0, 0) we’ll find out that refusals(0) in M1 does
not subsume refusals(0) in M2. So the refinement P1sqsubseteqP2 does not hold.

4. [2.5 pt] Consider the following concepts:

”Abstractly, a program P can be seen as a function that maps an initial state to
a set of possible end-states. If P does not terminate when executed on an initial
state s, we will express this by mapping s to an empty state. That is, in our
abstract representation P s = ∅.

A program P always terminates if for all (intial) state s, P s is not empty. It
follows that if P and Q are two programs that always terminate, so does P ; Q.”

We want to express those concepts in HOL (to eventually prove the claimed theorem, though
we will not do so here).

(a) Give a HOL type that will be sufficient to represent the above abstract concept of
”program”, then give HOL definitions that capture the concepts ”P always terminate”
and ”P ; Q”.

Answer: since the text above does not say anything about the structure of a state,
we’ll let it generic. We’ll represent it with a type variable ’state.

We’ll choose to represent ”a set of states” by a predicate, encoded by a function of type
’state->bool. This gives the following representation programs. That is, we represent
a program by a function of this type:

4

’state -> ’state -> bool

(b) Write a formula capturing the theorem ”if P and Q are two programs that always
terminate, so does P ; Q”

Answer: Let’s first define the concept ’always terminate’:

Define ‘alwaysTerminate P = (!s. (?t. P s t))‘

P here is a ’program’; so a function of the type given in (a). The definition above says
that for all starting state s, there is some state t which is related to s. So, P s could not
be empty, which means according to our abstract description above that P terminates.

We also need to model the ”;” composition in HOL; this is quite easy. For convenience
I’ll assume that the name THEN has been declared as an infix.

Define ‘P THEN Q = (\s u. (?t. P s t /\ Q t u))‘

Now the requested situation can be captured by:

alwaysTerminate P /\ alwaysTerminate Q ==> alwaysTerminate (P THEN Q)

(c) In HOL a goal has the following type:

type goal = (term list) ∗ term

and a tactic has the following type:

type tactic = goal → ((goal list) ∗ (thm list → thm))

So, when given a goal v, a tactic tac will produce a pair (z, f). Explain the roles of z

and f and their relations to v.

Answer: f is the so-called proof function. When a tactic manage to reduce a goal g to
subgoals, each of which is either an axiom or can be proven directly form the primitive
inference rule, we’re basically done. But in HOL we still need to convert the goal g to a
theorem. A tactic cannot do this on its own, because in HOL the only way to produce
a theorem is by calling its primitive inference rules (or by composing them).

So this is where the proof function is for. It calls the primitive rules and compose them
to convert g to a theorem. The input is the theorems that correspond to the proven
subgoals of g.

(d) Let’s now apply the above understanding. Write the combinator TRY that will behave
as follows. Given a tactic tac, TRY tac will apply tac on the given goal. If it succeeds,
then we are done. However if tac fails on the goal (that is, if it throws an exeception),
then we do nothing with the original goal (and throws no exception).

You can write TRY in ML, Haskell, or even in some pseudo imperative language.

Answer: here is in ML:

fun TRY tac goal = tac goal handle _ => ALL_TAC goal

So, it applies tac to goal. If it throws an exception, then we’ll just apply ALLTAC,
which is just a skipping/identity tactic (it does not do anything).

5

