
Exercises PV 09/10

Wishnu Prasetya

April 16, 2012

CSP and Refinement Checking

1. Let’s write the M<2 protocol in CSP. Express the sender and the receiver as
separate processes (because it seems convenient to do so). Take into account
that you somehow has to express:

(a) the fetching of a new data package by the sender.

(b) the acceptance of a package by the receiver.

(c) corrupted package.

Answer: The process SENDER and RECEIVER are described below. The
alphabet of each is just all the events that each process can produce.

SENDER = FETCH

FETCH = fetch → (data1 ⊓ dataerror) → SRDY

SRDY = (ack1 → FETCH)
2

(ack0 → (data1 ⊓ dataerror) → SRDY)
2

(ackerror → (data0 ⊓ dataerror) → SRDY)

RECEIVER = RRDY

RRDY = (data1 → ACCEPT)
2

(data0 → (ack1 ⊓ ackerror) → RRDY)
2

(dataerror → (ack0 ⊓ ackerror) → RRDY)

ACCEPT = (ack1 ⊓ ackerror) → accept → RRDY

The specification can be expressed as follows:

SPEC ⊑ (SENDER || RECEIVER)/Internals

where:

SPEC = fetch → accept → SPEC

and Internals are all events except fetch and accept. So:

Internals = (αSENDER ∪ αRECEIVER)/{fetch, accept}

1

2. Give a CSP process R which is equivalent with P ||Q, where:

P = x → ((a → P) 2 (b → P))
Q = y → a → Q

with αP = {x, a, b} and αQ = {y, a, b}. That is we want to have an expression
directly in terms of the underlying subprocesses, that equivalently describes
P ||Q.

Answer:

One way to ’expand’ P ||Q is by calculating it with calculation laws, if we have
sufficient of them. [1] provides lots of laws, e.g. to calculate (a → P1) || (b →
P2). Unfortunately [1] does not provide enough laws for ||; e.g. a law to
calculate (P12P2)||P3 is missing.

We can also construct it by first constructing the automata that represent
P ||Q. First, we construct the automata for P and Q —see below.

If you choose to interpret CSP processes under its trace semantics, then the
labeling with refusals are not necessary (trace semantic disregard refusals).
If you interpret them under the failure semantic then of course you need the
refusals information. In this I will do the latter.

Below, I only show the maximal refusals of each state. Note that if in a state s
a process can refuse V (a set of events), it can also refuse any subset V ′ ⊆ V .
E.g. in state 0, P thus can also refuse {a}, {b}, and .

0 : {{a, b}} 1 : {{x}}

a

b

x
u : {{a, b}} v : {{b, y}}

y

a

The above automate are already deterministic, which makes our task easier.
If they are not, you may want to convert them to deterministic ones first. Do
be careful how you re-assign the refusals.

It is by the way just a coincidence that every state above has just a single
maximal refusal. In general it can be more.

The automaton for N = P ||Q can be constructucted as a form of ’product’ of
the two automata above. Think N as simulating interleaved execution of P
and Q (but keep in mind that we have to synchronize over common events).

That states of N are pairs like (0, u). Its initial state is (s0, t0) where this s0
and t0 are the intial states of P respectively Q. N can only move from state
(s1, t1) to (s2, t2) via an event a, if either the following is true:

(a) a is P ’s own event (not an event it has to synchronize with Q), and a
moves the automaton of P from s1 to s2. Q should remain on its place;
so t2 = t1. This transition of N simulates an interleaved execution of
P ’s a.

(b) a is Q’s own event (not an event it has to synchronize with P), and a
moves the automaton of Q from t1 to t2. P should remain in its place;
so s2 = s1. This transition of N simulates an interleaved execution of
Q’s a.

(c) a is an event where P and Q have to synchronize, and a moves P from s1
to s2 and Q from t1 to t2. This transition of N simulates a synchronized
execution of a.

2

The refusals of each combined state can be calculated according to the defi-
nition of refusals for ||. So:

refusals((s, t)) = {X ∪ Y | X∈refusals(s) ∧ Y ∈refusals(y)}

The resulting N is shown below:

(0, u) : {{a, b}} (1, u) : {{a, b, x}}

(0, v) : {{a, b, y}} (1, v) : {{b, x, y}}

x

y

x

y
a

which when you ’reverse engineer’ you get:

R0 = (x → R1) 2 (y → R2)
R1 = y → R3

R2 = x → R3

R3 = a → R0

with αRi = {x, y, a, b}.

3. Consider these processes:

P = (a → STOP) 2 (a → ((b → P) ⊓ (a → STOP)))

Q = (a → b → Q) ⊓ (a → a → STOP)

We want to check whether P ⊑ Q (or the other way around) under the trace
semantic. How does the refinement checking procedure proceed?

Answer:

At the top level the procedure is as follows.

(a) Construct the automata MP and MQ representing P respectively Q.
If they are non-deterministic, convert them to deterministic one. The
conversion should be as such that it preserves the generated set of traces.

