
Exam Program Verification 2008/2009
23-09-2009, 09:00-11:00

Lecturer: Wishnu Prasetya

1. [2 pt] Consider the following Promela model, consisting of 3 processes.

chan select = [0] of {bit} ;

chan x1 = [0] of {byte} ;

chan x2 = [0] of {byte} ;

active proctype SELECT () {

bit b = 0 ;

do

:: atomic { b=!b; select!b } /* Alternatingly send 0 and 1 */

od

}

active proctype STREAM() {

do /* can send 0s on channel x1, and 9s on channel x2 */

:: x1!0

:: x2!9

od

}

byte port ;

active proctype MUX(){

bit b ;

byte v1 ; byte v2 ;

do

:: select?b ; x1?v1 ; x2?v2 ;

d_step {

if /* decide the value on port based on value of b */

:: b -> port = v1 ;

:: else -> port = v2 ;

fi

}

od

}

Express the following requirements in SPIN. You are free to use whatever verification ap-
proach supported by SPIN (option, assertion, LTL, etc).

(a) The system does not dead-lock.

(b) MUX will alternately put 0 and 9 in the varible port.

1



2. [2.4 pt] Consider the Kripke structure K given below. The states are numbered (0,1,2).
Each state has been labelled by the set of atomic propositions that hold in the state. The
propositions are taken from the set Prop = {thinking, eating}.

0 : {thinking}

1 : ∅ 2 : {thinking, eating}

The questions:

(a) Let π be an (infinite) execution of K, and let i be a natural number. Give a formal
definition of:

π, i ` φ U ψ

where φ, ψ are arbitrary LTL formulas.

(b) Give a Buchi automaton L that represents the LTL formula:

thinking U X(thinking ∧ eating)

(c) Construct the Buchi automaton M = K ∩ L.

(d) So, does the following property hold? (note the negation)

K ` ¬(thinking U X(thinking ∧ eating))

If you think the property holds, explain why. Explain this in terms of M and the
acceptance criterion of a Buchi automaton.

If you think the property does not hold, give an (infinite) sentence of M as your counter
example. Explain why this sentence is a counter example in terms of M and the
acceptance criterion of a Buchi automaton.

3. [2.4 pt] Consider again the Krikpe structure K from No. 2. We will encode each state by
the following boolean functions:

State Encoding
0 x y

1 xy

2 xy

where f denotes ¬f , and fg denotes f ∧ g.

(a) Give a boolean formula that encodes the automaton K.

(b) If φ is a CTL formula, let Wφ denotes the set of states of K on which φ holds. More
precisely, Wφ consists of all states s of K such that K, s ` φ.

Give a boolean formula that encodes WEX(thinking∧eating) .

(c) We will now calculate Z = WE(thinking U EX(thinking∧eating)) , but we will do so symbol-
ically (via boolean formulas). This is calculated iteratively.

Give boolean formulas that encode Z0, Z1, and Z2.

(d) So, does K satisfies the specification:

E(thinking U EX(thinking ∧ eating))

? Explain your answer.

2



4. [2.1 pt] Consider this CSP processes:

P = (a→ STOP ) 2 (a→ Q)
Q = (b→ STOP ) u (a→ P )

The alphabets of both P and Q are {a, b}.

(a) Give all failures of P whose traces are of length 1.

(b) Give a non-deterministic automaton MP that generates exactly the same set of failues
as P . You need to label each state of MP with its refusals.

(c) Does the process a→ b→ STOP refines P? Explain your answer.

5. [1.1 pt] We want to write a tactic DROP that drops its first assumption. So,

DROP (t::A ?− u) = A ?− u

where t::A means t in front of the list A (what you in Haskell would write t:A).

In this exercise I want you to construct this tactic explicitly. A tactic is a function of this
type:

type tactic = goal → (goal list ∗ proofFunction)
type goal = term list ∗ term

type proofFunction = thm list→ thm

where A∗B denotes the type of pairs over A and B (what you in Haskell would write (A,B)).
Here is a template to write DROP; you need to complete it:

fun DROP_TAC (t::A,u) =

let

fun proofFunction thms = ...

val newgoals = ...

in

(newgoals,proofFunction)

end ;

To help you, you are given the following inference rule R : term → thm → thm that can
weaken a theorem like this:

R t (A ` u) = A ` t⇒ u

3