For the above example, MP and MQ are shown below (in that order). I
also name the states of MP for later reference.

0

1

2

3

4 5

a

a
τ

τ

b

a

τ

τ

a

a a

b

3

These automata are non-deterministic. We can turn them to determinis-
tic ones. Let’s do this first forMP . The idea is to construct an automaton
NP that drives/simulates MP . That is, NP generates exactly the same
traces as MP . However, each state of NP is actual a non-empty set of
MP ’s original states. This represents the set of possible states of MP af-
ter doing the same trace in NP . The initial state of NP is S0 consisting
of MP ’s initial state s0, and all state of MP that are reachable from s0
with only τ -steps.

When NP reach a state U , it means that it has driven MP in such a
way that the latter can be in any state in U . Now, NP can only make a
transition from state U to a non-empty state V with an event a iff

V = {v | (∃u ∈ U. u
τ∗aτ∗
−→ v)}

where u
τ∗aτ∗
−→ v means that v can be reached (in MP) from u by doing a

single event a, possibly mixed with any number of τ -steps. The important
thing to note here is that an NP constructed in this way preserve the set
of traces of the original MP .

Following this procedure we obtain this NP :

{0} {1, 2, 3, 4} {5}

a
a

b

It turns out applying the same procedure to MQ gives us an automaton
of the same shape. It differs from NP only in the ’identifications’ of
the states (the sets labelling each state above). However, for the pur-
pose of comparing the traces ses of both automata these identifications
are irrelevant. So, in this respect we simply get the same deterministic
automaton NQ for MQ.

(b) It happens in this example, that both NP and NQ are equal, so obviously
the generate the same set of traces. Therefore, under the traces semantics
P and Q are equivalent (which implies refinement in both ways).

But in general, in case NP and NQ are distinct, we proceed by construct-
ing an automaton representing NP ∩NQ. The states of this automaton
are of the form (u, v) where u is a state from NP and v is a state of NQ.
As we proceed in constructing NP ∩NQ, check at each new state (u, v)
added to it whether initials(u) ⊇ initials(v). If this ever fails to hold,
the Q does not refine P . We’ll do this in the next exercise.

Redo the question above to check P ⊑ R and R ⊑ P (in trace semantic),
where P is as above, and R is defined as below:

R = a → (b → (b → R))

Answer:

(a) As before first we construct deterministic automata representing P and
R. That of P has been given above. I’ll show it again below; I also name
the states for later references. Let’s call the automaton MP :

0 1 2

a
a

b

4

That of R is straight forward to construct; let’s call it MR:

a b c
a b

b

(b) We construct the automaton MP ∩MQ; which results in the automaton
N below. You can think N as simultaneously driving MP and MQ. That
states of N are pairs like (u, v). Its initial state is (s0, t0) where this s0
and t0 are the intial states of MP respectively MQ. When N is in a state
(u, v) it means that it has driven MP to the state u and MQ to state v.

N can only move from a state (u1, v1) to state (u2, v2) with an event a if
this move is possible in both MP and MQ. That is, if a moves MP from
state u1 to u2, and a moves MQ from state v1 to v2. Consequently, N
can only produce traces can be produced by both MP and MQ. Our N
is:

0, a 1, b 0, c
a b

In traces semantics P ⊑ R iff traces(P) ⊇ traces(R). According to our
theory this is the case iff for any state (u, v) in N , initials(u) (in MP)
subsumes (⊇) initials(v) (in MR).

This is unfortunately not the case here: initials(0) = {a}, whereas
initials(c) = {b}. So for state (0, c) of N :

initials(0) 6⊇ initials(c)

which thus implies that the refiment P ⊑ R does not hold.

Furthermore, we can expect N to be constructed incrementally (the al-
gorithm that constructs it does not suddenly produce the entire N). So
we can stop the construction as soon as we find such a contradicting state
(u, v) as described above.

The above answer the question of whether P ⊑ R. I leave the other question,
whether the reverse R ⊑ P holds, to you.

4. Prove the following under the trace semantic:

(a) P 2 STOP = P

(b) P ⊓ STOP = P

Do they still hold under the failure semantic?

Answer:

traces(P 2 STOP)
=
traces(P) ∪ traces(STOP)
=
traces(P) ∪ {〈〉}
= // 〈〉 is in the traces of any proces; thus also in P
traces(P)

5

The proof for ⊓ is the same, because as with 2, traces(P ⊓Q) = traces(P)∪
traces(Q).

(b) does not hold under the failures semantic, as shown in this counter exam-
ple. Suppose the alphabet is {a} and P is just a → STOP .

refusals(P ⊓ STOP)
=
refusals(P) ∪ refusals(STOP)
=
{∅} ∪ {∅, {a}}
=
{∅, {a}}

which implies that (〈〉, {a}) is a failure of P ⊓ STOP . But it is not a failure
of P . So they are not equal.

(a) still holds in the failures semantic. I’ll leave the work out to you.

5. What is a ’failure’ in CSP?

Answer:

A failure is a pair (s,X) where s is a trace and X is a refusal. When we say
(s,X) is a failure of a process P it means that P can produce the trace s, after
which it may refuse to do the choice of events as offered (by the environment)
in X .

Describe the failure sets of the following processes. Assume {a, b} as the
alphabet.

(a) (b → STOP) 2 STOP

Answer:

i. (〈〉, ∅), (〈〉, {a})

ii. (〈b〉, X), for all X ⊆ {a, b}

(b) (b → STOP) ⊓ STOP

Answer:

i. (〈〉, X), for all X ⊆ {a, b}

ii. (〈b〉, X), for all X ⊆ {a, b}

(c) P = a → ((b → P) 2 STOP)

Answer:

i. (〈〉, ∅), (〈〉, {b})

ii. (〈a〉, ∅), (〈a〉, {a})

iii. (〈ab〉, X), for all X ⊆ {a, b}

(d) Q = a → ((b → Q) ⊓ STOP)

Answer:

i. (〈〉, ∅), (〈〉, {b})

ii. (〈a〉, X), for all X ⊆ {a, b}

iii. (〈ab〉, X), for all X ⊆ {a, b}

So, does P refines Q under the failures semantic? (or perhaps the other way
around, or perhaps neither?)

Answer: P 6⊑ Q, but Q ⊑ P .

6

6. Redo exercise No. 3, but now using the failures semantic. That is, refinement
is now defined in terms of failures, and you’re asked to perform the refinement
checking to check whether P ⊑ Q and whether P ⊑ R.

Answer:

Tthat of P ⊑ R is easier to answer. Recall that failures-based refinement
implies traces-based refinement. That is:

If P ⊑ R under the failures semantics then it also holds under the

traces semantics.

So, the contra-position of this also holds:

If P 6⊑ R under the traces semantics then it also doesn’t hold under

the failures semantics.

Since we have shown previosly that P 6⊑ R under the traces semantics, the
conclusion for the failures semantics is then obvious.

So, I’ll also show the refinement checking for P ⊑ Q. Recall that this relation
holds under the traces semantics. We’ll see if it also holds under the more
discriminative failures semantics.

At the top level the refinement checking is now a bit different:

(a) Construct the automata MP and MQ representing P respectively Q.
These automata should retain the non-deterministic choices that were
possible in the original P and Q.

These automata have been shown before, but now we additionally label
the states with the set of refusals that correspond to those states. Again,
below I will only write the maximal refusals of each state.

That is if u is a state of, say, MP , we label u with the set of offers (within
MP ’s alphabet) that MP may refuse when it is in that state u, or in any
other state u′ which can be reached from u by doing only τ -steps. We
will also name the states.

This is MP :

0 : {∅, {b}}

1 : all

2 : {∅, {a}, {b}}

3 : {∅, {a}}

4 : {∅, {b}} 5 : all

a

a
τ

τ

b

a

And MQ:

0 : {∅, {b}}

1 : {∅, {b}}

2 : {∅, {b}}

3 : {∅, {a}}

4 : {∅, {b}} 5 : all

τ

τ

a

a a

b

(b) As before, now we collapse both automata to deterministic versions.
However we will keep the refusals information. More presicely, as we
construct the deterministic version NP from the above MP ; recall that
each state of NP is a set of MP ’s original states.

7

When U is a state of NP the set of possible refusals that correspond to
this state is thus the union of all refulsals of all states in U in the original
MP . For example, if U = {p, q} then refusals(U) = refusals(p) ∪
refusals(q). So, we obtain the following NP :

{0} : {∅, {b}} {1, 2, 3, 4} : all {5} : all

a

a

b

And this NQ:

{0, 1, 2} : {∅, {b}} {3, 4} : {∅, {a}, {b}} {5} : all

a

a

b

NP and NQ have the exactly the same shape; so the generate the same
set of traces. However, notice that they don’t have the same refusals.

Let’s first just remove the sets like {0, 1, 2} that label the aboves states;
they’re irrelevant now. We’ll also give the states new names for later
reference. So, NP and NQ are now as below (in that order):

x : {∅, {b}} y : all z : all

a

a

b

And this NQ:

u : {∅, {b}} v : {∅, {a}, {b}} w : all

a

a

b

Constructing NP ∩NQ gives, not surprisingly, the same automaton:

x, u y, v z, w
a

a

b

Also, not surprisingly, for any state (s, t) in the above NP ∩NQ we have
that initials(s) in NP subsumes initials(t) in NQ. Actually we have in
this case that both initials are the same. These imply P ⊑ Q and Q ⊑ P
under the traces semantics.

For the relations to also hold under the failures semantics, then it should
also be the case that refusals(s) in NP subsumes refusals(t) in NQ.
This is the case! So we conclude P ⊑ Q under the failures semantics.

However, we see that refusals(v) does not subsume refusals(y), whereas
(y, v) is a state in NP ∩NQ. This implies that the reverse relation Q ⊑ P
does not hold!

References

[1] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 2004.

8

